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Abstract: In the application of control charts, most of the research in profile monitoring is based
on accurate measurements. Measurement errors, however, often exist in many manufacturing and
service environments. In this paper, we apply linear mixed models in the presence of measurement
errors in fixed effects. We discuss three modified multivariate charts, namely Hotelling’s T2, multi-
variate exponential weighted moving average (MEWMA) control chart, and multivariate cumulative
sum (MCUSUM) control chart. Performance comparisons are made in terms of the average run
length (ARL) and average extra quadratic loss (AEQL). Finally, a real data example on healthcare
expenditures is used to illustrate the implementation of the proposed monitoring schemes.
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1. Introduction

Statistical process control (SPC) has been successfully applied in a variety of industries.
In many SPC applications, the quality of a process or product can be characterized and
summarized by a relationship between a response variable and one or more explanatory
variables, which is referred to as profile [1]. Profile analysis is becoming increasingly
prevalent in process monitoring applications due to the rapid recent advances in sensor
technology and system automation [2,3].

Analysis of linear profiles has been investigated by a number of authors. The applications of
monitoring of simple linear profile can be seen in [1,4–11]. Kazemzadeh et al. [12,13] studied con-
trol charts for monitoring of Phase I and II polynomial profiles, respectively. References [14–18]
investigated monitoring of multivariate linear profiles. Nonlinear profiles were monitored
by [14,19–24]. Jensen et al. [25] presented two T2 control charts based on a linear mixed model
(LMM) for Phase I analysis. Jensen et al. [26] used a nonlinear mixed model to account cor-
relation within nonlinear profiles. Narvand et al. [27] utilized three traditional multivariate
control charts to monitor the fixed effects of the auto-correlated LMMs in Phase II. In addition,
Soleimani et al. [28] monitored predicted random effects of the LMMs in Phase II and showed
that their approaches behaves similarly to the approaches proposed by [27] for monitoring the
fixed effects.

Most of the existing research on profile monitoring is based on accurately measured
data. However, measurement errors exist in practice and the performance of control charts
may be seriously affected [29]. Many scholars have studied the effect of measurement
errors on control charts, such as [30–34]. There are very few articles on profile monitoring
in the presence of measurement errors. Li and Huang [35] studied regression-based process
monitoring with consideration of measurement errors. Wang and Huwang [36] presented
three charting schemes for monitoring simple linear Berkson profiles. Noorossana and
Zerehsaz [37] discussed the effect of measurement errors on the control charts for Phase II
monitoring of simple linear profiles with a random explanatory variable. They provided
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remedial measures to reduce the effect of measurement errors. The above three articles are
based on the error-in-variable (EV) model, which was proposed by Deato [38] in order to
correct for the effects of sampling error and is more practical than the ordinary regression
model. Linear EV models are commonly used in agronomy, biometrics, education, medicine,
and other fields, including extensive monographs [39–42]. For simple linear EV regression
models, the asymptotic properties of the least squares (LS) estimators have been studied by
many scholars, such as [43–45]. Some scholars have studied the estimation of parameters
of LMMs with EV. Profile monitoring of linear mixed models with EV arouses our interest.

In this paper, we focus on a study of Phase II approaches for monitoring linear
mixed profile in the presence of measurement errors. The remainder of this paper is
organized as follows. In Section 2, we introduce the linear mixed measurement error
model (LMMeM) in detail. In Section 3, we present three multivariate control charts to
monitor the random effects of LMMeMs in Phase II. We also introduce assessment measures
of the proposed charts and the method of seeking control limits in Section 3. Section 4
presents the simulation studies, including the performance results compared with other
existing methods. In Section 5, the proposed charts are applied to analyze the healthcare
expenditures data. Section 6 provides our conclusions. The detailed estimation procedure
is outlined in Appendix A.

2. Methodology

In order to construct Phase II methods for monitoring a simple linear mixed profile in
the presence of measurement error, proper models that consider measurement errors are
necessary. In this section, we introduce the LMMeM.

2.1. Linear Mixed Measurement Error Model

Denote by {(xki, zki, yki), k = 1, 2, . . . , n; i = 1, 2, . . . , m} the ith sample collected over time.
The profile can be formulated as a general linear mixed measurement error model (LMMeM):

yki = β0i + β1iξki + b0i + b1izki + εki, (1)

xki = ξki + δki.

where independent errors are εki ∼ N(0, σ2
i ). The random effects are (b0i, b1i)

> ∼ MN(0, D),
where D is a 2× 2 positive definite matrix. xki is the observed value of zki with the measure-
ment error δki, where δki is an random variable from N(0, σ2

δ ). We assume that N(0, σ2
δ )

is known. b0i, b1i, δki, and εki are assumed to be stochastically independent. Rewrite the
model (1) in vector–matrix form,

Yi = ξiβi + Zibi + εi, (2)

Xi = ξi + δi, i = 1, 2, . . . , m,

where δi is an (n× 2) random matrix from MN(0, In ⊗Λ), Λ = diag(0, σ2
δ ).

The null hypothesis of interest is that the process is in control (IC), namely that βi = β
and σi = σ for all i. The alternative hypothesis is that the process is out of control (OC). The
process is initially IC, but after the time point τ, a step shift in the intercept and/or slope
and/or standard deviation occurs. Next, we introduce the estimation of fixed and random
effects in LMMeM. In this paper, we focus on Phase II of profile monitoring, so we assume
that the D and σ2 are known or can be estimated well based on IC historical data.

2.2. Estimation of Random Effects

If there is no measurement error, the model in (2) reduces to a standard linear mixed
model [46]. The log-likelihood function (omitting a constant term) of Y1, Y2, . . . , Ym is

l(β; ξ, Y) = −1
2

log(|V|)− 1
2
(Y− ξβ)>V−1(Y− ξβ),
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where ξ is a (n×m) by 2 stacked matrix of the ξi’s, V = ZBZ> + σ2In = diag(Vi) with
B = diag(D), Vi = ZiDZ>i + σ2In, and Z is a block diagonal matrix containing all the Zi
matrices. If D and σ2 are known, we can obtain the maximum likelihood estimation of β,
that is

β̂ = (ξ>V−1ξ)−1(ξ>V−1Y). (3)

Similarly, we have
b̂i = DZ>i V−1

i (Yi − ξβ̂).

Soleimani et al. [28] used b̂i as a statistic for Phase II monitoring.
When the measurement error is not negligible, if we simply replace ξi by Xi, then

β̂ and b̂i are not consistent in general. For the model (2), Zhong et al. [47] derived the
corrected score estimates of fixed and random effects. The corrected log-likelihood function
(omitting a constant) of Y1, Y2, . . . , Ym is

l∗(β; X, Y) = −1
2

log(|V|)− 1
2
[(Y− Xβ)>V−1(Y− Xβ)− tr(V−1)β>Λβ].

The corrected estimation of β is given by

β̂c =
(

X>V−1X− tr(V−1)Λ
)−1

(X>V−1Y) (4)

and the corrected estimation of bi is

b̂i = DZ>i V−1
i (Yi − Xi β̂c). (5)

As pointed out by [47], under some regularity conditions, the corrected estimations β̂c
and b̂i are consistent and normally distributed asymptotically.

In practice, D and σ2 are not known and therefore must be estimated beforehand. We
provide the derivation details in Appendix A.

3. Proposed Control Charts

In this section, we construct Phase II charts for monitoring a linear mixed profile in
the presence of measurement errors. We assume that the β, D, σ2 are known or can be
estimated well based on IC historical data.

We are interested in the predictions of random effects b̂i for constructing control charts.
If there is no measurement error, Jensen et al. [25] proved that ∑n

i=1 bi = 0 when the Zi
matrix is contained within the ξi matrix. They used b̂i to monitor the stability of the process.
However, when the measurement error exists, the equation ∑n

i=1 bi = 0 does not hold. We
can obtain an estimate of the covariance matrix of b̂i from a total of m IC historical data.
The mean and variance are obtained as well, respectively,

b̄IC =
1
m

m

∑
i=1

b̂i, (6)

Σ̂IC =
∑m−1

i=1 (b̂i+1 − b̂i)(b̂i+1 − b̂i)
>

2(m− 1)
, (7)

where Σ̂IC represents the successive-differences variance–covariance matrix of the estimated
random effects. Sullivan and Woodall [48] suggested using Σ̂IC for improving the ability
of the Hotelling’s T2 control chart for detecting the presence of sustained shifts between
the profiles.

The estimators of Equations (6) and (7) may break down in presence of outliers in
Phase I. Diagnostic methods in LMMeM have been studied by some authors [49–52].
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3.1. The Hotelling’s T2 Control Chart

The Hotelling’s T2 statistics, based on the successive differences estimator of the
variance–covariance matrix, are

T2
i = (b̂i − b̄IC)

>Σ̂−1
IC (b̂i − b̄IC). (8)

The chart signals as soon as any T2
i exceeds the desired upper control limits (UCL).

3.2. The MEWMA Control Chart

The second approach is to use the MEWMA chart proposed by [53] to monitor any
shift in b̂i, as follows:

wi = θ(b̂i − b̄IC) + (1− θ)wi−1, (9)

where w0 = 0 and θ (0 < θ < 1) is the specified smoothing parameter. Then the MEWMA
statistic for the ith profile is calculated as follows:

MEWMAi = w>i Σ−1
w wi, (10)

where
Σw =

θ

2− θ
Σ̂IC. (11)

This control chart gives a signal when MEWMAi > UCL.

3.3. The MCUSUM Control Chart

The third proposed approach is based on the MCUSUM control chart proposed by [54].
The statistic is given by

si =

{
0; for ci ≤ c,
(si−1 + b̂i − b̄IC)(1− c/ci); for ci > c,

(12)

where ci = [(si−1 + b̂i − b̄IC)
>Σ̂−1

IC (si−1 + b̂i − b̄IC)]
1/2, s0 = 0 and c is a selected constant.

The chart triggers a signal when (s>i Σ̂−1
IC si)

1/2 > UCL.

3.4. Performance Measures

To assess the performance of control charts, we usually examine the average run length
(ARL). ARL reflects the average number of observations plotted on a control chart until
the chart triggers an OC signal. ARL is classified as either IC ARL or OC ARL, denoted as
ARL0 and ARL1, respectively. We fix the ARL0, then calculate the UCLs to achieve ARL0.
After that, based on the constructed charts, we compute ARL1 and we expect ARL1 to be
as small as possible.

We also use average extra quadratic loss (AEQL) to evaluate the overall performance
of a control chart for a wide range of shifts against other charts. It is defined by

AEQL =
1

αmax − αmin

αmin

∑
αmax

α2
i ARL(αi),

where δi is defined in [αmin, αmax]; the αmax and αmin are known as maximum and minimum
values of shift, respectively. A smaller AEQL value for a control chart indicates better overall
performance of this control chart.

3.5. Searching UCLs

The desired UCLs for each chart mentioned above can be estimated by the bisection
searching algorithm. The desired UCLs for each chart can be performed as follows:
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Step 1: The initial values of lower and upper bounds are pre-specified, denoted as UCLl
and UCLu. It is desirable that ARLl < ARL0 < ARLu, where ARLl and ARLu are
the corresponding ARL values of UCLl and UCLu, respectively.

Step 2: Let UCLiter = (UCLl + UCLu)/2 and ARLiter be the corresponding ARL value. If
ARLiter < ARL0, then assign UCLl = UCLiter and ARLl = ARLiter. Otherwise,
assign UCLu = UCLiter and ARLu = ARLiter.

Step 3: Repeat Step 2 until |ARLu −ARLl | is sufficiently small and then the desired UCL =
(UCLl + UCLu)/2 is obtained.

We use the above bisection searching algorithm to find the UCLs for the proposed
charts under different measurement errors.

4. Performance Study

In this section, we provide the performance evaluations of the proposed charts. We also
analyze the effect of ignoring measurement error and/or random effects on the performance
of control charts.

To demonstrate the performance of the proposed approaches, consider the underly-
ing LMMeM:

yki = 3 + 2ξk + b0i + b1izk + εki,

xki = ξk + δki, i = 1, 2, . . . , m,

where ξ = z = 2, 4, 6, 8, δkj ∼ N(0, σ2
δ ), εki ∼ N(0, 1) and (b0i, b1i)

> ∼ MN(0, D) with

D =

(
d2

1 ρd1d2
ρd1d2 d2

2

)
.

We set d2
1 = d2

2 = 0.1, ρ = 0, 0.1, 0.5, 0.9, and m = 1000.
The overall IC ARL is roughly set to 200, then 20,000 simulation runs were conducted

for each chart to search the UCLs. The OC ARL values were evaluated through the use of
20,000 simulation runs under different shifts in intercept, slope, and standard deviation.
For MCUSUM and MEWMA charts, the choices of parameters are c = 0.5—as suggested
by [55]—and θ = 0.2, respectively. The simulated UCLs values for three proposed control
charts are presented in Table 1.

Table 1. The UCL values for three proposed control charts when ARL0 ' 200.

σ2
δ

T2 MEWMA MCUSUM

0.0 0.1 0.5 0.9 0.0 0.1 0.5 0.9 0.0 0.1 0.5 0.9

0.00 10.762 11.255 9.590 10.890 9.918 10.251 8.731 10.468 5.653 5.791 5.021 6.060
0.01 10.309 9.700 11.018 11.563 10.815 9.003 10.132 10.610 6.170 5.175 5.748 5.987
0.04 10.594 11.618 10.739 12.726 9.646 10.678 9.947 11.555 5.468 6.008 6.015 6.407
0.09 9.727 11.811 10.829 12.032 8.871 11.093 10.201 10.938 5.110 6.315 5.841 6.086

Control charts were compared at both zero-state and steady-state. In zero-state, the
shift is assumed to occur at the beginning of the process. In steady-state, the process
has been operating for some time τ before a process shift occurs. We set τ = 25. Since
both MCUSUM and MEWMA charts are not memoryless, in contrast to Hotelling T2, we
compare their performance at zero-state ARL and steady-state ARL. Results are presented
in Figures 1–3.

From the above three figures, it can be seen that there is a common conclusion for
MCUSUM and MEWMA charts: no matter which parameter occurs, whether there is a
shift drift, and how big the measurement error is, the performance of zero-state ARL for
each carts is similar to steady-state ARL. Since the advantage of steady-state ARL is not
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very significant, we only discuss the performance of zero-state ARL below. The OC ARL
appearing below all refer to the zero-state OC ARL.

The OC ARLs of the three competing charts for detecting shifts in λ0, λ1, and γ are
presented in Tables 2–4, respectively.

Table 2. OC ARLs of control charts for different values of σ2
δ and ρ under λ0σ in intercept.

T2 MEWMA MCUSUM

ρ λ0 0.00 0.01 0.04 0.09 0.00 0.01 0.04 0.09 0.00 0.01 0.04 0.09

0.0

0.2 179.0 195.2 187.6 183.6 106.2 100.4 129.7 127.8 92.0 82.6 115.1 119.3
0.4 137.1 165.6 159.0 149.2 48.9 47.4 66.2 61.9 40.5 37.4 52.8 54.0
0.6 99.5 121.6 124.5 106.7 25.8 25.4 35.0 32.0 22.2 21.1 28.0 28.1
0.8 69.5 82.6 94.1 75.9 16.0 15.9 20.8 19.4 14.3 14.3 17.6 17.6
1.0 47.9 55.4 68.1 54.3 11.0 11.1 13.9 13.1 10.6 10.7 12.5 12.4
1.2 33.3 38.0 49.4 37.7 8.3 8.4 10.2 9.6 8.3 8.6 9.6 9.5
1.4 23.3 26.0 35.1 26.7 6.7 6.7 7.9 7.6 6.8 7.1 7.9 7.6
1.6 16.4 18.4 25.3 19.4 5.5 5.6 6.5 6.2 5.9 6.1 6.6 6.4
1.8 11.9 13.0 18.5 14.3 4.7 4.8 5.5 5.3 5.1 5.3 5.7 5.6
2.0 8.8 9.5 13.7 10.6 4.1 4.2 4.8 4.6 4.5 4.8 5.1 4.9

AEQL 183.2 209.6 262.8 208.7 56.9 57.1 69.6 66.2 56.5 57.4 66.1 64.9

0.1

0.2 180.4 190.9 181.0 191.3 118.1 155.3 118.5 152.6 103.1 142.3 101.8 140.1
0.4 136.2 156.8 148.2 160.0 51.7 73.3 59.0 78.3 43.7 62.2 46.0 63.6
0.6 95.4 117.7 113.7 122.9 26.8 36.1 31.2 39.8 23.1 30.0 25.1 32.7
0.8 65.3 82.9 82.3 88.7 16.1 20.6 18.9 23.0 14.7 18.1 16.4 20.1
1.0 43.8 57.5 59.6 62.7 11.1 13.4 12.8 15.1 10.7 12.5 11.9 14.0
1.2 29.8 39.8 41.9 44.2 8.3 9.8 9.6 11.0 8.4 9.5 9.3 10.8
1.4 20.5 27.4 30.0 31.4 6.5 7.5 7.5 8.5 6.8 7.6 7.7 8.7
1.6 14.8 19.4 21.7 22.6 5.4 6.1 6.2 6.9 5.8 6.3 6.5 7.3
1.8 10.6 13.9 15.8 16.9 4.6 5.2 5.3 5.7 5.1 5.4 5.7 6.3
2.0 7.9 10.3 11.8 12.4 4.1 4.5 4.6 5.0 4.5 4.8 5.0 5.5

AEQL 168.1 216.4 228.7 242.4 56.9 68.6 65.2 75.7 57.1 66.0 63.4 73.9

0.5

0.2 186.4 179.7 181.9 184.1 133.5 118.6 129.8 128.3 122.5 103.7 119.1 117.0
0.4 157.9 148.6 144.2 148.1 66.7 57.8 62.4 64.8 57.2 46.9 53.9 54.8
0.6 122.8 110.1 104.9 109.6 35.9 30.9 32.6 35.1 29.5 25.4 28.3 29.6
0.8 92.8 81.5 74.1 80.7 21.1 18.8 19.6 21.5 18.2 16.5 17.9 19.0
1.0 66.4 58.3 51.2 57.7 13.9 12.8 13.3 14.6 12.8 12.0 12.6 13.6
1.2 48.3 41.9 36.0 41.6 10.3 9.6 9.8 10.7 9.7 9.4 9.7 10.5
1.4 34.1 29.9 25.6 29.9 8.0 7.6 7.7 8.4 7.9 7.6 7.9 8.5
1.6 24.5 21.6 18.9 21.8 6.5 6.2 6.3 6.8 6.6 6.5 6.6 7.2
1.8 18.0 15.8 13.6 16.3 5.5 5.3 5.3 5.8 5.7 5.7 5.7 6.2
2.0 13.2 11.7 10.3 12.4 4.8 4.6 4.6 5.0 5.0 5.0 5.1 5.5

AEQL 256.3 226.5 201.1 228.3 70.3 65.2 66.8 72.3 67.0 63.5 66.3 71.0

0.9

0.2 172.9 178.4 183.8 183.6 99.2 118.6 129.7 130.6 83.3 104.3 116.6 117.7
0.4 134.2 142.6 147.3 148.1 48.5 57.8 63.0 65.0 39.3 47.3 51.7 55.0
0.6 99.4 107.6 107.3 111.2 26.9 31.0 33.6 35.6 22.8 25.8 28.0 30.3
0.8 70.8 77.9 76.2 82.2 17.1 18.9 20.1 21.8 15.4 16.8 17.9 19.0
1.0 50.1 54.9 53.7 57.2 12.0 13.1 13.8 14.6 11.5 12.3 12.8 13.7
1.2 36.0 39.4 38.0 41.5 9.1 9.7 10.0 10.8 9.2 9.5 9.9 10.5
1.4 25.6 27.9 27.1 29.9 7.3 7.6 7.9 8.5 7.6 7.9 8.1 8.6
1.6 18.8 20.4 20.0 21.9 6.1 6.3 6.5 6.9 6.5 6.6 6.9 7.2
1.8 13.9 15.0 14.5 16.5 5.2 5.4 5.5 5.9 5.7 5.8 5.9 6.2
2.0 10.3 11.2 11.1 12.5 4.6 4.7 4.8 5.1 5.1 5.1 5.2 5.5

AEQL 198.0 215.2 211.0 229.5 61.3 65.7 68.6 73.2 61.4 64.6 67.6 71.3
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Table 3. OC ARLs of control charts for different values of σ2
δ and ρ under λ1σ in slope.

T2 MEWMA MCUSUM

ρ λ1 0.00 0.01 0.04 0.09 0.00 0.01 0.04 0.09 0.00 0.01 0.04 0.09

0.0

0.025 197.7 203.9 198.4 195.0 176.0 184.3 188.8 173.7 167.4 176.1 180.6 168.9
0.050 187.5 197.9 192.5 184.8 137.5 147.2 149.7 134.1 125.4 132.4 137.5 125.9
0.075 177.8 193.0 178.5 172.1 101.9 111.5 111.9 98.7 87.4 93.1 98.7 86.9
0.100 163.5 178.7 165.8 156.7 73.8 81.6 80.2 71.7 61.3 65.5 68.6 62.3
0.125 147.2 165.9 148.7 141.6 55.1 59.1 59.6 52.8 44.7 47.3 48.8 45.1
0.150 130.5 149.2 131.4 124.0 41.5 43.8 43.8 40.0 33.3 35.1 36.5 34.2
0.175 114.1 134.1 114.8 109.1 31.6 33.3 33.8 30.5 26.3 27.5 28.0 26.4
0.200 100.2 116.6 99.1 93.6 25.4 26.3 26.0 24.5 21.2 22.1 22.4 21.3
0.225 87.1 103.8 86.6 81.0 20.3 21.3 21.0 19.6 17.7 18.3 18.4 17.5
0.250 76.4 87.9 74.6 69.6 16.8 17.4 17.4 16.4 14.9 15.5 15.4 15.0

AEQL 100.6 115.9 100.3 94.6 30.5 32.3 32.2 29.5 25.8 27.1 27.7 26.0

0.1

0.025 198.5 191.7 196.0 195.0 171.2 169.4 179.6 160.3 186.1 161.9 172.0 151.9
0.050 191.3 182.7 185.7 184.8 136.3 132.8 138.1 123.9 144.8 120.2 125.6 107.1
0.075 179.2 171.9 167.9 172.1 100.4 99.5 99.5 91.2 102.1 85.6 86.7 75.5
0.100 166.2 157.9 152.0 156.7 74.0 72.0 71.3 68.0 71.7 61.6 60.0 54.3
0.125 148.5 141.4 134.6 141.6 54.6 53.9 51.2 50.7 51.5 44.9 43.1 40.2
0.150 131.7 127.0 117.0 124.0 41.0 40.7 37.9 38.7 38.0 33.8 32.7 31.1
0.175 114.8 114.3 99.8 109.1 31.5 31.7 29.4 30.2 29.3 26.8 25.2 24.7
0.200 100.2 99.3 84.0 93.6 25.0 25.2 23.4 24.3 23.2 21.4 20.4 20.4
0.225 86.5 86.5 72.9 81.0 20.2 20.5 18.9 19.8 19.0 18.0 17.0 17.1
0.250 74.5 75.2 62.0 69.6 16.9 17.2 15.7 16.6 16.1 15.2 14.5 14.8

AEQL 100.5 99.0 87.1 94.6 30.3 30.3 28.6 28.8 28.9 26.0 25.1 24.1

0.5

0.025 197.4 197.8 190.6 191.7 187.7 186.9 165.8 156.0 185.3 184.1 157.8 145.6
0.050 189.8 192.0 181.5 181.2 153.5 155.1 127.7 117.2 145.0 143.8 113.6 100.5
0.075 179.9 179.1 170.0 164.7 117.3 117.9 94.3 84.7 105.9 104.2 81.1 71.1
0.100 165.1 166.5 155.1 147.0 85.6 87.2 70.2 62.5 75.2 72.4 58.4 51.1
0.125 148.6 150.5 139.6 131.8 62.8 64.5 52.3 46.2 54.8 53.4 42.7 38.6
0.150 132.3 136.5 126.2 116.9 47.1 48.0 40.1 35.7 40.3 39.4 32.9 30.0
0.175 116.6 119.3 109.6 101.3 36.5 37.0 31.3 28.7 31.3 30.5 26.1 24.2
0.200 102.7 105.8 95.6 88.0 28.5 29.0 25.0 23.1 24.8 24.4 21.3 19.9
0.225 89.2 93.2 83.9 77.5 22.8 23.3 20.4 19.0 20.3 20.1 18.0 16.8
0.250 76.9 80.5 73.9 66.6 18.8 19.4 17.2 16.0 17.0 16.9 15.4 14.5

AEQL 102.3 105.3 96.6 89.5 34.6 35.3 29.8 27.1 30.5 30.0 25.4 23.3

0.9

0.025 191.0 195.5 197.5 195.5 163.1 169.4 188.4 179.5 153.1 171.0 184.9 171.0
0.050 180.9 187.4 194.7 187.2 125.0 132.8 161.3 145.2 110.8 127.7 148.6 131.3
0.075 168.1 177.5 182.3 177.6 93.3 99.5 127.1 109.5 78.8 92.5 110.3 93.3
0.100 151.3 160.6 170.8 163.2 68.3 72.0 97.2 83.2 56.5 65.9 78.6 69.3
0.125 136.6 144.8 157.7 150.4 51.5 53.9 72.6 62.6 42.3 48.8 57.7 50.5
0.150 121.3 130.2 146.6 135.3 39.9 40.7 55.0 48.7 33.0 37.4 43.3 38.8
0.175 106.9 115.2 130.0 120.6 31.4 31.7 42.9 37.7 26.4 29.0 33.8 29.9
0.200 93.9 101.0 115.0 106.8 25.4 25.2 33.5 29.7 21.6 23.7 27.2 24.6
0.225 82.3 87.6 102.9 94.7 21.0 20.5 27.0 24.4 18.3 19.5 22.3 20.3
0.250 70.5 77.4 90.9 82.5 17.6 17.2 22.2 20.1 15.8 16.5 18.9 17.4

AEQL 94.0 100.9 114.3 106.1 29.8 30.3 39.9 35.3 25.5 28.3 32.8 29.3

According to Tables 2 and 3, the performance of both OC ARLs and AEQRLs shows
that MEWMA and MCUSUM charts perform uniformly better than the T2 chart at various
σ2

δ and ρ when monitoring regression parameters. When detecting shifts in the intercept,
MCUSUM performs better than MEWMA for a small shift, whereas MEWMA performs
slightly better than MCUSUM for a large shift. From Table 3, under different shifts in slope,
MCUSUM performs slightly better than MEWMA.
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As shown in Table 4, under different shifts in standard deviation, the Hotelling T2

chart performs significantly better than MEWMA and MCUSUM charts, while MEWMA
performs better than MCUSUM at different σ2

δ and ρ.
It is evident that σ2

δ and the correlation coefficient ρ have little effect on the performance
of the proposed methods. MCUSUM and MEWMA control charts perform better than the
T2 chart when a shift occurs in the regression parameters. When a shift occurs in standard
deviation, the T2 chart uniformly performs better than the other two methods.

Table 4. OC ARLs of control charts for different values of σ2
δ and ρ under γσ in standard deviation.

T2 MEWMA MCUSUM

ρ γ 0.00 0.01 0.04 0.09 0.00 0.01 0.04 0.09 0.00 0.01 0.04 0.09

0.0

1.2 67.6 72.2 80.5 87.7 84.7 92.4 95.8 102.7 93.0 101.3 101.1 110.2
1.4 29.8 32.6 38.0 43.0 44.8 50.5 53.5 59.1 52.3 59.2 59.6 64.5
1.6 16.4 17.9 21.0 24.6 27.9 32.0 33.8 38.4 33.6 39.7 38.7 42.6
1.8 10.5 11.4 13.6 15.4 19.5 22.0 23.4 26.6 23.8 27.8 27.5 30.1
2.0 7.5 8.1 9.4 10.9 14.8 16.3 17.3 19.6 18.0 21.2 20.8 22.8
2.2 5.8 6.1 7.1 8.2 11.4 12.7 13.6 15.3 14.4 16.9 16.3 18.1
2.4 4.7 5.0 5.7 6.3 9.5 10.4 11.0 12.3 11.7 13.8 13.3 14.7
2.6 4.0 4.3 4.7 5.3 7.9 8.7 9.2 10.3 10.0 11.6 11.3 12.2
2.8 3.5 3.6 4.1 4.4 6.8 7.4 7.8 8.8 8.5 9.9 9.6 10.6
3.0 3.1 3.2 3.6 3.9 5.9 6.6 6.8 7.7 7.5 8.7 8.5 9.0

AEQL 39.6 42.0 47.9 53.8 74.5 82.5 87.2 97.8 92.2 107.2 104.8 114.2

0.1

1.2 74.0 68.1 94.3 81.6 90.2 75.2 109.1 100.9 97.2 91.3 112.8 110.8
1.4 33.1 29.9 45.8 39.5 48.8 40.4 62.2 57.5 54.5 51.0 68.4 68.6
1.6 18.4 16.7 25.3 22.2 30.0 24.5 39.3 37.0 35.6 33.3 45.1 46.2
1.8 11.5 10.7 15.6 14.2 20.8 17.2 27.0 25.9 25.2 23.6 32.4 33.0
2.0 8.2 7.7 10.8 10.0 15.3 12.6 19.9 19.5 19.3 17.7 24.4 25.3
2.2 6.2 6.0 8.0 7.6 12.1 9.9 15.4 15.2 15.1 14.2 19.4 19.8
2.4 5.0 4.8 6.3 6.1 10.0 8.2 12.5 12.1 12.4 11.5 15.6 16.4
2.6 4.3 4.1 5.3 5.0 8.3 6.9 10.3 10.2 10.5 9.7 13.1 13.8
2.8 3.6 3.5 4.4 4.3 7.1 5.9 8.8 8.7 9.0 8.4 11.4 11.9
3.0 3.2 3.2 3.8 3.7 6.2 5.1 7.6 7.5 7.8 7.3 9.8 10.2

AEQL 42.3 40.3 53.8 50.5 78.6 64.7 98.7 96.2 97.0 90.4 122.6 126.9

0.5

1.2 70.6 70.9 79.3 90.2 87.7 88.3 89.8 109.7 92.7 95.5 90.9 116.0
1.4 31.7 31.3 37.4 44.1 46.4 47.2 49.4 64.0 51.7 54.3 53.1 71.9
1.6 17.3 17.5 20.5 25.1 29.4 29.5 31.1 40.5 32.5 35.4 34.8 47.5
1.8 11.1 11.2 13.0 15.9 19.9 20.3 21.5 28.0 23.0 25.0 24.5 34.1
2.0 7.8 8.0 9.1 11.2 14.8 15.3 16.0 20.9 17.3 19.0 18.3 26.2
2.2 6.1 6.1 6.9 8.2 11.8 12.0 12.6 16.2 13.7 15.2 14.6 20.5
2.4 4.9 5.0 5.6 6.5 9.6 9.8 10.3 13.1 11.3 12.2 11.9 16.8
2.6 4.1 4.2 4.6 5.3 7.9 8.2 8.7 10.9 9.5 10.5 9.9 13.9
2.8 3.6 3.7 4.0 4.5 6.9 7.1 7.4 9.3 8.1 9.0 8.5 11.9
3.0 3.2 3.2 3.5 3.9 6.1 6.2 6.6 8.0 7.1 7.9 7.6 10.4

AEQL 41.1 41.6 46.8 54.8 75.9 77.6 81.9 103.3 88.3 96.7 93.0 129.8

0.9

1.2 68.2 72.7 81.3 97.0 89.7 78.3 95.6 111.2 101.0 97.3 104.9 116.5
1.4 29.5 32.6 37.7 49.0 47.1 41.3 53.3 64.9 58.3 55.6 62.1 70.9
1.6 16.2 17.7 20.5 27.6 29.3 25.5 33.2 41.7 37.5 36.0 40.3 47.5
1.8 10.4 11.3 13.1 17.2 20.6 17.2 23.1 28.9 26.4 25.6 28.7 34.6
2.0 7.5 8.0 9.3 12.0 15.2 12.8 17.2 21.3 20.0 19.4 21.9 25.7
2.2 5.8 6.2 7.1 8.8 12.1 10.2 13.3 16.4 15.8 15.3 17.5 20.6
2.4 4.7 4.9 5.6 7.0 9.8 8.3 11.0 13.3 13.1 12.6 14.3 16.8
2.6 4.0 4.1 4.7 5.7 8.2 7.0 9.1 11.1 11.0 10.6 12.0 14.1
2.8 3.5 3.6 4.0 4.8 7.1 6.0 7.8 9.5 9.5 9.2 10.3 12.2
3.0 3.1 3.2 3.5 4.1 6.2 5.3 6.8 8.1 8.3 8.0 9.0 10.4

AEQL 39.6 41.7 47.3 58.8 77.6 66.1 86.3 105.4 102.1 98.8 111.2 130.4
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Figure 1. Zero-state and steady-state ARL for MCUSUM and MEWMA under shift in intercept.
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Figure 2. Zero-state and steady-state ARL for MCUSUM and MEWMA under shift in slope.
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Figure 3. Zero-state and steady-state ARL for MCUSUM and MEWMA under shift in standard deviation.

Effect of Ignoring Measurement Error and/or Random Effects

In this section, we evaluate the effect of an absence of measurement errors and/or
random effects within the profile. We use the MCUSUM statistic as an example.

When measurement errors are neglected, by substituting Xi for ξi in Equation (3), we
obtain an estimate of fixed effects. Then the estimation of β for each sample is

β̂i,LMM = (X>i V−1
i Xi)

−1X>i V−1
i Yi.

Narvand et al. [27] used β̂i,LMM to monitor an LMM model. The MCUSUM LMM is
given by

si =

{
0; for ci ≤ c,(

ui−1 + β̂i,LMM − β0

)
(1− c/ci); for ci > c,

ci =
[
(ui−1 + β̂i,LMM − β0)

>Σ̂−1
i,LMM(ui−1 + β̂i,LMM − β0)

]1/2
,

where s0 = 0 and Σ̂i,LMM = (X>i V−1
i Xi)

−1. When (s>i Σ̂−1
i,LMMsi)

1/2 > UCL, the chart alarms.
When measurement errors and random effects are ignored, one can also use the LS

approach to obtain the estimation of fixed effects even though the data follows an LMMeM.
That is, the estimation of β for each sample is

β̂i,LS = (X>i Xi)
−1X>i Yi.

The MCUSUM LS statistic is modified as follows.

si =

{
0; for ci ≤ c,(

ui−1 + β̂i,LS − β0

)
(1− c/ci); for ci > c,

ci =
[
(ui−1 + β̂i,LS − β0)

>Σ̂−1
i,LS(ui−1 + β̂i,LS − β0)

]1/2
,

where s0 = 0 and Σ̂i,LS = (X>i Xi)
−1. When (s>i Σ̂−1

i,LSsi)
1/2 > UCL, the chart alarms.
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All the control limits are calculated as described in Section 3.5 to yield IC ARL of
approximately 200. The comparison results are presented in Figures 4–6. “MCUSUM
LMMeM” in the legend represents our proposed MCUSUM control chart.
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Figure 4. Effect of ignoring measurement errors and/or random effects on ARL performance for
MCUSUM control charts under different shifts in intercept.
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Figure 5. Effect of ignoring measurement errors and/or random effects on ARL performance for
MCUSUM control charts under different shifts in slope.
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Figure 6. Effect of ignoring measurement errors and random effects on ARL performance for
MCUSUM control chart under different shifts in standard deviation.

From Figure 4, for any shifts in the intercept, our method performs slightly better
than the MCUSUM LMM and MCUSUM LS methods. According to Figure 5, when the
slope term of fixed effect occurs as a step shift, MCUSUM LMM performs worst when the
measurement errors increased and even fails to alarm in detecting small shifts. Our control
chart performs slightly worse than the MCUSUM LS chart that ignores any measurement
errors and random effects. The MCUSUM LMM scheme performs relatively similar to our
chart with various measurements in detecting a shift in σ, while MCUSUM LS performs
worst among all three of the charts.

Based on the above analysis, ignoring measurement errors will reduce the perfor-
mance of the MCUSUM chart in detecting shifts in regression parameters, and ignoring
measurement errors and random effects will decrease the performance of the MCUSUM
chart in monitoring intercept terms of fix effects or standard deviation.

5. Case Study

In this section, 150 healthcare expenditures (in million EUR) randomly selected from
15 regions (Austria, Belgium, Cyprus, Denmark, Estonia, Finland, France, Germany, Greece,
Hungary, Lithuania, Netherlands, Portugal, Spain, and Switzerland) which were regularly
obtained during the period 2010–2019, inclusive, are used in our real data analysis. The data
are available from the official Eurostat website https://ec.europa.eu/eurostat (acceaaed on
16 May 2022).

We define the response as healthcare expenditures, which are declared in logarithm
with the fixed effect set as the infant mortality rate (IMR). Figure 7 presents a simple linear
regression plot of the healthcare expenditures versus IMR for each region.

https://ec.europa.eu/eurostat
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We are interested in a linear mixed measurement effects model for the data:

yki = β0 + β1ξki + b0i + b1izki + εki,

xki = ξki + δki, k = 1, . . . , 10, i = 1, . . . , 15,

where yki indicates the kth observation of the ith region of the response, xki indicates the
kth observation of the ith region of the explanatory variable IMR, and zki = k− 1 is a time
variable (from 0 to 9).

Based on the preceding analysis, we have σ̂2
δ = 0.168, β̂c = (10.466,−0.0104)>,

σ̂2 = 0.0018 and

D̂ =

(
3.0786 −0.0255
−0.0255 0.0014

)
.

We then apply the MCUSUM, MEWMA, and T2 charts to monitor the random effects
of the above LMMeM. The smoothing constants for MCUSUM and MEWMA are set to 0.5
and 0.2, respectively. The UCLs for proposed charts are searched based on 20,000 simulated
replicates to generate an IC ARL of approximately 200. In order to check the performance
of the proposed charts, eight in-control and seven out-of-control data under the 0.8 shift in
intercept consecutively are generated. The control charts are presented in Figure 8.
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Figure 7. Healthcare expenditures versus IMR.

As we can see from Figure 8, the MCUSUM, MEWMA, and T2 charts can quickly
detect the OC condition in the 9th, 9th, and 10th samples, respectively.
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Figure 8. MCUSUM, MEWMA, and T2 control charts under intercept shift coefficient of 0.8.

6. Conclusions

In this paper, we extend the work of [28] to apply a linear mixed model to the situation
where the fixed effects are subject to measurement errors. Simulation studies show that
ignoring measurement errors and/or random effects can severely decrease the performance
of the control charts. For monitoring an LMMeM, T2 chart performs best among the three
charts for detecting shifts in process standard deviation, but has the worst performance for
detecting shifts in the regression parameters. Under the shifts in the intercept, MCUSUM
performs better than MEWMA for small shifts, whereas MEWMA performs slightly better
than MCUSUM for large shifts, and MCUSUM outperforms MEWMA overall. MCUSUM
is the preferred chart among the three charts for detecting shifts in slope while MEWMA
performs better than MCUSUM for shifts in the standard deviation.
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Appendix A. Estimation of D and σ2

In practice, D and σ2 are unknown and we need to use historical data to estimate them.
Inspired by [56], we consider the following two-step iterative procedure to estimate the
fixed and random effects. We start with the initial values

β̂ = β̂
(0)

=

(
m

∑
i=1

X>i Xi − nΛ

)−1( m

∑
i=1

X>i Yi

)
.

https://ec.europa.eu/eurostat
https://ec.europa.eu/eurostat
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Step 1: Predict the residuals given β̂c for subject i,

ui = Yi − Xi β̂c,

for i = 1, . . . , m. We can estimate

b̂i =
(

Z>i Zi

)−1
Z>i ui

and residual ei = ui − Zib̂i. Based on ei and b̂i, we propose an estimator of σ2,

σ̂2 = max

{
0,

1
(n− qm)

m

∑
i=1

e>i ei − β̂
>
c Λβ̂c

}
.

We will derive the estimation equation of D. From the estimator of bi, we can see

b̂i =
(

Z>i Zi

)−1
Z>i ui = bi +

(
Z>i Zi

)−1
Z>i εi.

This leads to

m

∑
i=1

bib>i =
m

∑
i=1

b̂ib̂>i +
m

∑
i=1

(
Z>i Zi

)−1
Z>i εiε

>
i Zi

(
Z>i Zi

)−1

+
m

∑
i=1

(
Z>i Zi

)−1
Z>i εib>i +

m

∑
i=1

biε
>
i Zi

(
Z>i Zi

)−1
.

As [56] pointed out, the last two terms are of order Op
(

m1/2
)

, hence

1
m

m

∑
i=1

bib>i ≈
1
m

{
m

∑
i=1

b̂ib̂>i −
m

∑
i=1

(
Z>i Zi

)−1
Z>i εiε

>
i Zi

(
Z>i Zi

)−1
}

≈ 1
m

{
m

∑
i=1

b̂ib̂>i −
m

∑
i=1

(σ̂2 + β̂
>
c Λβ̂c)

(
Z>i Zi

)−1
}

.

Correspondingly,

D̂ =
1
m

m

∑
i=1

b̂ib̂>i −
1
m
(σ̂2 + β̂

>
c Λβ̂c)

m

∑
i=1

(
Z>i Zi

)−1
.

Step 2: Given D, we can update the estimate of D by

β̂c =

( m

∑
i=1

X>i V̂−1
i Xi − tr(V̂−1

i )Λ

)−1( m

∑
i=1

X>i V−1
i Yi

)
,

where V̂i = ZiD̂Z>i + σ̂2In.
To achieve numerically stable estimates of σ̂2, β̂c, and D̂, we can iterate between Step

1 and Step 2 until convergence.
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