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Abstract: Multi-Attribute Vehicle Routing Problems (MAVRP) are variants of Vehicle Routing Prob-
lems (VRP) in which, besides the original constraint on vehicle capacity present in Capacitated
Vehicle Routing Problem (CVRP), other attributes that model diverse real-life system characteristics
are present. Among the most common attributes studied in the literature are vehicle capacity and
route duration constraints. The influence of these restrictions on the overall structure of the problem
and the performance of local search algorithms used to solve it has yet to be well known. This paper
aims to explain the impact of constraints present in different variants of VRP through the alterations
of the structure of the underlying search space that they cause. We focus on Local Optima Network
Analysis (LONA) for multiple Traveling Salesman Problem (m-TSP) and VRP with vehicle capacity
(CVRP), route duration (DVRP), and both (DCVRP) constraints. We present results that indicate
that measures obtained for a sample of local optima provide valuable information on the behavior
of the landscape under modifications in the problem’s constraints. Additionally, we use the LONA
measures to explain the difficulty of VRP instances for solving by local search algorithms.

Keywords: local optima network; vehicle routing problem; multiple traveling salesman problem;
network analysis; fitness landscape analysis

MSC: 68T20; 90B06

1. Introduction

The great variety of Vehicle Routing Problems (VRP) applications present in real
life situations is a challenge for research. Organizations operate with diverse particular
business rules that have to be represented in the chosen VRP model in order to obtain
actionable solutions. Each variant is related to some new attributes added to the Multiple
Traveling Salesman Problem (m-TSP) [1], thus modifying its structure. Variants of VRP
with at least two attributes are called Multi-Attribute Vehicle Routing Problems (MAVRP).
Given the vast body of research on solving MAVRP with different techniques depending
on the variant, classification methods are needed to help algorithm developers navigate
this diversity.

From the solution methods point of view, Vidal et al. [2] distinguishes three main
classes of attributes, considering essential aspects involved in providing a solution to a VRP
variant that attempts to model a real life situation: assignments of customers and routes
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to resources (Assignment), choices of customer visit sequences within routes (Sequence)
and evaluations of fixed routes (Evaluation). Cáceres et al. [3] summarize several attribute
classifications proposed in the literature. The systematization of attributes proposed by
Vidal (above the others) highlights relationships between models and points towards the
adjustments to the solution method needed when moving from one model to another.

The competitive paradigm [4] has fostered development of many algorithms based
only on good empirical performance results. The predominant approach is to argue
that a new algorithm is better only because it achieves better results on some standard
benchmark instances. The main weakness of this approach, when not accompanied by other
methodologies, is that it does not help to understand why an algorithm works well and
when it will not be suitable for a specific problem or instance. Fitness Landscape Analysis
(FLA) generates an environment to address this deficiency. It aims not to design a new
algorithm with better empirical performance, but to explain the behavior of an algorithm
based on some properties of the fitness landscape on which it is executed. This is the
approach we take in this paper. We aim to explore the impact of vehicle capacity and route
duration constraints (see Figure 1) on the overall structure of the search space and on the
performance of heuristic algorithms based on local search.

Figure 1. Relation between the VRP variants considered in this research.

The literature on FLA for VRP is scarce. In particular, to the best of our knowledge,
in the context of FLA, our previous research [5] presented the first article to explicitly
analyze different levels of constraints in medium-size VRP instances. Other authors have
studied the effect of constraints on small instances [6]. The paper analyzed different levels
of vehicle capacity in CVRP and ways in which their impact on the search space can be
studied with local measures of FLA. In the present paper we expand and complement these
results by studying interactions of two VRP attributes (vehicle capacity and route duration
constraints), and by using FLA measures of a more global character, as the Local Optima
Network Analysis (LONA) measures. In LONA, characteristics of fitness landscapes are
studied using a projection in a space formed by the local optima. Thus, the state space is
reduced by moving from the solution level (micro scale) with a huge number of solutions
to a reduced one (macro/global scale) composed only of local optima.

The paper is structured as follows: Section 2 presents the Mixed Integer Programming
(MILP) formulations of the VRP variants studied in this research. Section 3 present some
background on Fitness Landscape Analysis (FLA) and leading theories on the structure of
fitness landscapes in combinatorial problems, especially from the point of view of Local
Optima Network Analysis (LONA). Section 4 describes our experimental design aimed
at understanding, with the help of LONA measures, performance of heuristics based on
local search when applied to instances of VRP. Section 5 gives the results of Repeated



Mathematics 2022, 10, 4644 3 of 21

Measures ANOVA applied to determine differences between variants and constraint levels
in the measures obtained for LONA. Additionally, we present a bivariate analysis between
LONA measures and the heuristic performance; Finally, we present some results related to
estimating the difficulty of instances for local search algorithms based on LONA measures
and some trends discovered in the data. Section 6 gives a brief discussion of the main
contributions of the paper, which include the following:

1. To explain the effect of increasing the constraint levels for vehicle capacity and route
duration attributes using LONA measures.

2. To explore the effect of vehicle capacity and route duration constraints in a Multi-
Attribute Vehicle Routing Problem case (DCVRP).

3. To predict the difficulty of VRP instances to be solved by local search algorithms using
LONA measures.

2. Integer Linear Programing Formulations

Consider the classical Traveling Salesman Problem (TSP) in its multiple-salesmen
version (m-TSP) [1], where each customer must be visited exactly once, using one vehicle
k of the fleet K of independent vehicles that are available at the central depot. Let V
denote the set of points of interest: customers i ∈ {1, 2, . . . , n} and the central depot 0. The
objective is to perform the visits with the minimum total distance travelled, where ci,j ≥ 0
denotes the distance between the points of interest i and j. In the instances that we study,
the distance matrix c is symmetric and corresponds to the Euclidean distances between
points on the plane. Binary decision variables xijk indicate that the point of interest j is
visited immediately after i by vehicle k if xijk = 1, and otherwise if xijk = 0. The following
gives one possible formulation of m-TSP.

Minimize ∑
k∈K

∑
i,j∈V

ci,jxi,j,k (1)

subject to:

∑
i∈V

∑
k∈K

xi,j,k = 1 ∀j ∈ V \ {0} (2)

∑
i∈V

xi,h,k = ∑
j∈V

xh,j,k ∀h ∈ V \ {0}, k ∈ K (3)

∑
j∈V\{0}

x0,j,k = 1 ∀k ∈ K (4)

∑
i,j∈S

xi,j,k ≤ |S|−1 ∀k ∈ K, S ⊆ V \ {0} : |S|≥ 2 (5)

xi,j,k ∈ {0, 1} ∀i, j ∈ V, k ∈ K (6)

The objective function (1) minimizes the total cost. Expressions (2) ensure that each
customer is visited exactly once by a vehicle. Constraints (3) mean that vehicle k leaves
customer h if and only if vehicle k arrives at customer h. Constraints (4) indicate that each
vehicle leaves the depot exactly once. In (5), sub-tour elimination constraints are applied:
Vehicle k does not cycle among the customers in S (with no visit to the central depot).
Finally, constraints (6) ensure the nature of the decision variables.

Capacitated Vehicle Routing Problem (CVRP) is one of the most extensively studied
extensions of m-TSP, in which each customer has a demand di and each vehicle has a limited
capacity Q. Thus, CVRP adds to the m-TSP formulation the constraints (7) that ensure that
the vehicle capacity is not exceeded on any route [7].

∑
i∈V\{0}

qi ∑
j∈V

xijk ≤ Q, ∀k ∈ K (7)
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Another common variant of VRP, Distance-constrained Vehicle Routing Problem (DVRP),
has a constraint on route duration. This constraint implies that vehicles cannot take routes
that exceed a total distance L. The formulation presented by Christofides et al. [7] adds the
following constraint to the m-TSP:

∑
i,j∈V

cijxijk ≤ L, ∀k ∈ K (8)

If the restrictions on vehicle capacity (7) and route duration (8) are added simulta-
neously to the m-TSP formulation, the problem is referred to as Distance-constrained and
Capacitated Vehicle Routing Problem (DCVRP).

3. Background on Fitness Landscape and Local Optima Network Analysis

For ease of presentation, let us focus in the general descriptions that follow on the
case of local search used for maximization problems. Given an instance of a problem, let X
be its set of solutions, also called the solution space. Let f be the objective function of the
problem, also called its fitness function. Finally, let N be the neighborhood function defined
by the local operator used for local search, i.e., a solution y belongs to the neighborhood
N(x) of a solution x if and only if y can be obtained from x by a single application of the
local operator. Putting these three together, the triplet (X, N, f ) is the fitness landscape of the
instance [8]. The notion of a fitness landscape is based on a metaphor commonly used to
describe the dynamics of evolutionary algorithms. It considers the solution space together
with the neighborhood function to define the search space, over which a landscape surface is
defined by the fitness function (height of the solution).

Fitness landscape analysis has been used in different contexts and purposes, from
explaining the behavior of algorithms to automated algorithm selection and configuration.
Malan et al. [9,10] have conducted two comprehensive reviews of different techniques
developed to study fitness landscapes. Contrasting the reviews indicates an evolution of
the field from theoretical to more application-focused approaches. Among the types of FLA
applications found in the literature, we would like to highlight the following:

1. Algorithm performance prediction. Generally, the behavior of a metaheuristic is unpre-
dictable, i.e., we have no formal guarantees on its performance, and it is challenging
to predict it when applied to a specific instance. Thus, FLA can be helpful when
searching for patterns or general characteristics of problems or instances that can be
used as input for performance prediction.

2. Understanding complex problems. The approach is based on characterizing problems
based on features measured in the underlying fitness landscapes. The central hypoth-
esis motivating this approach is that algorithms or sets of algorithms can have similar
behavior on similar problems. Various combinatorial problems, including the VRP
family, have been studied under this approach.

3. Automated algorithm selection and configuration. Two important tasks are complementary
to the analysis of performance of an algorithm: (1) selection of the best algorithm
to solve a problem, and (2) selection of the values of the parameters used in a given
algorithm. Both propose to search for the best alternative to improve algorithmic
performance for solving a given problem. Either approach can benefit from the
knowledge that can be extracted from FLA.

Some recent works on Fitness Landscape Analysis can be found in [11–14].
In this context, the approach of Local Optimal Network Analysis (LONA) is high-

lighted by Malan [10], as it focuses on the global structure of landscapes and could help
understand the behavior of local-search-based algorithms. Malan emphasizes that the
broad field of practical application and the evolution of LONA have made it one of the
most widely used FLA techniques.
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3.1. Local Optima Network Analysis
3.1.1. Representation and Local Operator

For Vehicle Routing Problems, several encodings of solutions are used in search
algorithms. The Delimiters representation, one of the most commonly used in the literature,
corresponds directly to a set of k individual routes. For a problem with |K| vehicles, this
representation considers an array that contains one substring per trip and |K|+ 1 copies of
the depot used as trip delimiters [15]. For example, the solution [0120340] represents two
routes: In the first, the route starts from the depot, then visits customers one and two, to
end at the central depot; In the second, the route starts from the depot to then sequentially
visit customers three and four, and conclude at the depot. Note that, as in the three-index-
based VRP Mixed Integer Linear Programming (MILP) formulations, the routes/vehicles
are distinguishable. Similarly, it is essential to recognize the relationship between the
feasible search space, i.e., the search space restricted to feasible solutions, obtained with the
Delimiters representation and the set of feasible solutions for the MILP formulations for all
variants presented in the paper.

The Delimiters representation supports the application of the original operators de-
veloped for TSP and their modifications for VRP. In this context, a specific local operator
defines the neighborhood N(x) associated to a solution x. The function N maps any solution
x ∈ X to the set N(x) of solutions that can be obtained from x by a single application of
the local operator. If y ∈ N(x), then y is a neighbor of the solution x. One of the most
common local operators for the VRP is Relocate, which consists of removing a client from
its current position and placing it in another. This movement is executed within the same
route (intra-route) or between two different routes (inter-route). For more details, Braysy
and Gendreau [16] present a review of the main local operators for VRP.

For this article, consider that the solutions of the VRP variants are encoded under
the Delimiters representation, and the construction of new solutions is only performed by
applying the Relocate operator (Figure 2).

Figure 2. Example: Neighborhood of solution [0120340] (yellow): intra-route neighbors (orange) and
inter-route neighbors (green).

3.1.2. Adjacency of Basins of Attraction

Consider an instance of a maximization problem that has n local optimaL1,L2, · · · ,Ln.
The basin of attraction bi of each local optimum Li is defined as bi = {s ∈ X|h(s) = Li},
where h is an operator that associates a local optimum h(s) to every solution s. For example,
it is common to consider that h(s) is the fixed point obtained by iteratively applying a hill-
climbing algorithm starting from s until reaching convergence. The local optima network
of this instance is defined as a weighted graph G = (V, E), where the vertex set V is the set
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of local optima, and the set of edges E represents the adjacency of the corresponding basins
of attraction.

There are two main ways of defining adjacency of basins of attraction described in
the literature:

1. Basins-transitions requires a complete analysis of the basins of attraction bi of each
local optimum Li. To exemplify, consider two basins of attraction b1 and b2, as shown
in Figure 3, corresponding to the local optima L1 and L2, respectively. Likewise,
note that the solutions s reach the local optimum L1 by applying the hill-climbing
algorithm, just as the solutions t reach L2. Note that both solutions s and t belong to
the solution space S, and that the basins of attraction bi generate a partition over S
such that: S =

⋃
i∈LO bi and ∀i ∈ S, ∀i 6= j, bi ∩ bj = ∅.

The arc e1,2 from the local optimum L1 to L2 exists if and only if there exist s ∈ b1
and t ∈ b2 such that t ∈ N(s). In this case, the transition probability of passing from

a solution si ∈ b1 to a solution tk ∈ b2 is P(si → tk) =
1

|N(si)|
if tk ∈ N(si), and otherwise

P(si → tk) = 0. Moreover, the probability P(si → b2) of transition from a solution si to the
basin of attraction b2 is computed by summing up the individual transition probabilities of
si with each solution belonging to b2. Finally, the weight w1,2 of the arc e1,2 is the average
transition probability to b2 of the solutions in b1.

Figure 3. Basins-transitions between local optima.

2. Escape-edges is based on the distance between each pair of local optima. This new
way of establishing the adjacency relationship between local optima was proposed
to solve the problem of producing very dense networks that required exhaustive
sampling of the basins of attraction. The weights wij based on Escape-edges do not
require a complete calculation of the basins of attraction [17]. The weights are defined
according to a distance function d (minimum number of moves between two solutions)
and a positive integer D > 0. The edge eij between Li and Lj exists only if there exists
a solution t such that d(t,Li) ≤ D and h(t) = Lj. The weights wij are established
by counting the number of solutions that are in the basin of attraction of Lj and at
a distance less than or equal to D from Li. The number of solutions that satisfy this
condition is normalized by the total number of solutions at a distance less than or
equal to D from Li (regardless of whether they belong to the basin of attraction of
Lj). Figure 4 presents a schematic of the relationship between local optima using
transitions based on Escape-edges.
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Figure 4. Transitions between local optima based on Escape-edges. The dotted circumference
represents solutions at a distance less than D from L1.

Local Optima Network Analysis (LONA) is a topic in the literature on Fitness Land-
scape Analysis (FLA) of combinatorial problems that has started to be studied only recently.
The problem that has been studied with LONA techniques the most is the NK model. It
was used by Ochoa et al. [18] to introduce LONA, and has been studied later for further
advances in the development of this tool. In the case of the Quadratic Assignment Problem,
Chicano et al. [19] used LONA to predict the performance of search algorithms. With
the same motivation of performance prediction, Pavelski et al. [20] used LONA to study
two Iterated Greedy algorithms for the Flow Shop Scheduling problem. Chicano et al. [21]
proposed the same for the MAX-3SAT problem. In the context of VRP, Ochoa et al. [22] per-
formed a mapping of the global structure for TSP, showing that the difficulty of the search
is related to the presence of multiple funnels in the landscape. Additionally, they reported
high levels of neutrality. For VRP variants and practical uses of LONA, Lipinski et al. [23]
present an evolutionary algorithm for solving the Inventory Routing Problem (IRP), which
includes an improvement mechanism based on Simulated Annealing that consists of calcu-
lating the transition probabilities obtained with LONA and using them to guide the search.

4. Methods

This section presents the main aspects of the experimental design we use for studying
different VRP variants under multiple constraint levels: (a) construction of instances for
each problem, (b) creation of local optima networks, (c) computation of LONA measures,
(d) computation of measures related to the difficulty in local search, and (e) analysis of
relationships between the LONA measures and the difficulty of local search.

4.1. Instance Creation

To analyze the role of constraints, we create new experimental instances based on 61 base
instances taken from the literature. They are selected among the base instances used in our
previous study [5] by the criterion of having at most 60 nodes. For each base instance, we
create a feasibility sample of 105 m-TSP solutions where each Delimiter representation is
chosen uniformly at random, with the depot 0 repeated k− 1 times, where k is the number
of vehicles. The sample thus obtained is used to compute four constraint levels for each
restriction (vehicle capacity and route duration) as described in the following:

• For CVRP, for each base instance, we create an experimental instance at 4 levels: Level
0 where all m-TSP solutions are feasible; Level 1 in which 75% of m-TSP solutions
are feasible; Level 2 such that 50% of m-TSP solutions are feasible; and Level 3 where
25% of m-TSP solutions are feasible. For each base instance, we choose the minimum
capacity for which the required proportion of the respective feasibility sample is
feasible for CVRP.

• For DVRP, we proceed like for CVRP, only considering restrictions on route durations
instead of vehicle capacities. We also create experimental instances at 4 levels: Level
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0 where all solutions are feasible for DVRP, Level 1 in which 50% of the solutions are
feasible), Level 2 such that 30% of the solutions are feasible, and Level 3 where 10% of
the solutions are feasible.

• For the DCVRP case, we create only one experimental instance for each base instance.
We set both the vehicle capacity and the route duration at the value that comes from
the corresponding Level 3. Note that, unlike the cases of CVRP and DVRP in which
the proportion of feasible solutions is pre-set, in DCVRP experimental instances this
proportion changes from one to another.

From the formal point of view, an m-TSP instance considers only the locations of
the customers (or the distances between them) and the number of vehicles. For CVRP,
the customer demands and the vehicle capacity are incorporated. In DVRP, we add
the maximum route length. Finally, for DCVRP, the features of DVRP and CVRP are
incorporated together. However, Level 0 experimental instances for CVRP and DVRP
based on a fixed base instance have the same feasible solutions with the same value of the
objective function, in spite of formally corresponding to different instances (of different
problems). Thus, they yield the same fitness landscape. Adopting the point of view
of fitness landscapes, such two experimental instances are considered the same for our
analysis. So, based on 61 base instances, we create the following: 61 experimental instances
for Level 0, 366 experimental instances for Levels 1, 2, and 3 of CVRP and DVRP, and 61
experimental instances for DCVRP. In total, we get 488 experimental instances.

We create several datasets to achieve the research objectives: The main is the MAVRP
dataset [24] containing all the measurements taken on the local optima network and the
local search behavior for each one of the 488 experimental instances. The CVRP dataset
is obtained from the MAVRP dataset by considering only the 244 experimental instances
relevant for analyzing CVRP: Levels 0 through 3 for CVRP. In an analogous way, the DVRP
dataset considers the 244 experimental instances relevant for DVRP. Finally, the DCVRP
dataset is based on 183 experimental instances: Level 3 for CVRP and DVRP, and the DCVRP
experimental instances.

4.2. Local Optima Network Construction
4.2.1. Nodes: Local Optima

For each experimental instance, we consider a random feasible solution sample SP of
103 solutions where each Delimiter representation is chosen uniformly at random, with
the depot 0 repeated k− 1 times, where k is the number of vehicles. However, we keep
the solution only if it is feasible for the experimental instance. Each element of the feasible
solution sample is used as the initial solution for the First-Improvement hill-climbing
algorithm (Algorithm 1) to obtain the corresponding local optimum. We use LO(SP) to
denote the local optima sample, the set of local optima thus obtained.

Algorithm 1 First-Improvement Hill-Climbing

procedure FIRST-IMPROVEMENT HILL-CLIMBING
x ← initial solution
while x is not a Local Optimum do

x′ ← random solution from N (x)
if f (x′) < f (x) then

x ← x′

end if
end while

end procedure

4.2.2. Edges: Relocate Distance

Most local operators that have been defined in the literature on local-search-based
algorithms for VRP are inspired by those used for TSP [16]. The majority of them are
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symmetric, i.e., if a solution y can be obtained by one application of the local operator
to a solution x, then the same holds in the opposite direction. And it is the case for the
Relocate operator considered in this research.

Each local operator is associated to a notion of distance. Given two solutions x and
y, the corresponding distance d(x, y) is the minimum number of applications of the local
operator necessary to transform x into y. In other words, computing d(x, y) corresponds to
computing a shortest path from x to y in the corresponding search space.

For many local operators, the corresponding distances in the TSP search space can
be computed efficiently (e.g., such is the case for the Relocate and Exchange operators),
which results in their wider use. But in some cases computing the corresponding distance is
NP-hard (e.g., it holds for the distance based on 2-Opt). The reader is referred to the survey
by Schiavinotto and Stützle [25] for more details (therein, Relocate, Exchange and 2-Opt are
called insert, interchange and 2-edge-exchange, respectively). These complexity results can
be easily adapted to the versions of these operators for m-TSP, thus computing the distance
in a m-TSP space is polynomial for Relocate and Exchange, whereas it is NP-hard for 2-Opt.

Constraining the search space tends to make computing the distance harder. For
example, computing a shortest path between two solutions of TSP in the search space
generated by 2-Opt is “only” NP-complete when any solution can be visited along the way.
Adding a restriction that only TSP routes of duration at most a certain constant K can be
visited along the way makes the problem of computing a shortest path PSPACE-hard. This
can be seen with a simple reduction from the Hamiltonian Cycle Reconfiguration problem
based on 2-Opt, that was proved by Takaoka [26] to be PSPACE-complete. Thus computing
the 2-Opt distance in DVRP is PSPACE-hard.

Up to out knowledge, no results on the complexity of reconfiguration for Hamiltonian
Cycle (or other VRP variants) with other local operators have been published. Nevertheless,
we believe that computing the distances based on Relocate or Exchange in the solution
space of DVRP, CVRP or DCVRP is at least NP-hard. This intuition comes from the fact
that even reconfiguration problems based on very simple optimization problems tend
to be hard. For example, the Shortest Path problem in general unweighted graphs can
be solved in linear time (for example, using Breadth-First Search), but the Shortest Path
Reachability problem (its reconfiguration version) is PSPACE-complete event when limited
to unweighted graphs of bounded bandwidth [27]. For this reason, we limit ourselves
to computing the distances between solution in the underlying m-TSP space even when
working with DVRP, CVRP or DCVRP.

In this research, we analyze search spaces based on the Delimiters representation
and the Relocate operator. Sörensen and Schittekat [15] described in depth the use of the
Relocate Distance based on the Delimiters representation for VRP. Consequently, for each
experimental instance, we built the corresponding local optima network as follows:

1. We take the corresponding local optima sample LO(SP) and construct a complete
graph using every local optimum Li as vertex vi and every pair of local optima
(Li,Lj) as edge eij. Then, we calculate the Relocate Distance d(Li,Lj) for every pair
of local optima.

2. We delete every edge eij for which d(Li,Lj) > D. The parameter D is set to the
percentile 25 (first quartile) of all the distances computed in the step 1.

Note that the local optima network is undirected, because the distances between the
local optima are symmetric.

4.3. Local Optima Network Analysis: Measures
4.3.1. Measure 1: Density

The Density measure presented in Equation (9) is defined as the ratio of observed
edges to the number of possible edges for a given network. Let τ denote the order of
a network, which refers to the number local optima. The number of all possible edges
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for an undirected network of order τ is τ(τ − 1)/2. Let ε be the number of edges in the
network. Then, Density DS can be expressed as:

DS =
2ε

τ(τ − 1)
(9)

4.3.2. Measure 2: Transitivity

Transitivity, also known as Clustering Coefficient is a measure of the tendency of the
nodes to cluster together. Perfect transitivity implies that, if local optimum L1 is connected
(through an edge) to local optimum L2, and L2 is connected to local optimum L3, then
L1 is connected to L3 as well. The Clustering coefficient T of a network is the average
clustering coefficient Ti for all local optima Li in the network; Thus, the computation of T
is as follows:

T =

τ

∑
i=1

Ti

τ
with Ti =

2Tr(Li)

deg(Li)(deg(Li)− 1)
, ∀i ∈ {1, 2, .., τ} (10)

Tr(Li) is the number of triangles through local optimum Li and deg(Li) is the degree
of L. T = 1 implies perfect transitivity, i.e., a network whose connected components are all
cliques. T = 0 implies no triangles (transitive relations) in the network.

4.3.3. Measure 3: Assortativity

Assortativity measures the tendency of similar local optima to be grouped. In this work,
we measure Assortativity based on node degree deg(Li) of each local optimum Li. Let
P = {p0, p1, .., pk} be the degrees of the corresponding local optima in the network. Then,
we define the following parameters:

• Mixing matrix Mpu ,pv represents the number of edges from nodes with degree pu to
nodes with degree pv.

• Degree correlation matrix cpu ,pv represents the probability of finding nodes with degrees

pu and pv as the two ends of an edge selected at random. Thus, cpu ,pv =
Mpu ,pv

ε
.

• Degree probability qpu is the probability that there is a node with degree pu at the end of

the randomly selected edge. Thus, qpu =
P

∑
pv

cpu ,pv .

The Assortativity can be described using the Degree Correlation Coefficient A proposed
by Newmann (citar), that is defined as:

A = ∑
pu∈P

∑
pv∈P

pu pv(cpu ,pv − qpu qpv)

σ2 with σ2 = ∑
pv∈P

p2
vqpv −

(
∑

pv∈P
pvqpv

)2

(11)

Hence, A is the Pearson correlation coefficient between the degrees found at the two
end of the same edge. For A > 0 the network is assortative, for A = 0 the network is
neutral and for r < 0 the network is disassortative.

4.3.4. Measure 4: Distance Ratio

The Distance Ratio estimates the closeness between local optima. For this, we calculate
the median distance (med(d)) between the local optima and normalize using the diameter
of the search space (equal to the number of customers |V| − 1). Thus, networks constructed
from different instances of the VRP are comparable. Therefore, the Distance Ratio (DR)
computation is as follows:

DR =
med(d)
|V| − 1

(12)



Mathematics 2022, 10, 4644 11 of 21

Consequently, the closer DR is to zero, the closer the local optima of the network tend
to be to each other.

4.3.5. Measure 5: Quality of Local Optima Sample

The Hill-Climbing Gap (HC-Gap) measure explores the quality of the local optima sample.
We use the Lin–Keninghan–Helgsaun (LKH) algorithm and extensions [28] to estimate the
global optimum for each experimental instance (the best of ten runs). The solution obtained
with LKH on m-TSP, CVRP, and DCVRP instances offers a sufficiently good (potentially
optimal) benchmark to measure the quality of other solutions. The benchmark results pre-
sented in the cited reports indicate that the LKH algorithm achieved the best-known or new
best solutions for 96.85%, 72.88%, and 81.81% of m-TSP, CVRP and DCVRP instances tested,
respectively. Moreover, the experiments presented by Helgsaun cover computationally
more challenging instances than those used in this research. The computation of the Gap
measure (%) relates the median fitness value of the local optima sample computed with
First-Improvement Hill-Climbing (med( fL)) and the best fitness value of LKH solutions
( fLKH) using the following definition:

HC− Gap = 100× med( fL)− fLKH
fLKH

(13)

Thus, better quality solutions have a HC-Gap(%) close to zero.

4.3.6. Measure 6: Number of Steps to Local Optimum

The Number of steps to local optimum STi, executed when applying First-Improvement
Hill-Climbing, estimates the closeness between local optima Li and their respective starting
points SPi(Li = HC(SPi)). To compute the Steps measure for an experimental instance,
we use the median med(ST), over the feasible solution sample (SP), of the number of
steps performed by the local-search-based algorithm to reach the respective local optimum.
Similarly to the Distance Ratio measure, the number of steps is adjusted considering the
diameter of the search space in the respective instance. So we get the following formula:

Steps =
med(ST)
|V| − 1

(14)

Consequently, the closer Steps is to zero, the closer the local optima of the network
tend to be to their respective starting points.

4.3.7. Measure 7: Dispersion

The Dispersion measures the variability of fitness values of the local optima in the
network. We use the Dispersion Coefficient DC based on the coefficient of variation. The DC
is the ratio between the standard deviation stddev( fL) and the mean fL of the fitness in the
local optima sample. The coefficient of variation is applicable in our research because it is
dimensionless (i.e., independent of the measurement unit) and is, therefore, comparable
between experimental instances.

DC =
stddev( fL)

fL
(15)

Hence, when DC is close to zero, the local optima tend to have similar fitness values.

4.4. Performance Measure: Difficulty for Local Search

The Simulated-Annealing Gap (SA-Gap) measure explores the performance of local search
algorithms. As we did for computing the HC-Gap, we use the Lin–Keninghan–Helgsaun
(LKH) algorithm and extensions to compute the SA-Gap measure (%). The measure relates
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the median fitness value of twenty runs computed with Simulated Annealing (med( fSA))
and the best fitness value of LKH solutions ( fLKH) using the following definition:

Gap = 100× med( fSA)− fLKH
fLKH

(16)

Thus, a SA-Gap(%) close to zero implies a better algorithmic performance.
We generate an initial solution for SA from a permutation of the customers chosen

uniformly at random (TSP solution space), by applying a Split algorithm [5,29]. Then, with
each move, a neighboring feasible solution is chosen—as is usual in SA algorithms for
VRP. We propose an SA parametrization that uses an initial temperature T = 1000, and the
temperature varies across the iterations using a linear cooling schedule with a fixed cooling
rate t = 0.9 [30]. For each temperature, the algorithm performs |V|2 iterations.

4.5. An Example of LONA and Performance Measures

Consider the local optima network presented in Figure 5, which is based on a local
optima sample of (L1, L2, L3, L4) obtained from a feasible solution sample of (SP1, SP2,
SP3, SP4). The local optima network has edges: ((L1, L2), (L1, L3), (L1, L4), (L2, L3)). It
is obtained for a VRP instance with ten customers.

Figure 5. Example: local optima network and measures.

The fitness levels of the local optima are fL = (50, 100, 200, 150), representing the node
weights; and the respective edges have weights d = (9, 7, 6, 8) determined by the relocate
distance between the corresponding local optima, as shown in Figure 5. Moreover, the
median fitness value of twenty runs computed with Simulated Annealing is fSA = 95.
Thus, the LONA and Performance measures would be calculated as follows:

• Density (DS): The number of arcs that could exist in the network is six, equivalent to
τ(τ − 1)

2
. In the network shown in Figure 5, only four of the six possible arcs exist, so

the network density is DS = 4/6 = 0.667.
• Transitivity (T): The transitivity coefficient corresponds to the fraction of triads that are

closed. In the above example, for instance, there are five triads: one centered at L2,
one at L3, and three at L1. Three of them are closed triads (centred in L1, L2 and L3,
respectively), and two are open (both centred in L1). Hence the transitivity coefficient
is T = 3/5 = 0.6

• Assortativity (A): To calculate the assortative coefficient, it is necessary to calculate
the degree of each node and relate it to adjacent ones (see Table 1). In this case,
the relationship between the degrees of neighboring nodes is inversely proportional,
indicating a disassortative network (A = −0.714).
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Table 1. Degree of each pair of adjacent nodes in the example.

Li L1 L1 L1 L2 L2 L3 L3 L4

Lj L2 L3 L4 L1 L3 L1 L2 L1

deg(Li) 3 3 3 2 2 2 2 1

deg(Lj) 2 2 1 3 2 3 2 3

• Distance Ratio (DR): The distances between local optima that are presented in the
example are d(L1,L2) = 9, d(L1,L3) = 7, d(L1,L4) = 6 and d(L2,L3) = 8. In that
context, the median of the distances is 7.5. Furthermore, the representation of the
solutions for the VRP instance for which the local optima network was constructed
has a search space diameter of ten (|V| − 1), considering that the instance has ten
customers. Thus, the distance ratio DR = 7.5/10 = 0.75.

The local search measures for the examples are:

• Quality of Local Optima Sample (HC-Gap): The fitness of the local optima are
fLO = (100, 100, 200, 150). Therefore, the median med( fLO) = 125. If the best solution
of the LKH algorithm is fLKH = 90, then the Gap = 38.8%.

• Steps to Local Optima (Steps): The number of steps from the starting points (SP) to
the local optima (LO) are ST1 = 6, ST2 = 8, ST3 = 10 and ST4 = 4. So the median
median(ST) = 7. Similar to the distance ratio, it is adjusted using the search space
diameter. For this network the measure Steps = 0.7.

• Dispersion Coefficient (DC): The local optima network has a standard deviation of the
fitness of 40.82 and a mean of 150. Therefore, the dispersion coefficient DC = 0.272.

• Performance Measure (SA-Gap): The median fitness value of Simulated Annealing
is fSA = 95 and the best solution of the LKH algorithm is fLKH = 90, then the
SA− Gap = 5.55%.

4.6. Guidelines to Analyze Local Search Performance Based on Local Optima Network Analysis

Here we present our guidelines for analyzing the performance of local search (exem-
plified by SA) in VRP using LONA. For this research, the main objectives are:

• To determine whether measures based on information obtained from LONA can be
useful to detect differences between VRP instances. The differences are studied using
the CVRP, DVRP and DCVRP datasets.

• To understand the relationship that exists between pairs of LONA measures. We seek
to describe changes in the direction and strength of associations between variables
when exploring search spaces at different levels of constraint, both for individual
attributes (CVRP and DVRP) and the multi-attribute case (DCVRP).

• To explore whether LONA measures are related with the behavior observed in local
search algorithms.

The main steps of the research methodology are as follows:

1. Preliminary analysis of local optima networks: To determine the differences between the
VRP instances under study, we perform an analysis based on Repeated Measures
ANOVA to detect significant differences in the LONA measures. This procedure is
performed between variants (Multi-Attribute Perspective) and between constraint
levels (Single-Attribute Perspective).

• Single-Attribute Perspective: We use the CVRP and DVRP datasets independently,
emphasizing differences in LONA measures between constraint levels.

• Multi-Attribute Perspective: We use the DCVRP dataset, emphasizing the dif-
ferences in LONA measures between the individual attributes of distance or
capacity (Level 3) with those obtained when both are studied together.
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2. Correlation analysis: We use the Spearman Rank Correlation coefficient [31] to analyze
the strong monotonic correlations between the LONA measures and whether these
correlations hold between variants and constraint levels. Thus, we have a first ap-
proach to evaluate the effect that the restrictions have on the relationships between the
measures we use. Therefore, this is an exploratory step in the study of the behavior
of the LONA measures. We study the correlations in the CVRP and DCVRP datasets
at each constraint level. In addition, we present the Spearman Rank Correlations
obtained using the DCVRP dataset.

3. Prediction of Difficulty for Local Search: Finally, we use the method of Logistic Regres-
sion to predict the difficulty of the instances using LONA measures. For this task, we
propose a discretization of the performance measures in the CVRP, DVRP and DCVRP
datasets. We split the instances in each one of these datasets into two equal-sized
classes, based on the local search measures: Low (≤median) and High (>median).
These categories let us capture the performance behavior and explore the underlying
patterns associated with the LONA measures. We apply Logistic Regression over each
dataset and extract the performance evaluation metrics using a re-sampling technique.
For each one among the CVRP, DVRP and DCVRP datasets, we create 100 sample
datasets that contain only one constraint level for each base instance. In this way,
we create a Logistic Regression model for each sample dataset, and based on all the
sample datasets, we obtain confidence intervals for the performance evaluation of the
Logistic Regression used a method for classification [5].

5. Results
5.1. Preliminary Analysis of Local Optima Networks

The first objective is to understand the differences among the VRP variants considered
in the research. In this context, Tables 2 and 3 present the analysis based on Repeated
Measures ANOVA on the single attribute datasets (CVRP and DVRP) and the multi-
attribute dataset (DCVRP), respectively.

5.1.1. Single-Attribute Perspective

The analyses work with the following null (H0) and alternative (H1) hypotheses:

• H0: The corresponding LONA measure at different constraint levels has the same
population mean. Thus, for the CVRP and DVRP datasets, H0 : µLevel 0 = µLevel 1
= µLevel 2 = µLevel 3 for each measure.

• H1 : At least one population mean is different from the rest.

We do these analyses to know if different constraint levels lead to significantly different
values of LONA measures. If the Fisher-test is significant (X), it implies that at least two
groups among those compared are significantly different (α ≤ 0.05); otherwise (×) there
is no evidence of a significant difference between the groups. The results are shown in
Table 2.

Table 2. Results for Repeated Measures ANOVA for LONA measures-Single-Attribute Perspective.

Measures DVRP CVRP

Density × ×

Transitivity × ×

Assortativity × X

Distance Ratio X ×

Dispersion Coefficient × X

Quality of Local Optima X X

Steps to Local Optima X X
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For the distance attribute (DVRP dataset), most LONA measures present no significant
differences. However, there are differences in the Distance Ratio. The result indicates that
when considering a more constrained landscape, the local optima tend to present a greater
distance between them. On the other hand, the measures related to local search show
significant differences in Quality of Local Optima and Steps to Local Optima. Note that
the local search is performed on constrained landscapes, so the visited solutions must be
feasible. We observe that, in a more constrained landscape, the local optimum reached
by Hill-Climbing is closer to the starting point and the median quality of local optima is
better. On the other hand, no significant difference is observed in the fitness dispersion;
Dispersion Coefficient does not change between the different constraint levels.

On the other hand, the capacity attribute (CVRP dataset) has different results from
those obtained for the distance attribute. For the LONA measures, Density and Transitivity
of the network maintain the behavior observed for the distance attribute. However, we
find significant differences concerning Assortativity. At this point, it is important to note
that the networks present low Assortativity (mean A = 0.07 at level 0 and 0.12 at level 3 of
the CVRP). That is, local optima with a similar degree tend to be more connected. Similarly,
for the local search measures, the results for Quality of Local Optima and Steps to Local
Optima are maintained. However, for the capacity attribute, there are significant differences
in Dispersion Coefficient. Thus, the dispersion is slightly higher at higher constraint levels.

It is common for the datasets that we study that we observe no differences for Density
and Transitivity, even when both types of constraints are involved. This indicates no
significant differences in the number of edges or the tendency to cluster in the network.
On the other hand, there are some differences in the distribution of local optima, both in
Distance Ratio and Assortativity.

5.1.2. Multi-Attribute Perspective

The analyses work with the following null (H0) and alternative (H1) hypotheses:

1. H0: µCVRP Level 3 = µDVRP Level 3 and H1: The population mean is different.
2. H0: µDVRP Level 3 = µDCVRP and H1: The population mean is different.
3. H0: µCVRP Level 3 = µDCVRP and H1: The population mean is different.

Table 3. Results for Repeated Measures ANOVA for LONA measures—Multi-Attribute Perspective.

DVRP DVRP CVRP
Measures CVRP DCVRP DCVRP

Density × × ×

Transitivity × × ×

Assortativity X X ×

Distance Ratio X X X

Dispersion coefficient X X X

Quality of local optima X X X

Steps to Local Optima X X X

For the Multi-Attribute Perspective, we observe that for DVRP and CVRP, there are
significant differences in the behavior observed for the LONA measures in DCVRP. The
results imply a difference in the overall structure of the search space when distance and
capacity attributes are considered simultaneously. The above is valid for all measures,
except for network density and transitivity, in both CVRP and DVRP. Furthermore, in the
case of CVRP, there are also no significant differences from DCVRP in network assortativity.
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5.2. Correlation Analysis of LONA Measures

The previous subsection presents the univariate analysis of LONA. In contrast, here
we seek to expand the research to a bivariate view. From this perspective, the use of
Spearman Rank Correlation is proposed to quantify the relationship between pairs of
measures without assuming linear behavior.

Tables 4 and 5 show that Quality of Local Optima Sample has a moderately high and
monotonically positive relationship with the Distance Ratio. Thus, the HC-Gap tends to be
larger when the local optima are more distant. Moreover, we observe that this relationship
is stronger at higher constraint levels.

Table 4. Spearman Rank Correlation for LONA measures, comparison for the capacity attribute.
Bold values denotes the coefficients that are significant at a α = 0.05.

Measure 1 Measure 2 MTSP CVRP75 CVRP50 CVRP25 DCVRP

Quality of Dispersion Coefficient 0.83 0.55 0.61 0.58 0.59
Local Steps to Local Optima 0.24 0.28 0.34 0.42 0.43
Optima Density 0.05 0.13 −0.12 −0.10 −0.18
Sample Transitivity −0.18 0.004 0.08 −0.09 −0.13

Assortativity −0.31 −0.24 −0.28 −0.46 −0.47
Distance Ratio 0.46 0.73 0.67 0.71 0.77

Dispersion Steps to Local Optima −0.04 −0.10 0.07 0.10 0.16
Coefficient Density 0.08 −0.08 −0.12 −0.21 −0.22

Transitivity 0.06 0.20 0.28 0.34 0.35
Assortativity −0.09 −0.17 −0.18 −0.16 −0.23
Distance Ratio 0.16 0.30 0.27 0.29 0.32

Steps to Density −0.31 0.03 −0.13 −0.10 −0.17
Local Optima Transitivity −0.16 0.10 0.23 0.08 0.11

Assortativity −0.38 −0.51 −0.67 −0.81 −0.81
Distance Ratio 0.49 0.45 0.54 0.51 0.57

Density Transitivity 0.31 0.27 0.43 0.37 0.41
Assortativity −0.24 0.10 0.02 0.05 0.08
Distance Ratio −0.05 0.14 −0.01 −0.09 −0.21

Transitivity Assortativity 0.23 0.05 −0.19 −0.10 −0.08
Distance Ratio −0.64 −0.09 −0.02 0.25 −0.27

Assortativity Distance Ratio −0.56 −0.29 −0.40 −0.57 −0.59

Another aspect to mention is that Quality of Local Optima Sample has a moderately
low and monotonically negative relationship with Assortativity. As with Distance Ratio,
this behavior is stronger at higher levels of constraint for the capacity attribute. Local
optima networks with more connections between local optima with a similar degree tend
to produce a smaller HC-Gap.

Additionally, we observe that Dispersion Coefficient has a moderately high and
monotonically positive relationship with Quality of Local Optima Sample. Thus, we
observe a large HC-Gap when the variability in the fitness of the local optima is higher.
The relationship between DC and HC-Gap is stronger in instances with lower constraint
levels. Furthermore, the relationship is stronger for the distance attribute than for the
capacity attribute.

The tables show a moderately positive Spearman Rank Correlation between Steps
to Local Optima and Distance Ratio. Both measures focus on the number of moves;
consequently, we expect that local optima networks with higher distances between local
optima tend to force more hill-climbing movements to achieve the local optimum.

There also exists a significant negative relationship between Steps to Local Optima
and the network’s Assortativity. These results show that in more assortative networks
fewer steps are need to achieve the local optimum. The relationship is stronger in more
constrained landscapes.
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With DVRP and m-TSP, we observe that Distance Ratio has a moderate and negative
correlation with Transitivity of the network, i.e., the greater the distance between the local
optima, the lower the tendency to clustering. Furthermore, we note a moderate negative
correlation between Assortativity and Distance Ratio for both the capacity and the distance
attributes. It is important to note that the most significant correlations are associated with
the distance between local optima.

Table 5. Spearman Rank Correlation for LONA measures, comparison for the distance attribute.
Bold values denotes the coefficients that are significant at a α = 0.05.

Measure 1 Measure 2 MTSP DVRP50 DVRP30 DVRP10 DCVRP

Quality of Dispersion Coefficient 0.83 0.83 0.82 0.81 0.59
Local Steps to local optima 0.24 0.23 0.26 0.28 0.43
Optima Density 0.05 −0.18 −0.31 0.05 −0.18
Sample Transitivity −0.18 −0.30 −0.33 −0.08 −0.13

Assortativity −0.31 −0.15 −0.10 −0.24 −0.47
Distance Ratio 0.46 0.46 0.47 0.50 0.77

Dispersion Steps to local optima −0.04 −0.06 −0.05 −0.03 0.16
Coefficient Density 0.08 −0.18 −0.24 0.04 −0.22

Transitivity 0.06 −0.13 −0.17 −0.02 0.35
Assortativity −0.09 0.07 0.10 −0.01 −0.23
Distance Ratio 0.16 0.17 0.18 0.17 0.32

Steps to Density −0.31 −0.25 −0.34 −0.15 −0.17
local optima Transitivity −0.16 −0.20 −0.21 −0.02 0.11

Assortativity −0.38 −0.43 −0.41 −0.48 −0.81
Distance Ratio 0.49 0.48 0.49 0.49 0.57

Density Transitivity 0.31 0.33 0.38 0.33 0.41
Assortativity −0.24 −0.17 −0.12 −0.18 0.08
Distance Ratio −0.05 −0.09 −0.20 0.01 −0.21

Transitivity Assortativity 0.23 0.44 0.43 0.32 −0.08
Distance Ratio −0.64 −0.72 −0.70 −0.50 −0.27

Assortativity Distance Ratio −0.56 −0.57 −0.45 −0.57 −0.59

5.3. Prediction of Difficulty for Local Search

The analysis is performed separately on CVRP, DVRP, and DCVRP datasets. As
mentioned in the guidelines for the research, we propose to partition the fitness landscapes
in each dataset into two equal-sized classes based on the average Gap obtained by SA: Low
(≤median) and High (>median). The classes are created based on the performance of SA
on all the instances in the respective dataset (without differentiating between occupancy
rates, nor the instances selected in a particular sample dataset). SA-Gap is categorized as
having a high Gap when it exceeds the Gap of 4.1% for CVRP, 6.2% for DVRP, and 4.4%
for DCVRP.

Applying the re-sampling technique, we split each sample dataset into training (70%
of the dataset) and test (30% of the dataset) sets. We use the training set to fit a Logistic
Regression model and the test set to extract the classification metrics: Accuracy, F1 and
ROC AUC scores. Furthermore, we build a confidence interval (95%) for the classification
metrics using the results of the re-sampling process.

As shown in Table 6, the LONA measures show promising results in predicting the
difficulty of the instances. Furthermore, we observe that the classification metrics present
better results when the attributes are studied individually, i.e., when the LONA measures
describe either a CVRP or a DVRP search space. In contrast, there is a decrease in predictive
power when both types of attributes are considered simultaneously.
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Table 6. Classification summary for Logistic Regression to predict difficulty for local search.

Metric CVRP DVRP DCVRP

Accuracy 0.775 ± 0.016 0.781 ± 0.016 0.731 ± 0.016

F1 Score 0.784 ± 0.017 0.798 ± 0.017 0.727 ± 0.019

Roc Auc Score 0.844 ± 0.015 0.846 ± 0.015 0.796 ± 0.015

The results suggest that the difficulty of the instance can be explained (to a great extent)
by information obtained from a simple sampling method on local optima. As shown in
Table 7, note that there are differences with respect to which variables are significant for each
variant. However, the effect of some variables is cross-sectional for the variants studied,
such as Distance Ratio, Assortativity, Steps to Local Optima, and Quality of Local Optima
Sample. The main differences are associated with the presence or absence of capacity
constraints. In the case of DVRP, the only additional variable that affects instance difficulty
is related to Transitivity. That is the grouping of local optima that facilitates transitions
between them. On the other hand, by including the capacity constraint, both in CVRP
and DCVRP, Transitivity ceases to be significant, being replaced by Dispersion Coefficient,
i.e., elements related to the variability in the fitness of local optima are incorporated.

Table 7. Significance of the variables for Logistic Regression to identify difficulty of instances.
Statistically significant variables (α = 0.05) are represented with (X).

Measure CVRP DVRP DCVRP

Density × × ×

Transitivity × X ×

Assortativity X X X

Distance Ratio X X X

Dispersion Coefficient X × X

Quality of local optima X X X

Steps to Local Optima X X X

6. Conclusions

The literature associated with Multi-Attribute Vehicle Routing Problems has been
focused mainly on designing new algorithms. Consequently, little literature refers to the
effect of constraints in a local search performed only on the feasible search space, consid-
ering that the local operators in use tend to be designed originally for the unconstrained
search space. From our perspective, understanding the constraints’ impact on local search
generates valuable information for constructing new and better algorithms, advancing
toward understanding the patterns observed in the family of Vehicle Routing Problems.

Recently, the perspective of studying complex problems using Fitness Landscape
Analysis has advanced toward understanding and describing the behavior of algorithms,
performance prediction, and automation in algorithm selection and configuration. Thus,
this paper provides new information about algorithmic behavior on constrained search
spaces under different attributes. We present a disaggregated way to explore Distance-
Constrained Capacitated Vehicle Routing Problems, studying them at different constraint
levels for both attributes.

We present a methodology for constructing local optima networks based on the
Relocate operator, which is widely used in algorithms that seek to solve Vehicle Routing
Problems. So, we give a preliminary idea of the effect of constraints on local search, with
comparisons to the unconstrained search space. Thus, we base our analyses on the m-
TSP search space, although the local optima are found using the respective constrained
search space.
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Focused on studying the behavior of the search algorithm, we establish specific mea-
sures that are extracted from the construction of the local optima network. Thus, we
determine that some measures such as Density and Transitivity, remain invariant to the
constraint level and the interaction between attributes. On the other hand, in the distance
attributes, a more constrained landscape tends to present a greater distance between local
optima. This behavior is not observed in the capacity attribute. Likewise, in the capacity
attribute, we observe that a more constrained scenario favors an assortative behavior be-
tween local optima, which is not observed in distance attribute. From the Quality of Local
Optima Sample, both the MAVRP and the individual attributes show significant differences
in the behavior in the face of more constrained scenarios and multi-attribute cases.

Additionally, we analyze the effectiveness of using LONA measures to predict in-
stance difficulty. Using measures based on local optima samples can differentiate between
instances with greater or lesser difficulty for Simulated Annealing. In addition, we show
specific differences and similarities between the capacity and distance attributes. For both
attributes, we find that the instance difficulty is related to certain common measures, such
as the Distance Ratio, Quality of Local Optima Sample, Assortativity, and Number of Steps
to Local Optimum. On the other hand, we show that the difficulty of the distance attribute
is also related to the Transitivity measure. In contrast, the difficulty of the capacity attribute
is related to the Dispersion Coefficient.

The analyses presented in this paper indicate that further study of the effect of con-
straints on Vehicle Routing Problems is required and that analyzing global measures of the
landscape structure provides valuable information on the difficulty of the instance. It is
important to note that the results of this paper are complementary to those presented in
Muñoz-Herrera and Suchan [5], since: (1) We present different methods and techniques to
study the impact of the global structure of the search space on the behavior of metaheuristic
algorithms; (2) We present a multi-attribute approach, including vehicle capacity and route
duration. These attributes have different impacts on the landscape structure. In that context,
both types of constraints directly affect the assignment of customers to vehicles, however,
the capacity constraints only affect the definition of the neighborhood of each solution. In
contrast, distance constraints affect both the neighborhood and the fitness function.

Recent advances in Fitness Landscape Analysis, including our contributions to the
study of Vehicle Routing Problems, suggest the following directions for future work: (1) Ex-
plore the relationship between FLA measures and other metaheuristic algorithms, including
more complex local operators and different search mechanisms; (2) Study the landscape
behavior of other common VRP attributes such as time windows, pickup and delivery,
multiple depots, and split deliveries. An interesting perspective is to study the impact
of constraints that affect the sequence of customer visits; (3) Establish the relationship be-
tween measures taken at the solution level (micro-scale), such as information, statistical, or
feasibility measures, and those taken at the level of the local optima network (macro scale);
(4) Study approximations to the distance measure in the constraint search space, under
different local operators and representations, to complement the distance computed in the
unconstrained search space. It is only natural to hypothesize that a good approximation
could bring valuable additional information for the study of search algorithm performance.

In the last 15 years, advances in the methods related to Fitness Landscape Analysis
have demonstrated their value in algorithm behavior description, performance prediction,
and automation in algorithm selection and configuration. So, any advance in this area
of knowledge will provide substantial improvements in the decision-making processes
associated with the solution of complex optimization problems.
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