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Abstract: High-speed long-span 4-1 cable robots (4-1HSLSCRs) have the characteristics of a simple
structure, superior performance and easy control, and they can be used comprehensively in coal
quality sampling, water quality monitoring, aerial panoramic photographing, etc. However, because
of the high-speed movement of the end-effector and the unidirectional constraint property and
nonlinear characteristics of the long-span cables, the dynamic stability of the 4-1HSLSCRs presents
severe challenges. This paper, as a result, focuses on the two special problems of carrying out dynamic
stability measurement and a stability sensitivity analysis for the 4-1HSLSCRs. First, a systematic
approach that combines the cable tension, position and velocity of the end-platform based on both
the dynamic model and the determinations of the cable tension is proposed for the high-speed robot,
in which two cable tension and two position influencing factors are developed, respectively, whereas
a velocity function is constructed, which represents the influence of the end-effector velocity on the
dynamic stability of the 4-1HSLSCRs. Second, a grey relational analysis method for analyzing the
dynamic stability of the 4-1HSLSCRs is developed, where the relationship between the dynamic
stability of the 4-1HSLSCRs and the influencing factors (the position and velocity of the end-effector,
as well as the cable tension) is investigated in detail. Finally, the measure approach and sensitivity
analysis method for dynamic stability of 4-1HSLSCRs, namely, a camera robot with a high speed and
long-span cables, is verified through simulation results. The results show that the large-span cable
sags have significant effects on both the cable tensions and the dynamic stability of the camera robot,
whereas the stability sensitivity evaluation results indicate that the effect of the stability sensitivity
of the cable tensions on the dynamic stability of the camera robot is the greatest, followed by the
velocity of the end-effector, and last is the position of the end-effector.

Keywords: cable robot; dynamic stability; stability sensitivity; sags; grey relational analysis

MSC: 70E60; 70E50; 93B35

1. Introduction
1.1. Background and Motivation

Cable robots, which are cable-driven parallel robots or cable-based parallel robots,
are closed-loop mechanisms. For these robots, their end-effectors are driven by extending
or retracting the cables, and for this reason, the cable robots show several promising
advantages; for instance, they have a light-weight mechanical structure and a high-speed
motion, as well as a large workspace [1–5]. As a result, these advantages make the cable
robots safe, effective and reliable to be employed in medical rehabilitation [6,7], wind
tunnel experiments [8,9], large-scale astronomical observations [10,11], overloaded material
transportation [12–14] and other engineering application fields [15,16]. Additionally, high-
speed long-span 4-1 cable robots (4-1HSLSCRs), which are cable robots whose long-span
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cables connect to a fixed point of the end-effector with four long-span cables and can
operate with high-speed movement, have been widely used. The 4-1HSLSCRs have the
characteristics of a simple structure, superior performance and easy control, and they can be
used comprehensively in coal quality sampling, water quality monitoring, etc. An example
of a practical application is a redundant high-speed long-span cable robot with a camera
platform used in aerial panoramic photographing [17–20]. It should be noted that this paper
is focused on 4-1HSLSCRs. The 4-1HSLSCRs employ flexible cables as the drives, leading
to the low stability of the motions of the robots. One significant feature of these robots is
their great rapidity. The high-speed movement of the end-effector will inevitably affect
the stability of the 4-1HSLSCR. Another important feature is the potential deformation
of the long-span cables under cable tension [21–23]. Such deformation of the long-span
cables will have an effect on the cable length and tension, consequently resulting in the
location change of the end-effector, and therefore, will affect the stability of the 4-1HSLSCR.
Therefore, this paper mainly concentrates on the dynamic stability of the 4-1HSLSCRs
due to their high-speed movement and the weaker constraints stemming from the cable
possessing the minimum cable tension.

1.2. Literature Review and Comments

In this section, we briefly review the literature investigating the stability of the cable
robots from two aspects. For one thing, we analyze the domestic and international research
that has been conducted to determine the stability measurement methods for cable robots.
We also review the literature related to the stability sensitivity analysis methods for the robots.

On the one hand, a few investigations and studies in the literature have been conducted
on the stability of cable robots. A method to measure the stability of cable robots by
deriving the total stiffness of the robots was proposed in [24]. However, the proposed
stability for the cable robots was only defined as the stiffness stability with linear spring
cables. The minimum cable tension distributions of cable robots, which can be employed
to investigate the stability, are investigated in [25]. Moreover, the qualitative relationship
between the minimum cable tension, which is the weakest constraint for the end-effector,
and the stability of the cable robots is discussed. However, the mathematical model was not
established, and furthermore, the effects of the position of the end-effector on the stability of
the robots have not been rigorously studied. It is worthwhile to mention that these studies
found in the literature only looked at stable and nonstable states for cable robots. A concept
similar to stability is robustness, and indeed, a disturbance robustness measurement
method was proposed for underconstrained cable robots in [26,27], and importantly, the
proposed method employed quantifiable numbers to measure the robustness of the robots.
Inspired by [26,27], a method to measure the stability of the cable-driven camera robots that
employed the numerical value interval [0, 1] was proposed in [20]. Moreover, [28] proposed
a method for finding the stability of a coal-gangue-sorting cable robot. However, the
stability measurement method is static since the influence of the velocity of the end-effector
is not considered. The dynamic stability of cable robots can be defined as, “the likelihood
that an external disturbance will disturb the end-effector with a certain velocity from a given
equilibrium position.” That is to say, the cable robots with highly dynamic stability will
have a relatively high ability to resist external disturbances while in motion. Note that here,
the dynamic stability of the cable robots is related to a specific position, where a set of cable
tensions is needed to keep the end-effector in an equilibrium state during the movement.
Therefore, the position, cable tension and velocity of the end-effector have important effects
on the dynamic stability of the cable robots as the motion proceeds. As far as we know, the
previous literature concentrated on the stability measurement approach for cable robots in
the static sense, but few studies have concentrated on the dynamic stability by considering
the effects of the motion state on the stability of the robots. A hybrid force–position–pose
approach was presented by [29] to evaluate the dynamical stability of the underconstrained
cable-driven lower-limb rehabilitation training robot. The cables, however, were modeled
as straight line cables. The long-span cables have an important influence on the cable
tension, which further affects the stability of the 4-1HSLSCRs. Therefore, an approach
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including a combination of the cable tension, position and velocity of the end-effector to
determine the dynamic stability of 4-1HSLSCRs is developed in this paper. It should be
noted that this approach can employ the numerical value interval [0, 1] to measure the
dynamic stability while the robots are in motion.

On the other hand, it should be pointed out that the stability mechanism of the cable
robots is extremely complicated and affected by a considerable number of factors, such as
the cable tension, position and velocity of the end-effector. In fact, the influence degree of
the above influencing factors on the dynamic stability of the cable robot can be reflected
using stability sensitivity, and furthermore, the sequence of influencing factors can be
ranked based on the importance of each. To the best of our knowledge, there are few
studies that have addressed the stability sensitivity of the cable robots, especially for those
with a large workspace, as the large-span cable mass has to be considered in this case.
Liu et al., in [28], proposed a method to quantitatively assess the stability sensitivity for a
coal-gangue-sorting cable robot, but the cables were modeled as ideal straight line bodies
for the investigated robot, and it had a small workspace. A grey relational analysis method
can describe the relationships between the main factors and all the other factors [30], and
therefore, it can be employed to obtain the sensitivity of each influencing factor and rank
their sequence. The grey system theory can be employed to address any incomplete and
uncertain information [31]. Based on the grey relational analysis model put forward by Pro-
fessor Deng, several different models of grey relational analysis methods have been proposed,
such as the grey absolute relational degree method, the relative relational degree method [32],
the grey relational analysis models based on similarity and nearness [33], etc. Therefore, the
grey relational analysis has been widely applied to the prediction and control of robots,
decision making with regard to environmental systems, and influencing factors that affect
performance characteristics [34]. For example, He et al. [35] investigated the influence
mechanism of four factors on the incidence of HFMD with a grey correlation analysis
method. Zhang et al. [36] explored the relationship between the influencing factors of a
patient’s attitude and the medical service price with a grey relational analysis and Cochran–
Mantel–Haenszel statistical analysis methods. Duran et al. [37] investigated Turkey’s
domestic savings through macroeconomic indicators selected based on the influence degree
by using the grey relational analysis and the entropy method. Chen et al. [38] investigated
the influence mechanism of meteorological factors on the mortality of residents with the
grey relational analysis method. In [39], the contribution of climate factors to the start, end
and length of growing season was identified by using a grid-based grey relational analysis.
Yang et al. [40] discussed the integration degree between industry and the internet by using
a grey relational analysis method. From the above examples, it can be concluded that the
grey relational analysis methodology, which is an effect assessment model measuring the
similarity degree or difference degree between two sequences, is especially suitable for
obtaining the sensitivity of each influencing factor and ranking their sequence. Dynamic
stability is the most important aspect of the stable operation of 4-1HSLSCRs. With regard
to 4-1HSLSCRs operating at a high performance, there are multiple factors which can
influence the dynamic stability of the robots; for example, the cable tension, the position
and the velocity of the end-effector. As a result, the aim of this paper is to develop a method
for the dynamic stability sensitivity analysis of 4-1HSLSCRs. Furthermore, the most sensitive
factor among the stability influencing factors identified and controlled in priority. Additionally,
based on this foundation, the most sensitive factors that affect the robots’ dynamic stability can
be accurately controlled to achieve a more stable operation of 4-1HSLSCRs.

1.3. Contributions and Paper Organization

The previous research on the stability of cable robots has been mainly carried out in
the static sense while ignoring the effects of the motion state of the end-effector and the
mass of long-span cables. However, the two factors mentioned above have an important
effect on the stability of robots, especially for 4-1HSLSCRs. Additionally, it is beneficial to
improve the stability of the robots by investigating the influence degrees of the factors and
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their effect on the stability of 4-1HSLSCRs. In view of this, the innovations of this paper are
summarized as follows:

(1) Based on the research of [20], the objective of this work, on the one hand, is to
propose a dynamic stability measurement method for the 4-1HSLSCRs while conducting
an in-depth study of the influences of the velocity of the end-effector and sags causing by
the long-span cables on the stability of the robots. Compared with [20], the quantitative
effects of the velocity of the end-effector and the mass of long-span cables on the stability
of cable robots are investigated.

(2) On the other hand, this paper establishes a dynamic stability sensitivity analysis
model for the 4-1HSLSCRs using the grey correlation analysis method. Compared with [28],
this paper emphatically investigates the influence mechanism of the end-effector velocity
on the stability of the robots, and furthermore, determines the primary and secondary
relationships between the position and velocity of the end-effector, as well as the cable
tension and the dynamic stability of the 4-1HSLSCRs.

In addition, it should be noted that the employed control strategy will affect the influ-
encing factors of the stability, and therefore, the practical stability and stability optimization
of 4-1HSLSCRs can be obtained with an appropriate and robust control strategy. Mean-
while, the influence factors can be ranked from highest to lowest with a dynamic stability
sensitivity analysis of the 4-1HSLSCRs, and thus, the research results presented herein are
useful for the evaluation and promotion of the dynamic stability of 4-1HSLSCRs that have
a high speed and long-span cables.

The remainder of this paper is structured as follows: Section 2 investigates the dynamic
stability influence factors of 4-1HSLSCRs. Subsequently, a systematic approach to the
dynamic stability measurement of the 4-1HSLSCRs that have a high speed and large-span
cables is presented in Section 3. In addition, in Section 4, a grey relational sensitivity
analysis approach for the dynamic stability of 4-1HSLSCRs is proposed. Moreover, several
numerical examples are executed in Section 5, and the results and discussions are presented.
At last, the conclusions and future outlook are presented in Section 6.

2. The Dynamic Stability Influencing Factors

As described in [19], the influence mechanism of the stability of 4-1HSLSCRs is
extremely complicated and influenced by a considerable number of factors, including
the cable tension and the position of the end-effector. Furthermore, the velocity of the end-
effector, according to the dual relationship between rapidity and stability, greatly influence
the stability of the 4-1HSLSCRs, whereas the cable sags caused by the long-span cables also
have a great effect on the stability of the 4-1HSLSCRs. In this section, the position and cable
tension influencing factors, as well as the velocity influence function, are explained in order
to understand their influence on the stability of the 4-1HSLSCRs.

2.1. The Position and Cable Tension Influencing Factors
2.1.1. Modeling of the 4-1HSLSCRs

With respect to a 4-1HSLSCR driven by four long-span cables, the cables cannot be
simplified into a massless linear model, and the sag effect caused by the self-weight of the
cables should be considered. In Refs. [21,41], the catenary model for the long-span cables is
discussed, and therefore, the reader can refer to this paper for a detailed description of the
catenary cable model, as only a brief overview of the catenary cable model is presented in
this section. For the catenary cable, one end is connected to a winding drum and the other
is connected to the end-effector of a 4-1HSLSCR. Additionally, in this case, a local cable
frame {oi

cxi
czi

c} is fixed to Bi, where the zc-axis of the local cable frame coincides with the
z-axis of the base reference frame. As a consequence, the cable profile is the catenary, and
moreover, the catenary cable can be described as follows:

zc
i =

Hi
ρg

[
cosh αi − cosh

(
2βixc

i
li
− αi

)]
(1)
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where ρ is the linear density of the catenary cable; g = 9.8 m/s2 is the gravitational ac-
celeration; αi = sinh−1

[
βi(ci/li)
sinhβi

]
+ βi , βi =

ρgli
2Hi

; Hi and Vi are the horizontal and vertical
components of the cable tension at the terminal point of the cable; and li and ci are the
horizontal and vertical spans of the catenary cable, respectively.

Consequently, the slope of the catenary cable at the terminal point, the catenary cable length
Li, and the corresponding sag di can be obtained according to the following equations, respectively:

tan γi =
∂zc

i
∂xc

i
=
−2βi Hi

ρgli
sinh(

2βixc
i

li
− αi) (2)

Li =

√
1 +

(
dzs

i
dxs

i

)2

= l − Hβ

ql

[
l

16β

(
e4β−2α − e−4β+2α

)
+

1
2

]
(3)

di =
8Hisinhβisinh−1

(
ρgci/2Hi

sinhβi

)
− ciρg

2ρg
(4)

where γi is the angle between the tangent and horizontal plane at the terminal point of the cable.
By employing the cables to drive the end-effector, a higher movement speed can

be obtained for the 4-1HSLSCR. The 4-1HSLSCR, as shown in Figure 1, is composed of
mechanical and control systems. The mechanical system mainly consists of a fixed frame,
motion execution module (four cable drive units), and an end-effector (such as a camera or
a grab), while the control system mainly composes of an IPC, a motion controller, sensing
module (position sensor and cable tension meters), and so on. On the whole, the control
signals can be generated with the IPC and the motion control card, and be transmitted
to the servo drivers. Then, the four motors drive the cables to generate corresponding
coordinated motion, and this leads to the desired movement of the end-effector. Meanwhile
the positions of the end-effector and the cable tensions are measured with a laser tracker
and cable tension meters, respectively, and the four cable lengths are computed with the
data collected with the encoders. These collected data are fed back to IPC, which can realize
closed-loop control of the 4-1HSLSCR. Note that the investigated 4-1HSLSCR presents
a typical case of a complex system where the cables are not capable of withstanding
a compressive load. Three translational degrees of freedom of the end-effector can be
obtained by using the four winding drums and servo motors, and thus, the 4-1HSLSCRs
must be actuated with more than three cables. For this reason, it should be noted that the
4-1HSLSCR is a cable robot with a point-mass end-effector.
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Figure 1. The composition diagram of the investigated 4-1HSLSCR.

It is also worthwhile mentioning that the tension of the catenary cable, contrary to a
straight cable, is not constant along the profile of the catenary cable. In more detail, the
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cable tension Ti at the terminal point can be defined as Ti= [Hicosθi Hisinθi Hitanγi]T. θi is
the angle between the x-axis of the local cable frame and x-axis of the base reference frame;
thus, Vi = Hitanγi. The cable tension Ti is decomposed into the three directions of the base
reference frame at the terminal point P, and the dynamic equation of the 4-1HSLSCRs with
a high speed and long-span cables, using the Newton method, can be expressed according
to the following equation:

4
∑

i=1
Hi cos θi + fe,x = m

..
x

4
∑

i=1
Hi sin θi + fe,y = m

..
y

4
∑

i=1
Hi tan γi −

4
∑

i=1
ρgLi −mpg + fe,z = m

..
z

(5)

For simplicity, Eq. (5) can be expressed as follows:

JH− fg − fG + fe = m
..
P (6)

where mp is the mass of the end-effector; mc = ρ
4
∑

i=1
Li is the total mass of the four cables;

H =
[
H1 H2 H3 H4

]
is the horizontal components of the four cable tensions at the

last node P; fg = mcg = ρg
4
∑

i=1
Li is the gravitational force of cables; fG = [0 0 mpg]T

is the gravitational force of the end-effector; fe = [ fe,x fe,y fe,z]
T is the external forces;

..
P =

[ ..
x,

..
y,

..
z
]T is the acceleration of the end-effector; J = [J1 J2 J3 J4] is the structure matrix

of the 4-1HSLSCRs; and Ji = [cos θi sin θi tan γi]
T (i = 1, 2, 3, 4).

Now, Eq. (6) can be expressed in a simpler matrix form as follows:

JH = Q (7)

where Q = fg + fG − fe + m
..
P and T = [T1, T2, T3, T4]T is the vector consisting of the four

cable tensions.
It should be pointed that the dynamic stability of the 4-1HSLSCRs will be proposed

based on the position influence factor, cable tension influence factor and the velocity
influence factor with dynamic equation of the robots. One important difference is that the
qualitative relationship between the stability of the cable robots and the minimum cable
tensions was discussed with the static equilibrium in ref. [25].

As mentioned above, the cables have unilateral driving properties so that the 4-
1HSLSCRs must be actuated redundantly. Therefore, there must be infinite solutions to the
cable tension T, and, according to matrix theory, the vector H can be obtained according to
the following equation:

H = J+Q + N(J)λ (8)

where J+Q is the minimum-norm least squares solution to the vector H; N(J)λ is the
homogeneous solution; N(J) is the kernel of the matrix J; and λ is an arbitrary scalar for
the investigated 4-1HSLSCRs.

Moreover, the cable tension can be obtained through the following formula:

Ti = Hi

√
1 + tan2 γi(i = 1, 2, 3, 4) (9)

The cable tension T needs to meet the following conditions:

Ts,min ≤ T ≤ Ts,max (10)
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where Ts,min is the lower boundary of the cable tension and Ts,max is the upper boundary
of the cable tension.

Apart from the abovementioned, keeping the cables as taut as possible is necessary
for the 4-1HSLSCRs to work normally. In other words, it is required in actual practice that
the sag-to-span ratio denoted by ri is satisfied with the predetermined condition, which
can be defined as follows:

ri =
|di|
li
× 100% ≤ ri,max (11)

Furthermore, there are four cables for the 4-1HSLSCRs, and thus, substituting
Eqs. (8) and (9) into (10) yields the following expression:

λT = λT1 ∩ λT2 ∩ λT3 ∩ λT4 (12)

Additionally, substituting Eqs. (4), (8) and (9) into (11) yields the following expression:

λd = λd1 ∩ λd2 ∩ λd3 ∩ λd4 (13)

Then, the combination of Eqs. (12) and (13) leads to the following expression:

λ ∈ λT ∩ λd = [λ, λ] (14)

where λ is the lower boundary of the arbitrary scalar λ and λ is the upper boundary of the

arbitrary scalar λ.
As previously mentioned, the cable tension T may have infinite solutions. Under

the given situation, the minimum variance of the cable tension is employed to obtain the
unique solution for cable tension while using Eqs. (7) and (14) as the constraints of the
optimization. Consequently, the determination of the cable tensionT for the 4-1HSLSCRs is
formulated as follows:

Object : F(λ) = min
(

1
4

[
4
∑

i=1
(Ti − E(H))2

])
subject to: JH = Q and λ ≤ λ ≤ λ

(15)

where E(T) is the arithmetic mean value of T.
Additionally, the cable tension T can be obtained with the optimization model Eq. (15),

and furthermore, the minimum cable tension Tmin can be obtained while the end-effector is
located at an arbitrary position of the workspace. It should be pointed out that Tmin being
the weakest constraint has an important influence on the stability of 4-1HSLSCRs. It can be
obtained according to the following equation:

Tmin = min(T) (16)

where Tmin is the smallest component in T.

2.1.2. The Influencing Factors of Dynamic Stability

The authors of [20] investigated the effect of the position of the end-effector and
the cable tension on the stability of the camera robots by using a massless linear cable
model, and furthermore, they studied the position influencing factor and cable tension
influencing factor. Then, a force–position stability measure approach for the camera robot
was proposed with these influencing factors, which is in the static sense. It should be
noted that the abovementioned influencing factors, however, were proposed based on a
massless linear cable model, and thus, the sags of the long-span cables were apparently
not considered. The long-span cable sags have an important effect on the abovementioned
influencing factors, and therefore, the reader can refer to this work for a comprehensive
understanding of the two influencing factors, whereas a brief overview is presented in this
section. Referring to the definition of each symbol in [20], the position of the end-effector
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within the workspace is denoted by P; the vertical midline of the workspace is denoted
by a; the intersection of the vertical midline and the horizontal plane where the specified
position is located is denoted by Q; and the top position of the vertical midline is denoted
by M. In this condition, two position influencing factors, <s− and <s⊥ which are related to
the position of the end-effector of the 4-1HSLSCR, are proposed and defined as:

<s_(XP) =
tan γP
tan γQ

(17)

<s⊥(XP) =
tan γM
tan γQ

(18)

where XP is the position of the end-effector of the 4-1HSLSCR; and γP, γQ and γM are the
angles between the catenary cable that has the minimum cable tension and is in the horizontal
plane while the end-effector is located at the positions of P, Q and M, respectively.

Apart from the abovementioned position influencing factors for the stability of the
4-1HSLSCRs, two cable tension influencing factors, <T⊥ and <T− , which are related to the
position of the end-effector and the cable tension of the 4-1HSLSCRs, are proposed, and
they can be expressed as:

<T−(XP, T) =
TP,min

TQ,min
(19)

<T⊥(XP, T) =
TQ,min

TM,min
(20)

where TP,min, TQ,min and TM,min are the minimum cable tensions while the end-effector of
the 4-1HSLSCR is located at the position P, Q and M, respectively.

2.2. The Velocity Influence Function

Additionally, the velocity of the end-effector also has a crucial influence on the stability
of the 4-1HSLSCRs. Therefore, this section deliberately emphasizes the effects of the
velocity of the end-effector on the stability of the 4-1HSLSCRs. In this regard, a function
representing these effects, which is denoted by f

(
vp
)
, is constructed at a later stage.

It should be pointed that with respect to a given position of the end-effector, the
end-effector may possess different velocities. Nevertheless, the stability of the 4-1HSLSCRs
while the end-effector locates at the given position, through the dual relationship between
the velocity of a robot and its stability, is strongest when the velocity of the end-effector is
equal to zero. Therefore, for a certain position of the end-effector, the robots are seen as the most
stable while vp = 0. Furthermore, the stability of the 4-1HSLSCRs at the present position with
other velocities is lower, and indeed, the stability is the weakest at the present position with the
maximum velocity. Meanwhile, in order to employ the interval [0, 1] to measure the stability of
the 4-1HSLSCR, the range of the velocity influence function must be the interval [0, 1].

Based upon the analysis and discussion above, the velocity influence function must
possess the following three properties:

(1) The range of the velocity influence function is the interval [0, 1], which can be
employed to measure the stability of the 4-1HSLSCR.

(2) The stability of the 4-1HSLSCR at the present position becomes weaker with the
increase in the velocity of the end-effector.

(3) The present position is assumed to be (x, y, z), and moreover, two extreme cases
should be discussed: (i) when the end-effector of the 4-1HSLSCR is located at the present
position with a velocity of zero, the 4-1HSLSCR is the most stable, and indeed, the stability
measurement does not consider the effect of the velocity on the stability of the 4-1HSLSCR;
(ii) when the end-effector of the 4-1HSLSCR is located at the present position with the
maximum possible velocity, the 4-1HSLSCR has the weakest stability, and therefore, the
stability of the 4-1HSLSCR at the position with the maximum velocity is 0. It should also
be noted that the stability of the 4-1HSLSCR at other velocities falls somewhere between
the two extremes.
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3. Dynamic Stability Measurement Method

The 4-1HSLSCRs employ their flexible cables as the drive system, which leads to
the low stability of the motions for the robots. Moreover, 4-1HSLSCRs become unstable
when the equilibrium condition of the robot is disturbed by external disturbances during
the movement. Therefore, the stability of the 4-1HSLSCR indicates the ability to resist
external disturbances in the weakest constraint direction and to keep the end-effector
in an equilibrium condition while the external disturbances occur during movement.
The dynamic stability of the 4-1HSLSCRs mainly depends on the position and the velocity
of the end-effector, as well as the cable tension. For this reason, a dynamic stability
measurement method is proposed for 4-1HSLSCRs that have a high speed and long-span
cables. Moreover, compared to [20], the innovation of this paper lies in the following two
aspects: Firstly, for 4-1HSLSCRs, the velocity of the end-effector is bound to affect the
stability of the robot. In this regard, the stability of the 4-1HSLSCR is not only related to
the position of the end-effector and the cable tension in the weakest direction, but also
related to the motion state of the end-effector. Secondly, compared with the straight line
cables used in [20], the long-span catenary cables have an important influence on the cable
tension, which further affects the stability of the 4-1HSLSCR. Therefore, the effect of the
influence mechanism of the position and the velocity of the end-effector, as well as the cable
tension in the weakest constraint direction, on the stability of 4-1HSLSCRs is investigated,
and moreover, the dynamic stability measurement method based on the position and cable
tension factors, as well as the attitude influence function, is defined as:

Ωd
(
XP, T, vp

)
= Ωs(XP, T) f

(
vp
)

(21)

where Ωs(XP, T) = (p1<T− + p2<s−)(q1<T⊥ + q2<s⊥) is the stability measurement index
when the effects of the velocity on the stability of the camera robot are not considered [20],
and p1, p2, q1 and q2 are weight coefficients. It should be noted that the range of Ωs(XP, T),
generally speaking, lays between 0 and 1.

As mentioned in the previous description in Section 2.2, the range of the velocity
influence function consists of the interval from 0 to 1. Therefore, the values of the dynamic
stability measurement index are also the interval from 0 to 1, as was described in Section 1,
and the dynamic stability measurement index, which is based on the position, cable tension
and velocity factors of the end-effector, measures the dynamic stability of the 4-1HSLSCRs
with the interval [0, 1].

It should be pointed out that the dynamic stability of 4-1HSLSCRs is closely related

to the kinetic energy of the robots. Therefore, f
(
vp
)
= 1− v2

p
v2max

is deliberately chosen
to depict the crucial influence of the velocity of the end-effector on the stability of the
4-1HSLSCR. Note that vp denotes the present end-effector velocity for the 4-1HSLSCRs,
whereas vmax denotes the maximum extreme velocity, which means that the 4-1HSLSCRs
become unstable with the maximum extreme velocity. This situation should be avoided in
practical applications. Note that the velocity influence function is written explicitly as a
function of the square of the velocity of the end-effector to provide mathematical insight
into the significant relationship between the proposed dynamic stability and the kinetic
energy of the 4-1HSLSCRs. According to the kinetic energy equation, it can be seen that the
proposed velocity influence function describes the ratio of the kinetic energy between the
current motion state and instability state of the end-effector for the 4-1HSLSCRs.

As was stated in Section 2.2., the velocity influence function is required to obtain the
proposed three properties. Therefore, the proof that the selected velocity influence function

f
(
vp
)
= 1− v2

p
v2max

obtains the proposed three properties is given.

Proof: (1). ∵ vp ≤ vmax, ∴ 1− v2
p

v2max
∈ [0, 1]. Therefore, the selected velocity influence

function meets the requirements of property (1) presented in Section 2.2.
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(2). ∵ The maximum velocity of the 4-1HSLSCR, vmax, is the constant of the selected 4-
1HSLSCR; meanwhile, an increase in the present velocity leads to a corresponding increase
in v2

p. ∴ The values of the selected function f
(
vp
)

decrease with the increase in the
velocity of the end-effector of the 4-1HSLSCR. Therefore, the selected function meets the
requirements of property (2) presented in Section 2.2.

(3). The selected velocity influence function f
(
vp
)

is equal to 1 when the velocity of
the end-effector of the 4-1HSLSCR is equal to zero, and therefore, the dynamic stability of
the 4-1HSLSCR is defined as Ωd

(
XP, T, vp

)
= Ωs(XP) f

(
vp
)
= Ωs(XP); the velocity of the

end-effector is equal to vmax, and therefore, the selected velocity influence function f
(
vp
)

is equal to 0, leading to Ωd
(
XP, T, vp

)
= Ωs(XP, T) f

(
vp
)
= 0. Hence, the selected velocity

influence function meets the requirements of property (3) presented in Section 2.2. �

From the above discussion, it can be concluded that the selected velocity influence
function satisfies the requirements of all properties. Thus, it can be used to describe the
effects of the velocity of the end-effector on the dynamic stability of 4-1HSLSCRs.

4. Dynamic Stability Sensitivity Analysis Method

As mentioned before, the dynamic stability measurement method investigated in
Section 3 demonstrated that the position and the velocity of the end-effector, as well as
the cable tension, have significant effects on the dynamic stability of 4-1HSLSCRs. As a
result, this section mainly focuses on the effect of the influencing degree of these factors
on the dynamic stability of 4-1HSLSCRs. It can be seen from Eq. (21) that the stability
mechanism of 4-1HSLSCRs is extremely complex and is affected by a considerable number
of factors, for example, the position and the velocity of the end-effector, as well as the
cable tension. Additionally, the importance of these influencing factors on the dynamic
stability of the 4-1HSLSCRs can be evaluated through a sensitivity analysis. The dynamic
stability sensitivity analysis of the 4-1HSLSCRs is used to quantitatively investigate the
influencing degree of the influencing factors on the stability of a 4-1HSLSCR. The greater
sensitivity of an influencing factor on the stability for the 4-1HSLSCRs, the greater influence
on the stability, and vice versa. Therefore, through this stability sensitivity analysis, we can
identify the influencing factors that have a large influence on the stability. As a result, a
dynamic stability sensitivity analysis method for 4-1HSLSCRs is developed in this section
using a grey relational analysis. The most sensitive factor among the stability influencing
factors can be identified and prioritized. Additionally, with this foundation, the most
sensitive dynamic stability influencing factors can be accurately controlled in 4-1HSLSCRs
to achieve a more stable operation.

The grey relational analysis uses curves formed by the reference sequence and the
comparison sequences to determine the otherness and proximity between them [42,43].
For these reasons, the grey relational degree, in the present paper, is employed to depict
the correlation degree between the dynamic stability sequences and influencing factor
sequences. Moreover, the instability of the 4-1HSLSCRs results from a variety of factors.
The main factors and secondary factors, and the maximum and minimum influencing
factors for the stability of the 4-1HSLSCRs, can be accurately identified with a grey relational
analysis and grey correlation degree, respectively. Therefore, a grey relational dynamic
stability sensitivity analysis method for 4-1HSLSCRs is proposed in this section.

4.1. Determination of the Stability and Influencing Factor Sequences

According to the grey correlation theory, the numerical values of the dynamic sta-
bility of the 4-1HSLSCRs are set as the reference sequence, whereas the eight influencing
factors (displacement component of the x-axis, y-axis and z-axis; the end-effector veloc-
ity; and the four cable tensions) are set as the comparison sequence. Suppose the ref-
erence and comparable sequences are denoted as Ψ0 = [ψ0(1), ψ0(2), · · · , ψ0(k)]

T and
Ψi = [ψi(1), ψi(2), · · · , ψi(k)]

T , i = 1, 2, · · · , 8, respectively, where i indicates the num-
ber of the selected comparison sequences composed of the eight influencing factors, and
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meanwhile, k is the changing number of the dynamic stability influencing factors and the
dynamic stability of the 4-1HSLSCRs in this paper. Therefore, the whole sequence matrix
consisting of the two crucial sequences can be defined as follows:

Ψ =


ψ0(1) ψ0(2) · · · ψ0(k)
ψ1(1) ψ1(2) · · · ψ1(k)
· · · · · · · · · · · ·

ψ8(1) ψ8(2) · · · ψ8(k)

 (22)

4.2. Normalization of the Sequence Matrices

In general, the raw data of the dynamic stability reference sequence and the influencing
factor comparison sequence may differ from the others in terms of their range and their
measure units, and thus, the influence of some factors may be neglected. Note that this
leads to an incomparable condition and incorrect conclusion. Hence, the main procedure of
the grey relational analysis is, firstly, a normalization treatment used on the initial data of
the sequence matrices to obtain the grey correlation grades. Furthermore, these sequences
can be transformed with this formula:

ψi
′(j) =

ψi(j)−minψi(j)
maxψi(j)−minψi(j)

, (i = 0, 1, · · · , 8; j = 1, 2, · · · , k) (23)

4.3. Grey Correlation Coefficient

After the normalization treatment for the sequence matrices, the absolute difference
between the dynamic stability reference and each influencing factor comparison sequence,
denoted by ℵ0i = |ψ0(j)− ψi(j)| , can be obtained. Moreover, the maximum difference
denoted by ℵmax = max

1≤i≤m
max

1≤j≤n
|ψ0(j)− ψi(j)| and the minimum difference denoted by

ℵmin = min
1≤i≤m

min
1≤j≤n

|ψ0(j)− ψi(j)| can be obtained. Therefore, the grey relation coefficients

can be obtained as follows:
rij(j) =

ℵmin + vℵmax

ℵ0i(j) + ξℵmax
(24)

where v is the distinguishing coefficient, being a positive number which is less than 1,
and it is generally chosen as 0.5 [44,45]. The distinguishing coefficients are set as 0.5 and
0.6 to explain the effects of the distinguishing coefficient on the stability sensitivity of the
4-1HSLSCRs in this paper.

4.4. Grey Correlation Dynamic Stability Sensitivity Analysis Index

The correlation between the dynamic stability reference sequence and influencing
factor comparison sequences can be represented by a grey relational degree. If a certain
influencing factor in the comparison sequence is far more critical than other influencing
factors to the dynamic stability, the grey correlation degree of this influencing factor will
be higher than other grey correlation degrees. Thus, the grey correlation degree, in this
paper, can be employed to measure the influence degree of the end-effector position and
the end-effector velocity, as well as the cable tension, on the dynamic stability of the 4-
1HSLSCR. Main factors and secondary influencing factors, as well as the maximum and
minimum influencing factors for the dynamic stability of the 4-1HSLSCRs, can be obtained
through the influencing factor correlation degrees. Based on the above, the grey correlation
sensitivity analysis method for the dynamic stability of the robots can be measured with
the grey correlation degree, and thus, the dynamic stability sensitivity analysis index, after
deriving the grey relational coefficients, can be obtained as follows:

Ri =
1
k

k

∑
j=1

rij(j) (25)
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5. Simulation Examples and Results
5.1. Camera Robot—A Selected 4-1HSLSCR

A camera robot, which is a 4-1HSLSCR with a camera platform used for aerial
panoramic photographing, as shown in Figure 2, is employed to illustrate the proposed
dynamic stability measurement approach and grey relational sensitivity analysis method
to determine the dynamic stability of the 4-1HSLSCR. The model parameters of the investi-
gated camera robot are set as shown in Table 1.

Figure 2. The investigated camera robot.

Table 1. Model parameters.

Parameter Symbol Value

Cable linear density ρ 0.188 kg/m
End-effector mass mp 50 kg
Lower bound of cable tensions Tmin 10 N
Upper bound of cable tensions Tmax 10,000 N
Position of the 1st pulley (Figure 1) B1 (0,0,23)T m
Position of the 2nd pulley B2 (100,0,23)T m
Position of the 3rd pulley B3 (100,90,23)T m
Position of the 4th pulley B4 (0,90,23)T m

A spatial spiral, as shown in Figure 3, is selected to account for the proposed ap-
proaches in this paper, and the selected trajectory is defined as follows:

x = R cos(ωt) + 18.5
y = R sin(ωt) + 20
z = v0t + 1

2 at2 + 10
(26)

where R = 10 m; ω = 0.2 πrad/s; and v0 = 0 m/s.
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The selected spatial spiral trajectory and its components for the camera robot are
depicted in Figure 3 in more detail. The z-component of the selected spatial spiral trajectory
depicted by Eq. (26) is a quadratic function of the time, whereas the velocity in the z-
component is a linear function of the time. We should note that the end-effector moves
faster on the spatial spiral trajectory, which is different from a uniform spiral.

The dynamic stability of the camera robot is investigated under four situations to
investigate the effects of the sags of the long-span cables and the velocity of the end-effector
on the dynamic stability of the camera robot. The variable s (s = 1, 2) is employed to
express the modeling method of the flexible cables, where s = 1 corresponds to the massless
straight line model of the cables and s = 2 corresponds to the catenary model of the cables.
The variable t (t = 1, 2) is used to indicate whether the influence of the velocity of the end-
effector on the dynamic stability of the camera robot is considered, where t = 1 corresponds
to not considering the influence of the end-effector velocity on the dynamic stability, and
t = 2 corresponds to considering the influence of the end-effector velocity on the dynamic
stability. In more detail, these four situations are shown in Table 2.

Table 2. Dynamic stability under four conditions.

Ωd,ij s = 1 s = 2

t = 1 Ωd,11 Ωd,21
t = 2 Ωd,12 Ωd,22

In the above four cases, the stability of the camera robot under the long-span catenary
cables and when considering the influence of the velocity of the end-effector is denoted by
Ωd,22; and the stability of the robot under the massless straight line cables and when not
considering the influence of the velocity of the end-effector is represented as Ωd,11. Because



Mathematics 2022, 10, 4653 14 of 20

the difference between them is the greatest, the stability difference influence index denoted
by ε is used to evaluate the difference between Ωd,11 and Ωd,22, and it is defined as follows:

ε =
Ωd,11 −Ωd,22

Ωd,22
× 100% (27)

5.2. Results and Discussion

The influence of the moving velocity of the camera robot and the cable modeling
methods on the stability are studied in more detail in this section. Firstly, the relationship
between the end-effector moving velocity and the stability of the camera robot is further
studied by using the simulation analysis. Moreover, the influence curves of the movement
velocities of the end-effector on the dynamic stability of the camera robot along the trajectory
Eq. (26) with different cable models, namely the massless straight line cables and long-span
catenary cables, are shown in Figure 4. Through the comparison, it can be seen that the
velocities of the end-effector have a great influence on the dynamic stability under the
two kinds of cable modeling methods, and furthermore, the stability of the camera robot
obtained with the massless straight line cables is larger than that obtained by the catenary
cable model. In particular, because the starting position point has a larger z-coordinate than
the ending position point for the selected trajectory, the end-effector located in the upper
area of the workspace has a greater stability than the lower area. Therefore, under the same
cable model and the same velocity pattern, the dynamic stability of the camera robot at
the end of the trajectory, calculated with Eq. (26), is smaller than that at the starting point.
As shown in Figure 3a,b, the influence of the velocity of the end-effector on the stability
of the camera robot under the straight line cable model and the catenary cable model is
depicted, respectively. Note that the average differences of the influence of the end-effector
moving velocity on the stability under the straight line cables and catenary cables are as
high as 80% and 60%, respectively. Based on the above analysis, we can come to the conclusion
that for the camera robot with a high speed and large-span cables, the movement velocity of the
end-effector has a crucial effect on the stability of the camera robot.

Mathematics 2022, 10, x FOR PEER REVIEW 15 of 21 
 

 

,11d . Because the difference between them is the greatest, the stability difference influ-

ence index denoted by ε  is used to evaluate the difference between 
,11d  and 

,22d , 
and it is defined as follows: 

,11 ,22

,22

100%d d

d

ε =
 




 (27)

5.2. Results and Discussion 
The influence of the moving velocity of the camera robot and the cable modeling 

methods on the stability are studied in more detail in this section. Firstly, the relation-
ship between the end-effector moving velocity and the stability of the camera robot is 
further studied by using the simulation analysis. Moreover, the influence curves of the 
movement velocities of the end-effector on the dynamic stability of the camera robot 
along the trajectory Eq. (26) with different cable models, namely the massless straight 
line cables and long-span catenary cables, are shown in Figure 4. Through the compari-
son, it can be seen that the velocities of the end-effector have a great influence on the 
dynamic stability under the two kinds of cable modeling methods, and furthermore, the 
stability of the camera robot obtained with the massless straight line cables is larger than 
that obtained by the catenary cable model. In particular, because the starting position 
point has a larger z-coordinate than the ending position point for the selected trajectory, 
the end-effector located in the upper area of the workspace has a greater stability than 
the lower area. Therefore, under the same cable model and the same velocity pattern, the 
dynamic stability of the camera robot at the end of the trajectory, calculated with Eq. 
(26), is smaller than that at the starting point. As shown in Figure 3a,b, the influence of 
the velocity of the end-effector on the stability of the camera robot under the straight line 
cable model and the catenary cable model is depicted, respectively. Note that the aver-
age differences of the influence of the end-effector moving velocity on the stability under 
the straight line cables and catenary cables are as high as 80% and 60%, respectively. 
Based on the above analysis, we can come to the conclusion that for the camera robot 
with a high speed and large-span cables, the movement velocity of the end-effector has a 
crucial effect on the stability of the camera robot. 

,11d

d


,12d

 t/s
0 1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

,21d

,22d

d


 
(a) (b) 

Figure 4. Stability comparison along the given spatial spiral trajectory when s = 1, t = 1, 2 and s = 2, t 
= 1, 2: (a) comparison of the stability with s = 1, t = 1 and s = 1, t = 2; (b) comparison of the stability 
with s = 2, t = 1 and s = 2, t = 2. 

Secondly, the influence of the cable modeling methods on the dynamic stability of 
the camera robot is studied. The influence curves of the cable model methods are shown 
in Figure 5, which represent the effect of the different moving velocities on the dynamic 
stability of the camera robot while the camera platform operates along the trajectory 
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with s = 2, t = 1 and s = 2, t = 2.

Secondly, the influence of the cable modeling methods on the dynamic stability of
the camera robot is studied. The influence curves of the cable model methods are shown
in Figure 5, which represent the effect of the different moving velocities on the dynamic
stability of the camera robot while the camera platform operates along the trajectory
calculated using Eq. (26). As can be seen from the four curves in Figure 5, the cable
modeling methods have also a certain effect on the dynamic stability of the camera robot,
and moreover, the robot stability decreases with the passage of time. This is because with
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the passage of time, the z-coordinate of the spatial spiral decreases, and meanwhile, the
camera platform located in the upper area of the workspace is more stable than the one
located in the lower area of the workspace. Therefore, the dynamic stability of the camera
robot decreases with time. Note that the dynamic stability is the minimum when the camera
platform is located at the end point of the spiral trajectory in Figure 5a due to the velocity
influence function of the camera platform at this position. When the camera platform
moves at the maximum speed, it is the minimum of the spiral trajectory. Figure 5b shows
the curves that do not consider the effects of the moving velocity of the camera platform on the
stability of the camera robot, which is the static structural stability proposed in [20], and it can
be noted that this is the term Ωs(XP, T) in Eq. (19). It can be seen from the figure that under
different moving velocities, the average difference of influence of the cable modeling methods
on the robot stability reaches 21%. Based on the above analysis, for the camera robot with a high
speed and long-span cables, it was found that the cable modeling methods have a crucial effect
on the dynamic stability of the camera robot; thus it is necessary to consider the influences of
long-span cable sags on the dynamic stability of the camera robot.
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Thirdly, the influence of the end-effector moving velocity and the cable modeling
methods on the stability of the camera robot is investigated. As shown in Figure 6, the
influence curves of dynamic stability when considering the moving velocity of the camera
platform and cable modeling methods are depicted. It can be seen that the cable modeling
mode and moving velocity of the end-effector have a crucial influence on the dynamic
stability of the camera robot. There is little difference between the curves in Figures 4a and 6a,
and the solid curves at the top in the two figures show the stability of the camera robot
with straight line cables when the influence of the moving velocity of the camera platform
along the spiral trajectory in space is not considered. The difference lies in the bottom
curves depicted by the dotted line. As the difference is small, the curves in Figures 4a and
6a are still similar, and the difference is mainly due to the different influences of the straight
line cables and the catenary cables on the stability of the robot. It can be concluded from
Figure 6 that whether the moving velocity of the camera robot is considered or not, it has a
much greater effect on the robot stability than the different modeling methods of the cables.
Moreover, Figure 6b shows the relationship between the stability difference influence index
and the time. Note that considering the moving velocity of the camera platform and the
catenary cable sags at the same time has a crucial influence on the dynamic stability of the
robot, and it should also be noted that its minimum stability difference εmin is as high as 87%.



Mathematics 2022, 10, 4653 16 of 20

Mathematics 2022, 10, x FOR PEER REVIEW 17 of 21 
 

 

a crucial influence on the dynamic stability of the robot, and it should also be noted that 
its minimum stability difference minε  is as high as 87%. 

d
 ,11d

,22d

 



 
(a) (b) 

Figure 6. Comparison of the stability along the given spatial spiral trajectory when s = 1, t = 1 and s 
= 2, t = 2: (a) stability comparison; (b) stability difference influence index ε . 

Finally, the influence of the modeling method of the cables on the cable tension is 
analyzed and studied in this section. A comparison of the cable tensions between cate-
nary cables and straight line cables when the camera platform is manipulated along the 
spatial spiral trajectory is depicted in Table 3. It should be pointed out that the cable ten-
sions obtained by the two cable models are smooth and continuous, and there is not any 
impact on the motion of the camera robot. From Table 3 it can be deduced that the cable 
tension of the catenary cables is about 9 times that of the massless straight line cables. 
Therefore, the cable sags of the camera robot must be considered. 

Table 3. Cable tensions of the two cable modeling methods along the spatial spiral trajectory. 

Cable Modeling Methods 
Maximum Tension of the 
Four Cables (N) 

Minimum Tension of the 
Four Cables (N) 

Catenary cables 565 5100 
Straight line cables 125 1000 

The values of the dynamic stability of the camera robot along the given trajectory 
that were calculated with Eq. (26), according to the grey relational sensitivity analysis 
method for the dynamic stability of the camera robot, are selected as the reference se-
quence to investigate the dynamic stability sensitivity of the robot. The position and the 
velocity, as well as the four cable tensions, are taken as the dynamic stability effect fac-
tors. Additionally, the numerical values of these dynamic stability effect factors are set as 
eight comparison sequences. All these sequences are analyzed by preprocessing the data 
using Eq. (23), and furthermore, the grey relational coefficient can be obtained by Eq. 
(24). Additionally, the following grey correlation degrees, which are calculated with Eq. 
(25) while   is set as 0.5, are shown in Table 4. It is known that a correlation degree 
close to 1, according to the grey theory and grey correlation analysis method, means the 
influence degree of this factor with regard to the dynamic stability of the camera robot is 
great. It can be seen from Table 4 that the effect of the grey correlation degree of the 
eight selected influencing factors on the dynamic stability of the camera robot is greater 
than 0.5, and therefore, this indicates that all of the factors have a crucial influence on the 
dynamic stability of the robot. 

  

Figure 6. Comparison of the stability along the given spatial spiral trajectory when s = 1, t = 1 and
s = 2, t = 2: (a) stability comparison; (b) stability difference influence index ε.

Finally, the influence of the modeling method of the cables on the cable tension is
analyzed and studied in this section. A comparison of the cable tensions between catenary
cables and straight line cables when the camera platform is manipulated along the spatial
spiral trajectory is depicted in Table 3. It should be pointed out that the cable tensions
obtained by the two cable models are smooth and continuous, and there is not any impact
on the motion of the camera robot. From Table 3 it can be deduced that the cable tension of
the catenary cables is about 9 times that of the massless straight line cables. Therefore, the
cable sags of the camera robot must be considered.

Table 3. Cable tensions of the two cable modeling methods along the spatial spiral trajectory.

Cable Modeling Methods Maximum Tension of the
Four Cables (N)

Minimum Tension of the
Four Cables (N)

Catenary cables 565 5100
Straight line cables 125 1000

The values of the dynamic stability of the camera robot along the given trajectory that
were calculated with Eq. (26), according to the grey relational sensitivity analysis method
for the dynamic stability of the camera robot, are selected as the reference sequence to
investigate the dynamic stability sensitivity of the robot. The position and the velocity, as
well as the four cable tensions, are taken as the dynamic stability effect factors. Additionally,
the numerical values of these dynamic stability effect factors are set as eight comparison
sequences. All these sequences are analyzed by preprocessing the data using Eq. (23), and
furthermore, the grey relational coefficient can be obtained by Eq. (24). Additionally, the
following grey correlation degrees, which are calculated with Eq. (25) while v is set as 0.5,
are shown in Table 4. It is known that a correlation degree close to 1, according to the grey
theory and grey correlation analysis method, means the influence degree of this factor with
regard to the dynamic stability of the camera robot is great. It can be seen from Table 4
that the effect of the grey correlation degree of the eight selected influencing factors on the
dynamic stability of the camera robot is greater than 0.5, and therefore, this indicates that
all of the factors have a crucial influence on the dynamic stability of the robot.

In addition, it should be pointed out that the distinguishing coefficient v has an effect
on the grey correlation degree between the dynamic stability and its eight influencing
factors. Therefore, the distinguishing coefficient is set as 0.5 and 0.6 to explain the influence
of the distinguishing coefficient on the dynamic stability sensitivity of the robot, and the
grey correlation degree results are shown in Figure 7a,b, respectively. It is worthwhile
mentioning that for the different distinguishing coefficients, the influence law of the selected
eight influencing factors on the dynamic stability is consistent. In more detail, for the eight
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selected influencing factors, the importance follows this sequence: cable tension T2 > T4
> T3 > T1 > velocity of the camera platform v > z-direction displacement of the camera
platform > x > y. Furthermore, it can be seen that among the eight selected influencing
factors, the cable tension has the greatest influence on the dynamic stability of the camera
robot, followed by the velocity and position of the camera platform. Therefore, the four
cable tensions must be strictly controlled during the operation to improve the stability of
the camera robot.

Table 4. Grey correlation degree of the eight influencing factors on the dynamic stability.

Influencing Factors Grey Correlation Degree Ranking

x-coordinate of the camera platform 0.6520 7
y-coordinate of the camera platform 0.5491 8
z-coordinate of the camera platform 0.7774 6
Tension of cable 1 (T1) 0.8992 4
Tension of cable 2 (T2) 0.9361 1
Tension of cable 3 (T3) 0.9205 3
Tension of cable 4 (T4) 0.9339 2
Velocity of the camera platform v 0.8051 5
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To summarize, the following conclusions can be drawn from the theoretical and simulation
analysis of this paper. For the 4-1HSLSCRs, the self-weights of the cables and the velocity of the
end-effector have a crucial influence on the stability and the cable tension of the robots, and it
should be pointed that the velocity of the end-effector has a more important influence on the
dynamic stability of the 4-1HSLSCRs. Moreover, we must note that the used control strategy is
bound to affect the stability influencing factors during the actual motion control process, and
therefore, the practical stability and stability optimization of the 4-1HSLSCRs can be obtained
with an appropriate and robust control strategy, such as computed torque control [46], adaptive
fuzzy sliding mode control [47], etc. The sensitivity analysis of the 4-1HSLSCRs can determine
the primary and secondary influencing factors of the dynamic stability, whereas the research
results can be employed in the design of a robust motion trajectory and motion control for
4-1HSLSCRs. This will lead to the theoretical and engineering practical value of improving the
dynamic stability of 4-1HSLSCRs.
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6. Conclusions

Stability is a crucial and significant characteristic of cable robots. It has also been
a great concern in cable robots, especially for 4-1HSLSCRs that have a high speed and
long-span cables. This paper, as a result, focused on two special problems of dynamic
stability measurement and stability sensitivity analysis for 4-1HSLSCRs. The following
conclusions can be drawn from the presented analysis results:

(1) This paper discusses the influence mechanism of the position and velocity of the end-
effector, as well as the cable tension, with regard to the dynamic stability of 4-1HSLSCRs, and
proposes a dynamic stability measurement method for 4-1HSLSCRs with a high speed and
long-span cables.

(2) The dynamic stability of the 4-1HSLSCRs is influenced by various factors, and
these various influencing factors have different sensitivities. A grey relational analysis
can investigate the sensitivity of the influencing factors on the dynamic stability of the
4-1HSLSCRs. The sensitivity analysis model for the dynamic stability of 4-1HSLSCRs, as a
result, is established by using the grey relational analysis method.

(3) A camera robot, which is a 4-1HSLSCR with a camera platform that can be used in
aerial panoramic photographing, is employed to illustrate the proposed dynamic stability
measurement approach and grey relational stability sensitivity analysis method. On the
one hand, the dynamic stability measurement simulation proves that the weights and the
configurations of the long-span cables and the velocity of the end-effector have great effects
on the dynamic stability and the cable tension of the robots. It should be noted that the
minimum stability difference when considering the velocity of the camera platform and
the catenary cable sags at the same time is as high as 87%. Meanwhile, the cable tension in
the catenary cables is about 9 times that of the massless straight line cables. On the other
hand, for the eight selected influencing factors, the following sequence can be determined
based on importance: cable tension T2 > T4 > T3 > T1 > velocity of the camera platform v >
z-direction displacement of the camera platform > x > y. It can be seen that among the eight
selected influencing factors, the cable tension has the greatest effect on the dynamic stability
of the robots, followed by the velocity and position of the camera platform. Therefore, the
four cable tensions must be strictly controlled during its operation to improve the stability
of the camera robot.

The investigated 4-1HSLSCR in this work is actually a cable robot with a point-mass
end-effector, and as a consequence, the effect of the posture of the end-effector is not
considered. It is noted that the posture of the end-effector, however, is bound to affect
the stability of the cable robots. Our studies, as a result, will focus on the influencing
mechanism of the posture of the end-effector on the stability of cable robots, in addition to
verifying the proposed methods and the obtained results of this paper for the improvement
of cable robots.
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