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Abstract: Considering the influence of conditional variables is crucial to statistical modeling, ignoring
this may lead to misleading results. Recently, Ma, Li and Tsai proposed the quantile partial corre-
lation (QPC)-based screening approach that takes into account conditional variables for ultrahigh
dimensional data. In this paper, we propose a nonparametric version of quantile partial correlation
(NQPC), which is able to describe the influence of conditional variables on other relevant variables
more flexibly and precisely. Specifically, the NQPC firstly removes the effect of conditional variables
via fitting two nonparametric additive models, which differs from the conventional partial correlation
that fits two parametric models, and secondly computes the QPC of the resulting residuals as NQPC.
This measure is very useful in the situation where the conditional variables are highly nonlinearly
correlated with both the predictors and response. Then, we employ this NQPC as the screening
utility to do variable screening. A variable screening procedure based on NPQC (NQPC-SIS) is
proposed. Theoretically, we prove that the NQPC-SIS enjoys the sure screening property that, with
probability going to one, the selected subset can recruit all the truly important predictors under mild
conditions. Finally, extensive simulations and an empirical application are carried out to demonstrate
the usefulness of our proposal.

Keywords: ultrahigh dimensional screening; quantile partial correlation; conditional variables; sure
screening property

MSC: 62H30; 62J07

1. Introduction

Variable screening technique has been demonstrated as a computationally fast and
efficient tool in solving many problems in ultrahigh dimensions. For example, in many
scientific areas, such as biological genetics, finance and econometrics, we may collect the
ultrahigh dimensional data sets (e.g., biomarkers, financial factors, assets and stocks),
where the number pn of predictors extremely exceeds the sample size n. Theoretically,
ultrahigh dimension often refers to the dimensionality pn and sample size n satisfies the
relationship: pn = O(exp(na)) for some constant a > 0. Variable screening is able to reduce
the computational cost, to avoid the instability of algorithms, and to improve the estimation
accuracy. These issues exist in the variable selection approaches based on LASSO [1],
SCAD [2,3] or MCP [4] for ultrahigh dimensional data. Since the seminal work of [5], which
pioneeringly proposed the sure independence screening (SIS) procedure, many variable
screening approaches have been consecutively documented over the last fifteen years,
including the model-based methods (e.g., [6–11]) and the model-free methods [12–20].
These papers have showed that with probability approaching one, the set of selected
predictors contain the set of all truly important predictors.

Most marginal approaches focus only on developing various effective and robust mea-
sures to characterize the marginal association between the response and individual predic-
tor. Whereas, these methods do not take into consideration the influence of conditional vari-
ables or confounding factors on the response. A simple application of SIS is relatively rough
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since SIS may perform poorly when predictors are highly correlated with each other. Some
predictors that are weakly relevant or irrelevant, but jointly correlated to the response, may
be excluded in the final model after applying marginal screening methods. This will result
in a high false positive rate (FPR). To surmount this weakness, an iterated screening algo-
rithm or a penalization-based variable selection is usually offered as a refined follow-up step
(e.g., [5,10]).

Conditional variable screening can be viewed as an important extension of the marginal
screening. It accounts for conditional information when calculating the marginal screening
utility. There is relatively less work in the literature. To name a few, Ref. [21] proposed a
conditional SIS (CIS) procedure to improve the performance of SIS because some correlated
conditional variables may increase the chance of boosting the rank of the marginally weak
predictor and that of reducing the number of false negatives. The paper [22] proposed
a confounder-adjusted screening method for high dimensional censoring data, in which
the additional environmental confounders are regarded as conditional variables. The re-
searchers in [23] studied the variable screening by incorporating within-subject correlation
for ultrahigh dimensional longitudinal data, where they used some baseline variables as
conditional variables. Ref. [24] proposed a conditional distance correlation-based screening
via kernel smoothing method, while [25] further presented a screening procedure based
on conditional distance correlation, which is similar to [24] in methodology, but differs in
theory. Additionally, Ref. [11] developed a conditional quantile correlation-based screening
approach using the B-spline smoothing technique. However, in [11,24,25], among others,
the conditional variable they considered is only univariate. Further, Ref. [21] focuses on the
generalized linear models, but cannot handle heavy-tailed data. For this regard, we aim
to develop a screener that behaves more robustly to outliers and heavy-tailed data, and
simultaneously considers more than one conditional variable. On the choice of conditional
variables, one can achieve that through some prior knowledge such as published research
work or the experience of experts from relevant subjects. When no prior knowledge is
available, one can apply some marginal screening approaches, such as the SIS or its robust
variants, to select several top-ranked predictors as conditional variables.

On the other hand, to the best of our knowledge, several works have considered multiple
conditional variables based on distinct partial correlations. For instance, Ref. [26] proposed
a thresholded partial correlation approach to select significant variables in linear regression
models. Additionally, Ref. [17] presented a screening procedure on the basis of the quantile
partial correlation in [27], and they referred to the procedure as QPC-SIS. More recently,
Ref. [28] proposed a copula partial correlation-based screening approach. It is worth noting
that the partial correlation used in both [17,28] removes the effect of conditional variables on
the response and each predictor through fitting two parametric models with a linear structure.
However, this manner may be ineffective, especially when the conditional variables have a
nonlinear influence on the response nonlinear. This motivates us to work out a flexible way
to control the impact of conditional variables. Meanwhile, we also take into account the
issue of the robustness to outlying or heavy-tail response in this paper.

This paper contributes a robust and flexible conditional variable screening procedure
via a partial correlation coefficient, which is a non-trivial extension of [17]. First of all, in
order to precisely control conditional variables, we propose a nonparametric definition of
QPC, which extends that of [17] and allows for more flexibility. Specifically, we first fit two
nonparametric additive models to remove the effect of conditional variables on the response
and an individual predictor, where we use the B-spline smoothing technique to estimate the
nonparametric functions. This can be viewed as a nonparametric adjustment for controlling
conditional variables. By that, we can obtain two residuals, on which a quantile correlation
can be calculated to formulate a nonparametric QPC. Second, we use this quantity as the
screening utility in variable screening. This procedure can be implemented rapidly. We
refer to this procedure as the nonparametric quantile partial correlation-based screening,
denoted as NQPC-SIS. Third, theoretically, we establish the sure screening property for
NQPC-SIS under some mild conditions. Compared to [17], our approach is more flexible
and our theory on the sure screening property is more difficult to derive. Moreover, our
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screening idea can be easily transferred to some existing screening methods that use some
popular partial correlation.

The remainder of the paper is organized as follows. In Section 2, the NQPC-SIS is intro-
duced. The technical conditions needed are listed and asymptotic properties are established in
Section 3. Section 4 provides an iterative algorithm for a further refinement. Numerical studies
and empirical analysis of real data set are carried out in Section 5. Concluding remarks are
given in Section 6. All the proofs of the main results are relegated to the Appendix A.

2. Methodology
2.1. A Preliminary

In this section, we formally introduce the NQPC-SIS procedure. To begin with, we give
some background on the quantile correlation (QC) introduced in [27]. Let X and Y be two
random variables, and EX be the expectation of X. The definition of QC is formulated as

qcorτ(Y, X) =
E[ψτ(Y−Qτ,Y)(X− E(X))]√
var(I(Y−Qτ,Y > 0))var(X)

, (1)

where Qτ,Y is the τth quantile of Y, and ψτ(u) = τ − I(u < 0) for some quantile level
τ ∈ (0, 1), here I(·) denotes an indicator function. This correlation takes on a value between
−1 and 1 and is asymmetric with respect to Y and X compared with the conventional
correlation coefficient. The QC shares the merits: the property of monotone invariance
for Y as well as the robustness of Y, due to the use of the quantile rather than the mean
in the definition. Thus, QC affects little in the presence of outliers in Y. Besides, as
shown in [27], qcorτ(Y, X) is closely related to the quantile regression. If we denote
by (a∗0τ , a∗1τ) the minimizer of E{ρτ(Y − a0τ − a1τX)} with respect to a0τ and a1τ , where
ρτ(u) = u[τ − I(u < 0)]. Then, it follows that qcorτ(Y, X) = ϕ(a∗1τ), where ϕ(·) is a
continuous and increasing function, and ϕ(a∗1τ) = 0 if and only if a∗1τ = 0.

When QC is used as a marginal screening utility for variable screening, the screening
results obtained may be misleading when the predictors are highly correlated. To overcome
this problem, Ref. [17] proposed the screening based on quantile partial correlation (QPC)
to reduce the effect from conditional predictors. For the sake of presentation, write X−j =

(Xk, k 6= j)T for j = 1, . . . , pn. The QPC in [17] is defined as

qpcorτ(Y, Xj|X−j) =
cov(ψτ(Y− XT

−jα
0
j ), Xj − XT

−jθ
0
j )√

var(ψτ(Y− XT
−jα

0
j ))var(Xj − XT

−jθ
0
j )

=
E{ψτ(Y− XT

−jα
0
j )(Xj − XT

−jθ
0
j )}√

τ(1− τ)σ2
j

, (2)

where σ2
j = var(Xj − XT

−jθ
0
j ), α0

j = argminαj
E{ρτ(Y− XT

−jαj)} and θ0
j = argminθj

E{(Xj −
XT
−jθj)

2}. When applying the QPC to variable screening, we must estimate two quantities

α0
j and θ0

j in advance. However, for ultrahigh dimensional data, the dimensionality of X−j is
pn − 1, which can still be much bigger than the sample size n. In this situation, it is difficult
to obtain the estimators of α0

j and θ0
j . On the other hand, it is usually believed that the useful

conditional variables are relatively less. Thus, it is reasonable to consider a small subset of
{k : k 6= j, k = 1 . . . , pn}, denoted by Sj in practice. Here, Sj is said to be conditional set
with a size smaller than n and it can be specified as the set of previously selected variables
and the variables related to the jth predictor, if there is no prior knowledge on it. As a
result, Ref. [17] suggested using the following measure to perform variable screening:

qpcorτ(Y, Xj|XSj) =
E{ψτ(Y− XT

Sj
α0

j )(Xj − XT
Sj

θ0
j )}√

τ(1− τ)σ2
j

, (3)
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where σ2
j = var(Xj − XT

Sj
θ0

j ), α0
j = argminαj

E{ρτ(Y− XT
Sj

αj)} and θ0
j = argminθj

E{(Xj −
XT
Sj

θj)
2}, in which XSj = (Xk, k ∈ Sj)

T .
From the definition, one can see that the QPC is just the QC between Y and Xj after

removing the confounding effects of conditional variables XSj . Typically, it is through fitting
two parametric regression models: one is to fit a linear quantile regression of Y on XSj , and
another is on a multivariate linear regression of Xj on XSj . Afterwards, the QPC computes
the QC of two residuals that are obtained from these two regression fittings. However,
in real applications, the parametric models used to dispel the confounding effects may
not be adequate, especially when a nonlinear dependence structure between the response
and the predictions is present, which is quite common in high-dimensional data. This
motivates us to consider a more flexible and efficient approach to control the influence of
the confounding/conditional variables.

2.2. Proposed Method: NQPC-SIS

Without loss of generality, we assume that the predictors {Xj, 1 ≤ j ≤ p} are standard-
ized and the response Y satisfies τ-qauntile centered, i.e., Qτ,Y = 0, which is similar to the
treatment where the response is centered by mean. Then, we consider the quantile additive
model as

Y = m1(X1) + m2(X2) + · · ·+ mp(Xp) + ε,

where the error term satisfies P(ε < 0|X) = τ. This means that the conditional τ-quantile
of Y given X is Qτ,Y|X = m1(X1) + m2(X2) + · · · + mp(Xp). We denote by M∗ = {j :
mj(Xj) 6= 0, 1 ≤ j ≤ p} the active set, which indicates the set of indices associated with the
nonzero coefficients in the true model and is often assumed to be sparse.

Let |Sj| be the cardinality of a set Sj, and mjk and gjk, k ∈ Sj, be `2-smoothing functions
satisfying some conditions. For the identification, we require that

∫
mjk(x)dx = 0 and

E{gjk(Xk)} = 0 for all j, k. Set mj(XSj) = ∑k∈Sj
mjk(Xk) and gj(XSj) = ∑k∈Sj

gjk(Xk). A
nonparametric version of QPC (denoted as NQPC) is formulated as

$τ(Y, Xj|XSj) =
E{ψτ(Y−m0

j (XSj))(Xj − g0
j (XSj))}√

τ(1− τ)σ2
j,0

, (4)

where σ2
j,0 = var(Xj − g0

j (XSj)), m0
j = argminmj

E{ρτ(Y − mj(XSj))} and g0
j = argmingj

E{(Xj − gj(XSj))
2}. Suppose we have a dataset: {(Yi, Xi), i = 1, · · · , n} consisting of

n independent copies of (Y, X), where the dimensionality of Xi is pn. Let Xi,Sj be the
sub-vector of Xi indexed by Sj. Then, a sample estimate for NQPC can be given as

$̃τ(Y, Xj|XSj) =
n−1 ∑n

i=1 ψτ(Yi − m̃j(Xi,Sj))(Xij − g̃j(Xi,Sj))√
τ(1− τ)σ̃2

j

, (5)

where σ̃2
j = n−1 ∑n

i=1(Xij − g̃j(Xi,Sj))
2, m̃j = argminmj

1
n ∑n

i=1 ρτ(Yi −mj(Xi,Sj)) and g̃j =

argmingj
1
n ∑n

i=1(Xij − gj(Xi,Sj))
2. Since mjk and gjk are unknown nonparametric functions,

so m̃j and g̃j cannot be used, rendering $̃τ(Y, Xj|XSj) inapplicable. In what follows, we
estimate each of mjks and gjks by making use of nonparametric B-spline approximation.

To proceed, we denote {Bk(·), k = 1, · · · , Ln}with ‖Bk‖∞ ≤ 1 by a sequence of normal-
ized and centered B-spline basis functions, where Ln is the number of basis functions. Then,
according to the theory of B-spline approximation ([29]), for a generic smoothing function m,
there exists a vector γ ∈ RLn such that m(x) ≈ B(x)Tγ, where B(·) = (B1(·), · · · , BLn(·))T .
Therefore, there exist vectors αjk ∈ RLn and θjk ∈ RLn such that mjk(Xk) ≈ B(Xk)

Tαjk

and gjk(Xk) ≈ B(Xk)
Tθjk. Since

∫
mjk(x)dx = 0 and E{gjk(Xk)} = 0, it naturally implies

that E{B(Xk)} = 0 for k ∈ Sj. Write αj = ({αT
jk, k ∈ Sj})T , θj = ({θT

jk, k ∈ Sj})T
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and Bj = ({B(Xk)
T , k ∈ Sj})T . Denote by m̂j(Xi,Sj) = BT

ij α̂j, ĝj(Xi,Sj) = BT
ij θ̂j and

σ̂2
j = n−1 ∑n

i=1(Xij − ĝj(Xi,Sj))
2, where

α̂j = argminαj

1
n

n

∑
i=1

ρτ(Yi − BT
ijαj)

and

θ̂j = argminθj

1
n

n

∑
i=1

(Xij − BT
ijθj)

2,

where Bij indicates Bj within B(Xk) being replaced by B(Xik) for i = 1, · · · , n and k ∈ Sj.
Then, it follows that a feasible sample estimate for NQPC is given by

$̂τ(Y, Xj|XSj) =
n−1 ∑n

i=1 ψτ(Yi − m̂j(Xi,Sj))(Xij − ĝj(Xi,Sj))√
τ(1− τ)σ̂2

j

. (6)

Next, we employ the above NQPC estimator as a screening utility in variable screening.
To this end, we denote M̂νn to be the selected active set via the screening procedure such
that the maximal absolute sample NQPC of the selected variables in M̂νn are greater than a
user-specified threshold value νn. In other words, we can select an active set of variables by

M̂νn = {j : |$̂τ(Y, Xj|XSj)| ≥ νn for 1 ≤ j ≤ p}. (7)

We name this procedure as the NQPC-based variable screening, abbreviated as NQPC-SIS.
In the next section, we will provide some theoretical justification for this approach.

3. Theoretical Properties

To state our theoretical results, we first make some notations. Let rn = max1≤j≤p |Sj|.
Throughout the rest of the paper, for any matrix A, we use ‖A‖ =

√
λmax(ATA), ‖A‖∞ =

maxi,j |Aij|, and λmin(A) and λmax(A) to stand for the operator norm, the infinity norm as
well as the minimum and maximum eigenvalues for a symmetric matrix A, respectively. In

addition, for any vector a, ‖a‖ =
√

∑i a2
i means the Euclidean norm.

Denote uj = |$τ(Y, Xj|XSj)| and ûj = |$̂τ(Y, Xj|XSj)|, where $τ(Y, Xj|XSj) is given
in Equation (4) and $̂τ(Y, Xj|XSj) is given in Equation (7). Further, we also denote u∗j =

|$∗τ(Y, Xj|XSj)|, where

$∗τ(Y, Xj|XSj) =
E{ψτ(Y− BT

j α0
j )(Xj − BT

j θ0
j )}√

τ(1− τ)σ2
j

, (8)

where σ2
j = var(Xj − BT

j θ0
j ), α0

j = argminαj
E{ρτ(Y − BT

j αj)} and θ0
j = argminθj

E{(Xj −
BT

j θj)
2}. Before we establish the uniform convergence of ûj to uj, we first investigate the bound

of the gap between uj and u∗j , which is helpful to understand the marginal signal level after
applying B-spline approximation to the population utility. We need the following conditions:

(B1) We assume that E{Xj|XSj} = g0
j (XSj) = ∑k∈Sj

g0
jk(Xk) and Xk denotes the support of

covariate Xk. There exist some positive constants Cg and Cm such that for any k ∈ Sj,

max
1≤j≤p

sup
x∈Xk

∣∣g0
jk(x)− Bj(x)Tθ0

jk
∣∣ ≤ CgL−d

n ,

max
1≤j≤p

sup
x∈Xk

∣∣m0
jk(x)− Bj(x)Tα0

jk
∣∣ ≤ CmL−d

n ,
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where d is defined in condition (C1) below.

(B2) There exist some positive constants cσ,min, cσ,max, c̃σ,min, c̃σ,max such that

0 < cσ,min ≤ max
1≤j≤p

σ2
j ≤ cσ,max < ∞,

0 < c̃σ,min ≤ max
1≤j≤p

σ2
j,0 ≤ c̃σ,max < ∞,

where σ2
j and σ2

j,0 are given in (4) and (8), respectively.

(B3) In a neighborhood of BT
j α0

j , the conditional density of Y given (Xj, XSj), fY|(Xj ,XSj
)(y),

is bounded on the support of (Xj, XSj) and uniformly in j.

(B4) minj∈M∗ uj ≥ C0rnn−κ for some C0 > 0 and 0 < κ < 1/2.

Condition (B1) is imposed on the approximation error condition for nonparametric
function in B-spline smoothing literature (e.g., [11,30,31]). Condition (B2) requires variances
σ2

j and σ2
j,0 to be uniformly bounded. Condition (B3) implies that there exists a finite con-

stant c̄ f > 0 such that for a small ε > 0, sup|y−BT
j α0

j |<ε fY|(Xj ,XSj
)(y) ≤ c̄ f holds uniformly.

Condition (B4) guarantees that the marginal signal of active components in modelM∗
does not vanish. These conditions are similar to those in [17].

Proposition 1. Under conditions (B1)–(B3), there exists a positive constant M1∗ such that

uj − u∗j ≤ M1∗rnL−d
n ,

In addition, if condition (B4) further holds, then

min
j∈M∗

u∗j ≥ C0ξrnn−κ ,

provided that L−d
n ≤ C0(1− ξ)n−κ/M1 for some ξ ∈ (0, 1).

To establish the sure screening property, we make the following assumptions: .

(C1) {mkj} and {gkj} belong to a class of functions F , whose rth derivatives m(r)
kj and g(r)kj

exist and are Lipschitz of order α,

F = {b(·) : |b(r)(s)− b(r)(t)| ≤ K|s− t|α}, for s, t ∈ [a, b]

for some positive constant K, where [a, b] is the support of Xk, r is a non-negative
integer and α ∈ (0, 1] such that d = r + α > 0.5.

(C2) The joint density of X, fX is bounded by two positive numbers b1 f and b2 f satisfying
b1 f ≤ fX ≤ b2 f . The density of Xj, fXj is bounded away from zero and infinity
uniformly in j, that is, there exist two positive constants c1 f and c2 f such that c1 f ≤
fXj(x) ≤ c2 f .

(C3) There exist two positive constants K1 and K2, such that P(Xj > x|X−j) ≤ K1 exp(−K−1
2 x)

for every j.

(C4) The conditional density of Y given X = x, fY|X=x(y), satisfies the Lipschitz condition
of first order and c3 f ≤ fY|X=x(y) ≤ c4 f for some positive constants c3 f and c4 f for
any y in a neighborhood of BT

j α0
j for 1 ≤ j ≤ p.

(C5) There exist some positive constants M1 and M2 such that supi,j |BT
ijα

0
j | ≤ M1 < ∞,

supi,j |BT
ijθ

0
j | ≤ M2 < ∞. Furthermore, assume that min1≤j≤p σ2

j ≥ M3 > 0 for some
constant M3.

(C6) There exists some constant ξ ∈ (0, 1) such that L−d
n ≤ C0(1− ξ)n−κ/M1∗.
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Condition (C1) is a smoothness assumption on {mkj} and {gkj} in nonparametric
B-spline-related literature ([7,32]). Condition (C3) is a moment constraint on each of the
predictors. Conditions (C2), (C4) and (C5) are similar to those imposed in [17]. Condition
(C6) is assumed to ensure the marginal signal level of truly active variables not too weak
after B-spline approximation. The above conditions are standard in variable screening
literature (e.g., [17,28]).

According to the properties of normalized B-splines and under the conditions (C1)
and (C2) (c.f., [33,34]), we can obtain the fact that for each j = 1, · · · , p and k = 1, . . . , Ln,
there exist positive constants C1, C2 and C3 independent of j, k such that

C1L−1
n ≤ λmin(E{B(Xj)B(Xj)

T}) ≤ λmax(E{B(Xj)B(Xj)
T}) ≤ C2L−1

n , (9)

and

E{B2
k(Xj)} ≤ C3L−1

n . (10)

The following lemma bounds the eigenvalues of the B-spline basis matrix from below
and from above. This result extends Lemma 3 of [32] from a fixed dimension to a diverging
dimension, which may be crucial to the independent interest of some readers.

Lemma 1. Suppose that conditions (C1) and (C2) hold, then we have

C1

(1− δ0

2

)|Sj |−1
L−1

n ≤ λmin(E{BjBT
j }) ≤ λmax(E{BjBT

j }) ≤ C2|Sj|L−1
n ,

where δ0 = (1− b2
1 f b−2

2 f ζ)1/2 for some constant 0 < ζ < 1.

This result reveals that rn plays an important role in bounding the eigenvalues of
the B-spline basis matrix. When rn goes to infinity rapidly, the minimum eigenvalue of
the basis matrix will degrade to zero very quickly at an exponential rate. However, if the
following result holds, then the divergence rate of rn cannot achieve a polynomial order of
n, but can be of an order of log n.

Theorem 1. Suppose that conditions (B1)–(B5) and (C1)–(C5) hold and assume that
a−2rn

0 Ln/n1−2κ = o(1) and a−2rn
0 r3

nLnn−κ = o(1) are satisfied.

(i) For any C > 0, then there exist some positive constants c∗6 , c∗14 such that, for 0 < κ < 1/2
and sufficiently large n,

P
(

max
1≤j≤pn

∣∣ûj − u∗j
∣∣ ≥ Crnn−κ

)
≤ pn{7 exp

(
− c∗6 a2rn

0 r2
nn1−4κ

)
+ [116(rnLn)

2 + 60rnLn + 10] exp(−c∗14a2rn
0 L−3

n n1−2κ)},

where a0 = (1− δ0)/2 and δ0 is given in Lemma 1.

(ii) In addition, if condition (C6) is further satisfied, by choosing νn = C̃0rnn−κ with C̃0 ≤
C0ξ/2, we have

P
(
M∗ ⊂ M̂νn

)
≥ 1− sn{7 exp

(
− c∗6 a2rn

0 r2
nn1−4κ

)
+ [116(rnLn)

2 + 60rnLn + 10] exp(−c∗14a2rn
0 L−3

n n1−2κ)}

for sufficiently large n, where sn = |M∗|.

The above establishes the sure screening property that all the relevant variables can be
recruited with probability going to one in the final model. The probability bound in the
property is free of pn, but depends on rn and the number of basis functions Ln. Though
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this ensures that NQPC-SIS retains all important predictors with high probability, the noisy
variables can be included by NQPC-SIS. Ideally, this can be realized by the choice of νn,
according to Theorem 1 and by setting maxj 6∈M∗

∣∣$∗τ(Y, Xj|XSj)
∣∣ = o(rnn−κ), to achieve the

selection consistency, i.e.,

P(M∗ = M̂νn)→ 1

when n is sufficiently large. This property can also be achieved by Theorem 1 and by
assuming that $∗τ(Y, Xj|XSj) = 0 for j 6∈ M∗. However, this would be too restrictive to

check in practice. Similar to [17], we may assume that ∑
p
j=1 u∗j = O(nς) for some ς > 0 to

control the false selection rate. With this condition, we can obtain the following property to
control the size of the selected model.

Theorem 2. Under the conditions of Theorem 1 and by choosing νn = C̃0rnn−κ with C̃0 ≤ C0ξ/2
and if ∑

p
j=1 u∗j = O(nς) for some ς > 0, then for some positive constant C∗, there exist some

constants c̃∗6 , c̃∗14 such that

P(|M̂νn | ≤ C∗r−1
n nκ+ς) ≥ 1− pn{7 exp

(
− c̃∗6 a2rn

0 r2
nn1−4κ

)
+ [116(rnLn)

2 + 60rnLn + 10] exp(−c̃∗14a2rn
0 L−3

n n1−2κ)}

for sufficiently large n.

This theorem reveals that after an application of the NQPC-SIS, the dimensionality can
be reduced from an exponential order to a polynomial size of n at the same time retaining
all the important predictors with probability approaching one.

4. Algorithm for NQPC-SIS

To make the NQPS-SIS practically applicable, for each XJ , we need to specify the
conditional set Sj. We note that a sequential test was developed to identify Sj in [17] via an
application of the Fisher’s Z-transformation [35] and partial correlation. In this section, we
provide a two-stage procedure based on nonparametric additive quantile regression model,
which can be viewed as a complementary to [17].

To reduce the computational burden, we first apply the quantile-adaptive model-free
feature screening (Qa-SIS) proposed by [13] to select a subset from {Xj, 1 ≤ j ≤ pn}, denoted
by M̂Qa-SIS with |M̂Qa-SIS| = b0.5nL−1

n / log(nL−1
n )c+ 1, where Ln is the number of basis

functions used in Qa-SIS and bac denotes the largest integer not exceeding a. Second, for
each Xj, if Xj ∈ M̂Qa-SIS, we set Cj = {Xk|Xk ∈ M̂Qa-SIS, k 6= j}, otherwise Cj = {Xk|Xk ∈
M̂Qa-SIS, k 6= |M̂Qa-SIS|}. Thus, |Cj| = b0.5nL−1

n / log(nL−1
n )c. Third, we carry out a variable

selection with SCAD penalty [2] based on additive quantile regression model for data set
{(Xij, XiCj), i = 1, · · · , n} and then a small reduced subset is obtained, denoted by Cv

j . Such
a two-stage procedure can help to find the conditional subset for the jth variable and will be
incorporated in the following algorithm. With a slight abuse of notation, we use dn to denote
the screening threshold parameter of the NQPC-SIS, in other words, for the NQPC-SIS, we
select dn covariates that correspond to the first dn largest NQPCs.

Algorithm 1 has the same spirit as the QPCS algorithm of [17], who demonstrated
empirically that the QPCS algorithm outperforms their QTCS and QFR algorithms. In the
implementation, we choose d∗n = b0.5nL−1

n / log(nL−1
n )c and dn = bn/ log nc, which does

not exclude other choice. According to our limited simulation experience, this choice works
satisfactorily. The values of d∗n and rn we take on cannot be too large, due to the use of
B-spline basis approximations. Theoretically, we need to specify d∗n such that d∗n ≤ rn, while
it is sufficient to require Lnd∗n < n practically.
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Algorithm 1 The implementation of NQPC-SIS.

1: Given dn, we set a pre-specified number d∗n ≤ dn and an initial set A(0) = ∅.
2: For k = 1, . . . , d∗n,

(2a) update Sj = A(k−1) ∪ Cv
j ;

(2b) update A(k) = A(k−1) ∪ {j∗}, where the variable index j∗ is defined by

j∗ = argmaxj/∈A(k−1) |ρ̂τ(Y, Xj|XSj)|.

3: For k = d∗n + 1, . . . , dn,
(3a) update Sj = A(d∗n) ∪ Cv

j ;

(3b) update A(k) = A(k−1) ∪ {j∗}, where the variable index j∗ is such that

j∗ = argmaxj/∈A(k−1) |ρ̂τ(Y, Xj|XSj)|.

4: Repeat Step 3 until k ≥ dn. The final selected set is denoted as M̂.

5. Numerical Studies
5.1. Simulations

In this subsection, we conduct some simulation studies to examine the finite sample
performance of the proposed NQPC-SIS. In order to evaluate the performance, we employ
three criteria: the minimum model size (MMS), i.e., the smallest number of covariates that
contain all the active variables, its robust standard deviation (RSD), and the proportion of
all the active variables selected (P) with the screening threshold parameter being specified
as dn = bn/ log nc. Throughout this subsection, we adopt the following simulation settings:
the sample size n = 200, the number of basis Ln = bn1/5c+ 1, and the dimensionality
pn = 1000. We simulate the random error ε from two distributions: N(0, 1) and t(3),
respectively. Three quantile levels τ = 0.2, 0.5, 0.8 are considered in all situations. For each
simulation scenario, all the results are obtained over N = 200 replications.

Example 1. Let X = (X1, · · · , Xpn)
T be a pn-dimensional random vector having a multivariate

normal distribution with mean zero and covariance matrix Σ = (σjk)1≤j,k≤pn , where σjj = 1 and
σj,k = ρ, j 6= k except that σi4 = σ4j =

√
ρ. Generate the response as:

Y = βX1 + βX2 + βX3 − 3β
√

ρX4 + ε.

It is easily observed that the marginal Pearson’s correlation between X4 and Y is zero.
We take ρ = 0.5, 0.8 and set β = 2.5(1 + |τ − 0.5|) to incorporate the quantile information.

Example 2. We follow the simulation model of [17] and generate the response as

Y = βX1 + βX2 + βX3 − 3β
√

ρX4 − 0.25βX5 + ε,

where β, ρ, and X are defined as in Example 1 except that σi5 = σ5j = 0 such that X5 is uncorrelated
with Xj, j 6= 5.
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Table 1. Simulation results for Example 1 when n = 200.

τ = 0.2 τ = 0.5 τ = 0.8

ε ρ Method sn MMS(RSD) P MMS(RSD) P MMS(RSD) P
N(0, 1) 0.5 SIS 4 455.5(319.3) 0 437(330.3) 0 434.5(372) 0

NIS 4 451(456.5) 0.025 506(421.3) 0 486.5(390.5) 0
Qa-SIS 4 466(392.5) 0.02 466.5(375.5) 0.01 490.5(382.3) 0.01

QPC-SIS 4 4(0) 1 4(0) 1 4(0) 1
NQPC-SIS 4 4(0) 0.995 4(0) 1 4(0) 1

0.8 SIS 4 444.5(141.3) 0 458(161.8) 0 452.5(188) 0
NIS 4 489.5(274.5) 0 518.5(274) 0 511(285.8) 0

Qa-SIS 4 522(372.3) 0.01 510.5(358) 0 560.5(292.8) 0
QPC-SIS 4 5(2) 0.99 4(1) 1 5(2) 0.98

NQPC-SIS 4 6(3) 0.96 4(2) 0.99 6(3) 0.96
t(3) 0.5 SIS 4 434.5(352.8) 0.005 475(343.3) 0 472.5(366) 0

NIS 4 492.5(347.5) 0.01 501.5(415) 0 555.5(352.3) 0
Qa-SIS 4 510.5(390.3) 0.005 481(463.3) 0.015 541.5(460.3) 0.01

QPC-SIS 4 4(0) 1 4(0) 1 4(0) 1
NQPC-SIS 4 4(0) 0.995 4(0) 1 4(0) 1

0.8 SIS 4 453(135.8) 0 468(200.5) 0 473(283.5) 0
NIS 4 535.5(288.3) 0 507(253.3) 0 507.5(368.3) 0

Qa-SIS 4 597.5(329.3) 0 578.5(374) 0 591.5(366.8) 0.005
QPC-SIS 4 6(3) 0.915 5(2) 0.975 6(2) 0.945

NQPC-SIS 4 6.5(6) 0.84 5(3) 0.955 6(5.3) 0.855

Table 2. Simulation results for Example 2 when n = 200.

τ = 0.2 τ = 0.5 τ = 0.8

ε ρ Method sn MMS(RSD) P MMS(RSD) P MMS(RSD) P
N(0, 1) 0.5 SIS 5 439.5(359.5) 0 477(319) 0 427(324.8) 0

NIS 5 522(362) 0.005 566(429.8) 0 507.5(392) 0
Qa-SIS 5 542.5(400.3) 0 565.5(351.5) 0 554(340.3) 0

QPC-SIS 5 5(0) 1 5(0) 1 5(0) 1
NQPC-SIS 5 5(0) 1 5(0) 1 5(0) 1

0.8 SIS 5 436(111.3) 0 479.5(232.8) 0 466.5(219.3) 0
NIS 5 523.5(246.8) 0 556.5(265.8) 0 527(286.3) 0

Qa-SIS 5 557.5(376.5) 0 604(358.8) 0 542(363.8) 0
QPC-SIS 5 6(2) 0.97 6(2) 0.97 7(3) 0.93

NQPC-SIS 5 7(2) 0.9 6(2) 0.945 7(3) 0.9
t(3) 0.5 SIS 5 478.5(347) 0 451.5(308.8) 0 483.5(322.8) 0

NIS 5 535.5(384.3) 0 545.5(317.8) 0.005 508(353) 0
Qa-SIS 5 597.5(389.5) 0.005 568.5(341.5) 0 593.5(435.8) 0.005

QPC-SIS 5 5(0) 0.99 5(0) 1 5(0) 0.995
NQPC-SIS 5 5(1) 0.985 5(0) 0.995 5(1) 0.975

0.8 SIS 5 468(286.3) 0 477(238.5) 0 466(229) 0
NIS 5 530.5(324.8) 0 532.5(321.3) 0 525.5(245.5) 0

Qa-SIS 5 655(391.8) 0 590.5(361.5) 0 591.5(374.8) 0
QPC-SIS 5 7(21.3) 0.765 7(3) 0.88 8(44.8) 0.74

NQPC-SIS 5 8(81.8) 0.63 7(7.3) 0.82 11(136.5) 0.57
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Table 3. Simulation results for Example 3 when n = 200.

t = 1 t = 2

ε τ Method sn MMS(RSD) P MMS(RSD) P
N(0, 1) τ = 0.2 Qa-SIS 5 695(461.5) 0.005 799.5(326.5) 0

QPC-SIS 5 46(165.3) 0.485 298.5(477.5) 0.075
NQPC-SIS 5 7(13) 0.82 160(345.8) 0.25

τ = 0.5 SIS 5 492(805) 0.155 1000(1) 0
NIS 5 533(608) 0.035 798(391) 0.005

Qa-SIS 5 761.5(460) 0.005 762.5(353) 0
QPC-SIS 5 8.5(33) 0.75 211(372.8) 0.145

NQPC-SIS 5 5(0) 0.96 29(103.8) 0.56
τ = 0.8 Qa-SIS 5 599(508) 0.01 708(348.3) 0

QPC-SIS 5 47(213) 0.46 393(400) 0.015
NQPC-SIS 5 6(7) 0.86 156.5(388) 0.23

t(3) τ = 0.2 Qa-SIS 5 689.5(434) 0 794(345) 0
QPC-SIS 5 85.5(239.5) 0.28 548.5(518.5) 0.025

NQPC-SIS 5 46.5(181) 0.46 487(551) 0.055
τ = 0.5 SIS 5 626.5(767.8) 0.1 999(6) 0

NIS 5 560.5(574.5) 0.025 742(430.3) 0
Qa-SIS 5 673.5(449.3) 0.005 751.5(358.5) 0

QPC-SIS 5 21.5(89.3) 0.56 331.5(467.8) 0.06
NQPC-SIS 5 6(5) 0.855 136.5(388) 0.21

τ = 0.8 Qa-SIS 5 583(458.5) 0.015 711.5(382.3) 0
QPC-SIS 5 108.5(303) 0.3 623(448) 0.005

NQPC-SIS 5 28.5(136.3) 0.52 413(489.5) 0.03

Table 4. Simulation results for Example 4 when n = 200.

t = 1 t = 2

ε τ Method sn MMS(RSD) P MMS(RSD) P
N(0, 1) τ = 0.2 Qa-SIS 5 735(448.5) 0.005 681.5(388.5) 0

QPC-SIS 5 647.5(425) 0.005 746.5(329.3) 0
NQPC-SIS 5 5(1) 0.945 86(334) 0.385

τ = 0.5 SIS 5 793(268.3) 0 846.5(252.8) 0
NIS 5 765.5(298.8) 0 896.5(225.8) 0

Qa-SIS 5 749.5(274.8) 0 818(301.5) 0
QPC-SIS 5 717.5(326.8) 0 805.5(254.3) 0

NQPC-SIS 5 5(0) 1 8(60.3) 0.705
τ = 0.8 Qa-SIS 5 836(274) 0 867.5(243.8) 0

QPC-SIS 5 798.5(248.3) 0 811.5(249.3) 0
NQPC-SIS 5 5(1) 0.985 61(355.8) 0.44

t(3) τ = 0.2 Qa-SIS 5 716.5(374.3) 0 703(375.3) 0
QPC-SIS 5 603(422) 0.01 743.5(295.3) 0

NQPC-SIS 5 7(22.5) 0.78 317(592.3) 0.15
τ = 0.5 SIS 5 786.5(261.8) 0 869.5(301.3) 0

NIS 5 779(285.5) 0 833.5(259.8) 0
Qa-SIS 5 754.5(324.5) 0 800(255.8) 0

QPC-SIS 5 755.5(379.5) 0 825(296.3) 0
NQPC-SIS 5 5(0) 0.99 61.5(302.3) 0.435

τ = 0.8 Qa-SIS 5 819.5(255.8) 0 869(241.3) 0
QPC-SIS 5 795(249.3) 0 847(260.3) 0

NQPC-SIS 5 6(9) 0.835 375(576) 0.14
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Example 3. We simulate the response from the following nonlinear model:

Y = 3g1(X1) + 3g2(X2) + 3g3(X3) + 3g4(X4) + 3g5(X5) + ε,

where g1(x) = 1.5x, g2(x) = 2x(2x− 1), g3(x) = sin(2πx)/(2 sin(2πx)), g4(x) = sin(2πx),
g5(x) = ex−0.5. The covariates X = (X1, · · · , Xpn) are simulated from a random-effects model

Xj =
Wj+tU

1+t , j = 1, · · · , pn, where Wjs and U are iid Uni f (0, 1). We consider two cases of t = 1
and t = 2, corresponding to corr(Xj, Xk) = 0.5 and 0.8 for j 6= k, respectively.

Example 4. We consider the same model as that in Example 3, with exception that X2 and X5
are replaced by X2 = cos(2πX6) + ε and X5 = (X1 − 0.5)2 + ε, where ε ∼ N(0, 1) and is
independent of ε, the error in the model in Example 3.

Table 5. Simulation results for Examples 1 to 4 when ρ = 0.9 and τ = 0.5.

n = 200 n = 400

ε ∼ N(0, 1) ε ∼ t(3) ε ∼ N(0, 1) ε ∼ t(3)

Method MMS(RSD) P MMS(RSD) P MMS(RSD) P MMS(RSD) P

Example 1 QPC-SIS 6(2) 0.94 9(64) 0.665 5(2) 1 5(2) 0.985
NQPC-SIS 6(3) 0.88 30.5(174.3) 0.52 5(2) 0.99 6(2) 0.93

Example 2 QPC-SIS 7(2) 0.9 25.5(204.5) 0.525 6(2) 1 7(2) 0.985
NQPC-SIS 8(9.25) 0.825 44.5(178.8) 0.465 6(2) 0.995 7(2) 0.95

Example 3 QPC-SIS 608.5(471.5) 0 687.5(400) 0.005 253(408.3) 0.175 399.5(521) 0.105
NQPC-SIS 341(505.8) 0.09 527.5(496.5) 0.025 19(75) 0.705 69.5(247.8) 0.475

Example 4 QPC-SIS 770.5(311.5) 0 802.5(232.8) 0 752.5(312) 0 784(258.3) 0
NQPC-SIS 301.5(484.3) 0.11 433(554.8) 0.075 11(44) 0.76 38.5(142.8) 0.58

The simulation results of Examples 1–4 are shown in Tables 1–4, respectively. The
results in Table 1 show that when the true relation between the response and covariates
in the model is linear, the SIS, NIS and Qa-SIS methods fail to work. However, when
comparing to those methods, we can see that both QPC-SIS and NQPC-SIS with τ = 0.5
work reasonably well, although the QPC-SIS slightly outperform our NQPC-SIS when
ρ = 0.8. This is expected because the QPC works for the model with linear relationship
between the covariates. A similar observation can be drawn in Table 2 for Example 2,
which is also a linear model, albeit the difference that X5 and Xj, j 6= 5 are independent
in Example 2. The results in Table 3 indicate that when the relationship between Y and
X is nonlinear and the relationship between covariates is linear, our proposed NQPC-SIS
performs best and then followed by QPC-SIS. From Table 4, we can see that when the
relationship between Y and X is nonlinear and there also exists a nonlinear relationship
among X, NQPC-SIS works most satisfactorily and is much better than Qa-SIS and QPC-SIS
in terms of both MMS and selection rate P .

In addition, the simulation results of QPC-SIS and NQPC-SIS for Examples 1–4 with
ρ = 0.9 and τ = 0.5 are reported in Table 5. It can be observed from Table 5 that when
the sample size increases from 200 to 400, the performance of QPC-SIS and NQPC-SIS
are improved by much, although QPC-SIS and NQPC-SIS perform very competitively in
Examples 1 and 2, while NQPC-SIS performs significantly better than QPC-SIS in Examples
3 and 4. These evidences indicate the effectiveness and usefulness of our NQPC-SIS.

As suggested by one anonymous reviewer, we add one more simulation to compare
our NQPC-SIS with the following two approaches: (a) QC-SIS, which is the screening
method based on quantile correlation, but simply ignores the effect of conditional variables
on the response, and (b) RFQPC-SIS, which is a procedure very similarly to our NQPC-SIS,
yet removes the effect of conditional variables through fitting Random Forest models.
We examine the performance of these three approaches under τ = 0.5 and n = 200 for
Examples 1 to 4, where RFQPC-SIS is a variant of the NQPC method and implemented with
randomForest in R package "randomForest". Note that RFQPC-SIS requires 2(p− |A(k)|)
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random forest regressions in the k-th iteration, which is highly computationally intensive.
Here, we evaluate NQPC-SIS, QC-SIS and RFQPC-SIS using effective model size (EMS) and
P , where EMS indicates the average of true variables contained in the first dn = bn/ log(n)c
variables selected from 200 replicate experiments. The results are reported in Table 6,
showing that our NQPC-SIS still performs the best and is followed by RFQPC-SIS. Moreover,
the computational cost of NQPC-SIS is much less than that of RFQPC-SIS.

Table 6. Simulation results for Examples 1 to 4 when n = 200 and τ = 0.5.

ρ = 0.5 ρ = 0.8

ε ∼ N(0, 1) ε ∼ t(3) ε ∼ N(0, 1) ε ∼ t(3)

Method EMS(SD) P EMS(RSD) P EMS(SD) P EMS(SD) P

Example 1 QC-SIS 2.985(0.122) 0 2.925(0.346) 0 2.570(0.969) 0 2.340(1.162) 0
RFQPC-SIS 3.995(0.071) 0.995 3.975(0.157) 0.975 3.675(0.470) 0.675 3.460(0.500) 0.46
NQPC-SIS 4(0) 1 4(0) 1 3.985(0.122) 0.985 3.930(0.256) 0.93

Example 2 QC-SIS 3.565(0.646) 0 3.490(0.657) 0 3.355(1.147) 0 3.255(1.280) 0
RFQPC-SIS 4.745(0.437) 0.745 4.630(0.504) 0.64 4.475(0.609) 0.535 4.215(0.649) 0.335
NQPC-SIS 5(0) 1 5(0) 1 4.960(0.221) 0.965 4.785(0.447) 0.8

Example 3 QC-SIS 2.470(0.862) 0.03 2.575(0.894) 0 1.505(0.567) 0 1.460(0.592) 0
RFQPC-SIS 4.945(0.229) 0.945 4.730(0.788) 0.75 4.275(0.808) 0.465 3.535(0.175) 0.175
NQPC-SIS 4.955(0.208) 0.955 4.785(0.424) 0.79 4.320(0.825) 0.49 3.715(1.109) 0.265

Example 4 QC-SIS 1.775(0.613) 0 1.790(0.720) 0 1.685(0.639) 0 1.690(0.629) 0
RFQPC-SIS 3.045(0.739) 0.02 3.040(0.788) 0.045 2.455(0.616) 0 2.350(0.528) 0
NQPC-SIS 5(0) 1 4.980(0.140) 0.98 4.590(0.731) 0.715 4.205(0.864) 0.465

5.2. An Application to Breast Cancer Data

In this subsection, we apply the proposed NQPC-SIS to breast cancer data with a
high lethality rate, which is reported by [36]. The data consists of 19,672 gene expres-
sion and 2,149 CGH measurements from 89 cancer patient samples, which is available at
https://github.com/bnaras/PMA/blob/master/data/breastdata.rda (accessed on 18 June
2021). Our interest here is to detect the genes that have the most impact on comparative
genomic hybridization (CGH) measurements. A similar purpose was achieved in [25,37].
Following [37], we consider the first principal component of 136 CGH measurements as
the response Y and the remaining 18,672 gene probes as the explanatory variables X. We
implement the two stage procedure for the sake of comparison, where a variable screening
method is implemented in the first stage and a predictive regression model is conducted in
the second stage. To this end, we select dn = bn/ log(n)c variables in the first stage using
one of the screening methods: SIS, NIS, Qa-SIS, QPC-SIS and NQPC-SIS, as mentioned
in the simulation study. In the second stage, we randomly select 80% sample data as the
training set, and the remaining 20% sample as the test set. Then, we apply one machine
learning method, regression tree, to the dimension-reduced data to examine the finite
sample performance on the test set. We use the command M5P in R package "RWeka" for
implementing the regression tree method. We use the mean of absolute prediction error
(MAPE), defined as

MAPE =
1

n(test)

n(test)

∑
i=1

∣∣∣Y(test)
i − Ŷ(test)

i

∣∣∣,
as our evaluation index, where n(test) is the number of observations in the training set and
Ŷ(test)

i is the predicted value of Y at the observation xi in the test set. We repeat the above
procedure 500 times and report the mean and standard deviation of 500 MAPEs in Table 7.
According to the results in Table 7, we can observe that the NQPC-SIS outperforms both the
SIS, NIS and Qa-SIS. Typically, our NQPC-SIS produces the lowest prediction error (MAPE)
among these methods when τ = 0.4, τ = 0.5 and τ = 0.7. Moreover, we also note that the
QPC-SIS performs better than our NQPC-SIS at τ = 0.3 and τ = 0.6, but worse than our
method at other three quantile levels. Qa-SIS performs worst among these methods. This
evidence supports that the proposed NPQC-SIS in this paper works well for this real data.

https://github.com/bnaras/PMA/blob/master/data/breastdata.rda
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Table 7. Prediction results for the real data on the test set, where the standard deviation is given in
the parenthesis.

Method τ = 0.3 τ = 0.4 τ = 0.5 τ = 0.6 τ = 0.7

SIS - - 0.8202(0.1362) - -
NIS - - 0.8254(0.1348) - -

Qa-SIS 0.8318(0.1472) 0.8261(0.1446) 0.8375(0.1448) 0.8612(0.1541) 0.8431(0.1512)
QPC-SIS 0.7269(0.1267) 0.7989(0.1458) 0.8347(0.1471) 0.6495(0.1155) 1.0240(0.1732)

NQPC-SIS 0.7629(0.1356) 0.6488(0.1232) 0.6742(0.1285) 0.8156(0.1643) 0.7802(0.1315)

6. Concluding Remarks

In this paper, we proposed a nonparametric quantile partial correlation-based variable
screening approach (NQPC-SIS), which can be viewed as an extension of the QPC-SIS pro-
posed in [17] from a parametric framework to the nonparametric situation. Our proposed
NQPC-SIS enjoys the sure independence screening property under some mild technical
conditions. Furthermore, an algorithm of NQPC-SIS for implementation is provided for
users. Extensive numerical experiments including simulations and real-world data analysis
are carried out for illustration. The numerical results showed that our NQPC-SIS works
fairly well especially when the relationship between variables is highly nonlinear.
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Appendix A. Technical Proofs

Proof of Proposition 1. First, recalling definitions of uj and u∗j , we can make a simple
algebra decomposition:√

τ(1− τ)[$τ(Y, Xj|XSj)− $∗τ(Y, Xj|XSj)]

= (σj,0σj)
−1(σj − σj,0)E{ψτ(Y−m0

j (XSj))(Xj − g0
j (XSj))}

+σ−1
j E{[ψτ(Y−m0

j (XSj))− ψτ(Y− BT
j α0

j )](Xj − g0
j (XSj))}

−σ−1
j E{ψτ(Y− BT

j α0
j )[g

0
j (XSj)− BT

j θ0
j ]}

, A1 + A2 + A3 (say). (A1)

Due to condition (B1), we can observe

σ2
j − σ2

j,0 = E{(Xj − BT
j θ0

j )
2} − E{(Xj − g0

j (XSj))
2}

= E{(g0
j (XSj)− BT

j θ0
j )

2}+ 2E{(g0
j (XSj)− BT

j θ0
j )(Xj − g0

j (XSj))}

= E{(g0
j (XSj)− BT

j θ0
j )

2},
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where the cross product is zero due to E{Xj − g0
j (XSj)|XSj} = 0 by condition (B1). This,

in conjunction with condition (B1) and the basic inequality that
√

a−
√

b ≤
√

a− b for
a > b > 0, gives

σj − σj,0 ≤
[
E
{

∑
k∈Sj

(g0
jk(Xk)− Bj(Xk)

Tθ0
jk)
}2]1/2 ≤ CgrnL−d

n . (A2)

Using Cauchy–Schwarz inequality, (A2) and the fact that |ψτ(u)| ≤ max(τ, 1− τ) ≤ 1,
we have

|A1| ≤ (σj,0σj)
−1(σj − σj,0)

[
E{|ψτ(Y−m0

j (XSj))|
2}
]1/2[E{|(Xj − g0

j (XSj))|
2}
]1/2

≤ σ−1
j (σj − σj,0) ≤ c−1/2

σ,minCgrnL−d
n . (A3)

For A2, we note that

E{[ψτ(Y−m0
j (XSj))− ψτ(Y− BT

j α0
j )](Xj − g0

j (XSj))} , E{(Xj − g0
j (XSj))A21},

where, by Taylor’s expansion,

A21 = E{[ψτ(Y−m0
j (XSj))− ψτ(Y− BT

j α0
j )]|Xj, XSj}

= − fY|(Xj ,XSj
)(y
∗)(m0

j (XSj)− BT
j α0

j ),

where y∗ is a number between m0
j (XSj) and BT

j α0
j . Hence, by condition (B1)–(B3) and

Cauchy–Schwarz inequality, we can obtain

|A2| ≤ σ−1
j E{|Xj − g0

j (XSj)| · |A21|}

≤ σ−1
j c̄ f E{|m0

j (XSj)− BT
j α0

j | · |Xj − g0
j (XSj)|}

≤ σ−1
j c̄ f {E[|m0

j (XSj)− BT
j α0

j |
2]}1/2{E[|Xj − g0

j (XSj)|
2]}1/2

≤ σ−1
j σj,0 c̄ f CmrnL−d

n ≤ c−1/2
σ,min c̃1/2

σ,max c̄ f CmrnL−d
n (A4)

for some constant c̄ f > 0.
For A3, by a similar argument, we can obtain

|A3| ≤ σ−1
j E{|ψτ(Y− BT

j α0
j )| · |g

0
j (XSj)− BT

j θ0
j |}

≤ σ−1
j {E[|ψτ(Y− BT

j α0
j )|

2]}1/2{E[|g0
j (XSj)− BT

j θ0
j |

2]}1/2

≤ σ−1
j CgrnL−d

n ≤ c−1/2
σ,minCgrnL−d

n . (A5)

Therefore, combining (A1) and the results in (A3)–(A5), we have

|$τ(Y, Xj|XSj)− $∗τ(Y, Xj|XSj)|

≤ [τ(1− τ)]−1/2c−1/2
σ,min(2Cg + c̃1/2

σ,max c̄ f Cm)rnL−d
n .

Using the basic inequality that |a| − |b| ≤
∣∣|a| − |b|∣∣ ≤ |a− b|, we can immediately

conclude

uj − u∗j ≤ M1∗rnL−d
n ,

where M1∗ = [τ(1− τ)]−1/2c−1/2
σ,min(2Cg + c̃1/2

σ,max c̄ f Cm). Thus, we complete the proof.
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Proof of Lemma 1. Without loss of generality, suppose that Sj = {1, 2, . . . , s}. Then, Bj =

(B(X1)
T , · · · , B(Xs)T)T . Let ‖a‖ = 1, where a = (aT

1 , . . . , aT
s )

T with ak ∈ RLn . On one
hand, since (∑n

i=1 xi)
2 ≤ n ∑n

i=1 x2
i by Cauchy–Schwarz inequality, we have

aTE{BjBT
j }a = E

{[ s

∑
k=1

aT
k B(Xk)

]2}
≤ s

s

∑
k=1

aT
k E
{

B(Xk)B(Xk)
T}ak.

This together with the right hand side of (9) implies that

λmax(E{BjBT
j }) ≤ sλmax(E{B(Xk)B(Xk)

T}) ≤ C2sL−1
n . (A6)

On the other hand, an application of Lemma S.1 of [38] leads to

aTE{BjBT
j }a = E

{[ s

∑
k=1

aT
k B(Xk)

]2}
≥

(1− δ0

2

)s−1
[ s

∑
k=1

√
E{aT

k B(Xk)B(Xk)Tak}
]2

≥
(1− δ0

2

)s−1
λmin(E{B(Xk)B(Xk)

T})
[ s

∑
k=1
‖ak‖

]2

,

where δ0 = (1− b2
1 f b−2

2 f ζ)1/2 for some positive constant ζ > 0 and the last line uses the

fact that aTAa ≥ λmin(A) for any ‖a‖ = 1. It follows from the result on the left hand side
of (9) that

aTE{BjBT
j }a ≥

(1− δ0

2

)s−1
C1L−1

n

[ s

∑
k=1
‖ak‖

]2

≥
(1− δ0

2

)s−1
C1L−1

n ,

where the second inequality stems from (∑n
i=1 |xi|)2 ≥ ∑n

i=1 x2
i and ‖a‖ = 1. This in turns

implies that

λmin(E{BjBT
j }) ≥

(1− δ0

2

)s−1
C1L−1

n . (A7)

Hence, combining (A6) and (A7) completes the proof of Lemma 1.

Lemma A1. Suppose that condition (C3) holds, then, for all r ≥ 2,

E(|Xj|r|X−j) ≤ K1Kr
2r!

holds uniformly in j.

Lemma A1 is the same as Lemma 1 of [11]. From this, it is easily seen that E{|Xj|2|X−j}
is finite and bounded by 2K1K2

2.

Lemma A2 (Bernstein’s inequality, Lemma 2.2.11, [39]). For independent random variables
Y1, . . . , Yn with mean zero and E{|Yi|r} ≤ r!Kr−2vi/2 for every r ≥ 2, i = 1, . . . , n and some
constants K, vi. Then, for x > 0, we have

P(|Y1 + · · ·+ Yn| > x) ≤ 2 exp
(
− x2

2(v + Kx)

)
,

for v ≥ ∑n
i=1 vi.



Mathematics 2022, 10, 4638 17 of 32

Lemma A3. (Bernstein’s inequality, Lemma 2.2.9, [39]) For independent random variables Y1, . . . , Yn
with mean zero and bounded range [−M, M], then

P(|Y1 + · · ·+ Yn| > x) ≤ 2 exp
(
− x2

2(v + Mx/3)

)
,

for v ≥ var(Yi + · · ·+ Yn).

Lemma A4 (Symmetrization, Lemma 2.3.1, [39]). Let Z1, . . . , Zn be independent random
variables with values in Z and F is a class of real valued functions on Z . Then,

E
{

sup
f∈F
|(Pn − P) f (Z)|

}
≤ 2E

{
sup
f∈F
|Pnε f (Z)|

}
,

where ε1, . . . , εn is a Rademacher sequence (i.e., independent and identically distributed sequence
taking values ±1 with probability 1

2 ) independent of Z1, . . . , Zn, and P f (Z) = E f (Z) and
Pn f (Z) = n−1 ∑n

i=1 f (Zi).

Lemma A5 (Contraction theorem, [40]). Let z1, . . . , zn be nonrandom elements of some space Z
and let F be a class of real valued functions on Z . Denote by ε1, . . . , εn a Rademacher sequence.
Consider Lipschitz functions gi : R 7→ R, that is

|gi(s1)− gi(s2)| ≤ |s1 − s2|, ∀s1, s2 ∈ R.

Then, for any function f1 : Z 7→ R, we have

E
{

sup
f∈F
|Pnε(g( f )− g( f1))|

}
≤ 2E

{
sup
f∈F
|Pnε( f − f1)|

}
.

Lemma A6 (Concentration theorem, [41]). Let Z1, . . . , Zn be independent random variables with
values in Z and let g ∈ G, a class of real valued functions on Z . We assume that for some positive
constants li, g and ui,g, li,g ≤ g(Zi) ≤ ui,g∀g ∈ G. Define D2 = supg∈G ∑n

i=1(ui,g − li,g)2/n,
and U = supg∈G

∣∣(Pn − P)g(Z)
∣∣, then for any t > 0,

P(U ≥ EU + t) ≤ exp
(
− nt2

2D2

)
.

Next, we need several lemmas to establish the consistency inequalities for θ̂j and
α̂j. Write Dnj = 1

n ∑n
i=1 BijBT

ij , Dj = E{BijBT
ij} = E{BjBT

j }, Enj = 1
n ∑n

i=1 BijXij and

Ej = E{BijXij} = E{BjXj}. Thus θ̂j = D−1
nj Enj and θ0

j = D−1
j Ej.

Lemma A7. Under conditions (C1) and (C2),

(i) there exists a constant C3 such that for any δ > 0,

P
(∣∣λmin(Dnj)− λmin(Dj)

∣∣ ≥ rnLnδ/n
)
≤ 2(rnLn)

2 exp
(
− δ2

2(C3L−1
n n + 2δ/3)

)
,

P
(∣∣λmax(Dnj −Dj)

∣∣ ≥ rnLnδ/n
)
≤ 2(rnLn)

2 exp
(
− δ2

2(C3L−1
n n + 2δ/3)

)
,

(ii) for some positive constant c1, there exists some positive constant c2 such that

P
(∣∣λmin(Dnj)

∣∣ ≥ (1 + c1)λmin(Dj)
)
≤ 2(rnLn)

2 exp
(
− c2a2rn

0 r−2
n L−3

n n
)
,

where a0 = (1− δ0)/2 and δ0 is defined in Lemma 1; and
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(iii) in addition, for any given constant c2, there exists some positive constant c3 such that

P
(
‖D−1

nj ‖ ≥ (1 + c3)‖D−1
j ‖

)
≤ 2(rnLn)

2 exp
(
− c2a2rn

0 r−2
n L−3

n n
)
.

Proof of Lemma A7. First, consider the proof of part (i). Denote Q(k,l)
ij,s,t = Bs(Xik)Bt(Xil)−

E{Bs(Xik)Bt(Xil)} with k, l ∈ Sj and s, t = 1, . . . , Ln. Recalling that ‖Bt‖∞ ≤ 1, we have

|Q(k,l)
ij,s,t| ≤ 2 and var{Q(k,l)

ij,s,t} ≤ E{B2
s (Xik)B2

t (Xil)} ≤ E{B2
s (Xik)} ≤ C3L−1

n by the inequality
(10). By Lemma A3, we have for any δ > 0,

P
(∣∣∣n−1

n

∑
i=1

Q(k,l)
ij,s,t

∣∣∣ > δ

n

)
≤ 2 exp

(
− δ2

2(C3L−1
n n + 2δ/3)

)
. (A8)

Let Qnj = Dnj −Dj. It follows from Lemma 5 of [7] that |λmin(Dnj)− λmin(Dj)| ≤
max{|λmin(Qnj)|, |λmin(−Qnj)|}. Besides, it is easy to derive that for any |Sj|Ln × 1 vector
‖a‖ = 1, |aTQnja| ≤ Ln|Sj| · ‖Qnj‖∞, which implies that

|λmin(Qnj)| ≤ Ln|Sj| · ‖Qnj‖∞, and |λmax(Qnj)| ≤ Ln|Sj| · ‖Qnj‖∞. (A9)

This in conjunction with (A8) and the union bound of probability yields that

P
(∣∣λmin(Dnj)− λmin(Dj)

∣∣ ≥ rnLnδ/n
)

≤ P
(
‖Qnj‖∞ ≥ δ/n

)
≤ 2(rnLn)

2 exp
(
− δ2

2(C3L−1
n n + 2δ/3)

)
(A10)

and

P
(∣∣λmax(Dnj −Dj)

∣∣ ≥ rnLnδ/n
)
≤ 2(rnLn)

2 exp
(
− δ2

2(C3L−1
n n + 2δ/3)

)
. (A11)

Next, consider the proof of part (ii). Let c∗1 = 2c1C1/(1 − δ0), where c1 ∈ (0, 1).
Employing the result (A10) and taking δ = c∗1 arn

0 r−1
n L−2

n n, we have

P
(∣∣λmin(Dnj)− λmin(Dj)

∣∣ ≥ c1λmin(Dj)
)

≤ P
(∣∣λmin(Dnj)− λmin(Dj)

∣∣ ≥ c∗1 arn
0 L−1

n
)

≤ 2(rnLn)
2 exp

(
−

c∗1
2a2rn

0 r−2
n L−4

n n2

2(C3L−1
n n + 2c∗1 arn

0 r−1
n L−2

n n/3)

)
≤ 2(rnLn)

2 exp
(
− c2a2rn

0 r−2
n L−3

n n
)

(A12)

for some positive constant c2. This implies the part (ii).
Last, consider the proof of part (iii). Let A = λmin(Dnj) and B = λmin(Dj). Obvi-

ously, we know that A, B > 0. Using the same arguments as in [7], we can show that
for a ∈ (0, 1), |A−1 − B−1| ≥ cB−1 implies |A − B| ≥ aB, where c = 1

1−a − 1. Thus,
|λ−1

min(Dnj) − λ−1
min(Dj)| ≥ (1/(1 − c1) − 1)λ−1

min(Dj) implies |λmin(Dnj) − λmin(Dj)| ≥
c1λmin(Dj). Hence, using the fact that λ−1

min(A) = λmax(A−1) = ‖A−1‖ for any real sym-
metric invertible matrix A, we have

P
(∣∣‖D−1

nj )‖
∣∣ ≥ (1 + c3)‖D−1

j ‖
)

≤ P
(∣∣‖D−1

nj )‖ − ‖D
−1
j ‖

∣∣ ≥ c3‖D−1
j ‖

)
≤ P

(∣∣λmin(Dnj)− λmin(Dj)
∣∣ ≥ c1λmin(Dj)

)
≤ 2(rnLn)

2 exp
(
− c2a2rn

0 r−2
n L−3

n n
)
, (A13)

where c3 = 1/(1− c1)− 1. This completes the proof.
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Lemma A8. Under conditions (C1)–(C3), for every 1 ≤ j ≤ p and for any given positive constant
c∗1 , there exist some positive constants c∗2 such that

P(‖θ̂j − θ0
j ‖ ≥ c∗1 a−rn

0 r1/2
n Ln) ≤ [8(rnLn)

2 + 4rnLn] exp
(
− c∗2 a2rn

0 r−2
n L−3

n n
)
.

Proof of Lemma A8. By the definitions of θ̂j and θ0
j and a simple algebra operation, we have

θ̂j − θ0
j = (D−1

nj −D−1
j )Enj + D−1

j (Enj − Ej) , In1 + In2 (say). (A14)

In the following, we need to find the exponential tail probabilities for In1 and In2,
respectively.

We first deal with the first term In1. Since D−1
nj −D−1

j = D−1
nj (Dj −Dnj)D−1

j , we have

‖In1‖2 = ET
njD

−1
j (Dj −Dnj)D−1

nj D−1
nj (Dj −Dnj)D−1

j Enj

≤ ‖D−1
j ‖

2‖D−1
nj ‖

2‖Dnj −Dj‖2‖Enj‖2.

Thus, it follows from the triangle inequality and Lemma 1 that

‖In1‖ ≤ λ−1
min(Dj)‖D−1

nj ‖ ·
∣∣λmax(Dnj −Dj)

∣∣ · ‖Enj‖

≤ C−1
1 a

−|Sj |+1
0 Ln‖D−1

nj ‖ ·
∣∣λmax(Dnj −Dj)

∣∣ · ‖Ej‖

+C−1
1 a

−|Sj |+1
0 Ln‖D−1

nj ‖ ·
∣∣λmax(Dnj −Dj)

∣∣ · ‖Enj − Ej‖

, I(1)n1 + I(2)n1 (say).

For I(1)n1 , it follows that

‖Ej‖2 = ∑
k∈Sj

Ln

∑
l=1

[
E{Bl(Xik)Xij}

]2 ≤ ∑
k∈Sj

Ln

∑
l=1

E
[
B2

l (Xik)X2
ij
]

≤ ∑
k∈Sj

Ln

∑
l=1

E
[
B2

l (Xik)E{X2
ij|X−j}

]
≤ 2K1K2

2C3rn = C4rn,

where C4 = 2K1K2
2C3 and the last inequality holds by applying Lemma A1 and the result

in (10). Using the above result, we have

I(1)n1 ≤ C−1
1 C1/2

4 a−rn+1
0 r1/2

n Ln‖D−1
nj ‖ ·

∣∣λmax(Dnj −Dj)
∣∣.

Let C5 = (1 + c3)a2
0C−2

1 C1/2
4 , then for any δ > 0, we have

P(|I(1)n1 | ≥ C5a−2rn
0 r3/2

n L3
nδ/n) ≤ P

(
‖D−1

nj ‖ ≥ (1 + c3)‖D−1
j ‖

)
+P
(∣∣λmax(Dnj −Dj)

∣∣ ≥ rnLnδ/n
)
.

Therefore, by Lemma A7, it follows that

P
(
|I(1)n1 | ≥ C5a−2rn

0 r3/2
n L3

nδ/n
)

≤ 2(rnLn)
2 exp

(
− c2a2rn

0 r−2
n L−3

n n
)
+ 2(rnLn)

2 exp
(
− δ2

2(C3L−1
n n + 2δ/3)

)
. (A15)



Mathematics 2022, 10, 4638 20 of 32

For I(2)n1 , note that Enj− Ej =
1
n ∑n

i=1
[
BijXij−E{BijXij}

]
is an |Sj|Ln× 1 vector, whose

((k − 1)Ln + 1)th component is 1
n ∑n

i=1
[
Bl(Xik)Xij − E{Bl(Xik)Xij}

]
, where k ∈ Sj and

l = 1, . . . , Ln. Let Zikl j = Bl(Xik)Xij − E{Bl(Xik)Xij}. Then, for every r ≥ 2, we have

E{
∣∣Zikl j

∣∣r} ≤ 2rE{
∣∣Bl(Xik)Xij

∣∣r} ≤ 2rE{B2
l (Xik)|Xij|r}

≤ 2rE{B2
l (Xik)E(|Xij|r|X−j)} ≤ 2rK1Kr

2r!C3L−1
n

= r!(2K2)
r−28K1K2

2C3L−1
n /2,

where we have used the Cr inequality that |x + y|r ≤ 2r−1(|x|r + |y|r) for r ≥ 2, the fact
that ‖Bl‖∞ ≤ 1 as well as Lemma A1. It follows from Lemma A2 that for any δ > 0,

P
(∣∣∣ 1

n

n

∑
i=1

Zikl j

∣∣∣ ≥ δ

n

)
≤ 2 exp

(
− δ2

c4L−1
n n + c5δ

)
, (A16)

where c4 = 16K1K2
2C3 and c5 = 4K2. Employing the union bound of probability and the

inequality (A16), we further have

P
(∥∥Enj − Ej

∥∥ ≥ r1/2
n L1/2

n δ/n
)
≤ 2rnLn exp

(
− δ2

c4L−1
n n + c5δ

)
. (A17)

Let C6 = (1 + c3)C−2
1 a2

0. Similar to the derivation of (A15) and by Lemma 1 and
Lemma A7 and (A17), we obtain

P
(
|I(2)n1 | ≥ C6a−2rn

0 r3/2
n L7/2

n δ2/n2)
≤ P

(
‖D−1

nj ‖ ·
∣∣λmax(Dnj −Dj)

∣∣ ≥ C6C1a−rn−1
0 rnL2

nδ/n
)

+P
(
‖Enj − Ej‖ ≥ r1/2

n L1/2
n δ/n

)
≤ P

(
‖D−1

nj ‖ ≥ (1 + c3)‖D−1
j ‖

)
+ P

(∣∣λmax(Dnj −Dj)
∣∣ > rnLnδ/n

)
+P
(
‖Enj − Ej‖ ≥ r1/2

n L1/2
n δ/n

)
≤ 2(rnLn)

2 exp
(
− c2a2rn

0 r−2
n L−3

n n
)
+ 2(rnLn)

2 exp
(
− δ2

2(C3L−1
n n + 2δ/3)

)
+2rnLn exp

(
− δ2

c4L−1
n n + c5δ

)
(A18)

Hence, combining (A15) and (A18) gives

P
(
‖In1‖ ≥ C5a−2rn

0 r3/2
n L3

nδ/n + C6a−2rn
0 r3/2

n L7/2
n δ2/n2)

≤ P
(
|I(1)n1 | ≥ C5a−2rn

0 r3/2
n L3

nδ/n
)
+ P

(
|I(2)n1 | ≥ C6a−2rn

0 r3/2
n L7/2

n δ2/n2)
≤ 4(rnLn)

2 exp
(
− c2a2rn

0 r−2
n L−3

n n
)
+ 4(rnLn)

2 exp
(
− δ2

2(C3L−1
n n + 2δ/3)

)
+2rnLn exp

(
− δ2

c4L−1
n n + c5δ

)
≤ 2[2(rnLn)

2 + rnLn] exp
(
− δ2

c6L−1
n n + c7δ

)
+4(rnLn)

2 exp
(
− c2a2rn

0 r−2
n L−3

n n
)
, (A19)

where c6 = max(2C3, c4) and c7 = max(c5, 4/3).
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Next, we deal with the second term In2. Since ‖In2‖2 = (Enj − Ej)
TD−1

j D−1
j (Enj −

Ej) ≤ ‖D−1
j ‖

2‖Enj−Ej‖2, we have ‖In2‖ ≤ λ−1
min(Dj)‖Enj−Ej‖ ≤ C−1

1 a−rn+1
0 Ln‖Enj−Ej‖

by Lemma 1. Then, it follows from (A17) that

P
(
‖In2‖ ≥ C−1

1 a−rn+1
0 r1/2

n L3/2
n δ/n

)
≤ P

(∥∥Enj − Ej
∥∥ ≥ r1/2

n L1/2
n δ/n

)
≤ 2rnLn exp

(
− δ2

c4L−1
n n + c5δ

)
. (A20)

Putting (A14), (A19) and (A20) together, we find that

P
(
‖θ̂j − θ0

j ‖ ≥ C5a−2rn
0 r3/2

n L3
nδ/n + C6a−2rn

0 r3/2
n L7/2

n δ2/n2 + C−1
1 a−rn+1

0 r1/2
n L3/2

n δ/n
)

≤ P
(
‖In1‖ ≥ C5a−2rn

0 r3/2
n L3

nδ/n + C6a−2rn
0 r3/2

n L7/2
n δ2/n2)

+P
(
‖In2‖ ≥ C−1

1 a−rn+1
0 r1/2

n L3/2
n δ/n

)
≤ 4[(rnLn)

2 + rnLn] exp
(
− δ2

c6L−1
n n + c7δ

)
+4(rnLn)

2 exp
(
− c2a2rn

0 r−2
n L−3

n n
)
, (A21)

Using (A21) with δ = arn
0 r−1

n L−2
n n, we have

P(‖θ̂j − θ0
j ‖ ≥ c∗1 a−rn

0 r1/2
n Ln) ≤ [8(rnLn)

2 + 4rnLn] exp
(
− c∗2 a2rn

0 r−2
n L−3

n n
)

for some positive constant c∗2 and sufficiently large n, where c∗1 = C5 + C6 + C−1
1 a0. Hence,

the desired result follows.

Lemma A9. Under conditions (C1)–(C5), for any given constant C > 0 and for every 1 ≤ j ≤ p,
there exist some positive constants c9 and c11 such that

P(‖α̂j − α0
j ‖ ≥ C(rnLn)

1/2n−κ) ≤ 2 exp
(
− c9a2rn

0 r2
nn1−4κ

)
+ exp

(
− c11a2rn

0 L−2
n n1−2κ

)
.

Proof of Lemma A9. Write Wn(αj) = 1
n ∑n

i=1{ρτ(Yi − BT
ijαj) − ρτ(Yi)} and

W(αj) = E{ρτ(Y− BT
j αj)− ρτ(Y)}. By Lemma A.2 of [13], we have, for any ε > 0,

P
(
‖α̂j − α0

j ‖ ≥ ε
)

≤ P
(

sup
‖αj−α0

j ‖≤ε

∣∣Wn(αj)−W(αj)
∣∣ ≥ 1

2
inf

‖αj−α0
j ‖=ε

W(αj)−W(α0
j )
)

(A22)

Taking ε = C(rnLn)1/2n−κ in (A22), where C is any given positive constant, we first
show that there exists some positive constant c8 such that

inf
‖αj−α0

j ‖=C(rn Ln)1/2n−κ
W(αj)−W(α0

j ) ≥ c8arn
0 rnn−2κ . (A23)

To this end, let αj = α0
j + C(rnLn)1/2n−κu with ‖u‖ = 1. Invoking the Knight’s

identity ([42], p121), i.e., ρτ(u− v)− ρτ(u) = −v[τ − I(u < 0)] +
∫ v

0 [I(u ≤ s)− I(u ≤
0)]ds, we have

W(αj)−W(α0
j ) = E

{ ∫ C(rn Ln)1/2n−κBT
j u

0
I(0 < Y− BT

j α0
j ≤ s)ds

}
, (A24)
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where we have used the result that E{Bjψτ(Y− BT
j α0

j )} = 0 by the definition of α0
j . Note

that the right hand side of (A24) equals

E
{ ∫ C(rn Ln)1/2n−κBT

j u

0
E
{

I(0 < Y− BT
j α0

j ≤ s)
∣∣X}ds

}
= E

{ ∫ C(rn Ln)1/2n−κBT
j u

0
fY|X(y

∗)sds
}

,

for y∗ between BT
j α0

j and BT
j α0

j + s. By condition (C4), it follows that

W(αj)−W(α0
j ) ≥

1
2

c3 f C2rnLnn−2κE
{
(BT

j u)2}
≥ 1

2
c3 f C2rnLnn−2κλmin(E{BjBT

j })

≥ 1
2

c3 f C2C1arn−1
0 rnn−2κ = c8arn

0 rnn−2κ ,

where c8 = 1
2 c3 f C2C1a−1

0 and a0 = (1− δ0)/2. This proves (A23). Hence, by (A22), it
reduces to derive that

P
(
‖α̂j − α0

j ‖ ≥ C(rnLn)
1/2n−κ

)
≤ P

(
sup

‖αj−α0
j ‖≤C(rn Ln)1/2n−κ

∣∣Wn(αj)−W(αj)
∣∣ ≥ 1

2
c8arn

0 rnn−2κ
)

≤ P
(

sup
‖αj−α0

j ‖≤C(rn Ln)1/2n−κ

∣∣{Wn(αj)−Wn(α
0
j )} − {W(αj)−W(α0

j )}
∣∣ ≥ 1

4
c8arn

0 rnn−2κ
)

+P
(∣∣Wn(α

0
j )−W(α0

j )
∣∣ ≥ 1

4
c8arn

0 rnn−2κ
)

, Jn1 + Jn2. (A25)

In what follows, we first consider Jn2. Let Uij = [ρτ(Yi − BT
ijα

0
j )− ρτ(Yi)]− E[ρτ(Y−

BT
j α0

j ) − ρτ(Y)] and then Wn(α0
j ) −W(α0

j ) = 1
n ∑n

i=1 Uij. Note that using the Knight’s
identity, we have |ρτ(u− v)− ρτ(u)| ≤ |v|max{τ − 1, τ} ≤ |v|. So, by using condition
(C5), it follows that∣∣Uij

∣∣ ≤ 2
∣∣ρτ(Yi − BT

ijα
0
j )− ρτ(Yi)

∣∣ ≤ 2 sup
i,j

∣∣BT
ijα

0
j
∣∣ ≤ 2M1,

and

var(Uij) ≤ E
{
[ρτ(Yi − BT

ijα
0
j )− ρτ(Yi)]

2} ≤ E
{

sup
i,j

∣∣BT
ijα

0
j
∣∣2} ≤ M2

1.

According to Lemma A3, we have

Jn2 = P
(∣∣∣ 1

n

n

∑
i=1

Uij

∣∣∣ ≥ 1
4

c8arn
0 rnn−2κ

)
≤ 2 exp

(
−

16−1c2
8a2rn

0 r2
nn2−4κ

2(nM2
1 + M1c8arn

0 rnn1−2κ/6)

)
≤ 2 exp

(
− c9a2rn

0 r2
nn1−4κ

)
(A26)

for some positive constant c9, provided arn
0 rnn−2κ = o(1).
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Next, we consider Jn1. Define Vij(αj) = ρτ(Yi − BT
ijαj) − ρτ(Yi − BT

ijα
0
j ) and so

Wn(αj)−Wn(α0
j ) =

1
n ∑n

i=1 Vij(αj). This leads to

Jn1 = P
(

sup
‖αj−α0

j ‖≤C(rn Ln)1/2n−κ

∣∣∣ 1
n

n

∑
i=1

[
Vij(αj)− E{Vij(αj)}

]∣∣∣ ≥ 1
4

c8arn
0 rnn−2κ

)
. (A27)

Again, using the Knight’s identity, we obtain

|Vij(αj)| ≤
∣∣BT

ij(αj − α0
j )[I(Yi − BT

ijα
0
j < 0)− τ]

∣∣
+
∣∣∣ ∫ BT

ij(αj−α0
j )

0
{I(Yi − BT

ijα
0
j ≤ s)− I(Yi − BT

ijα
0
j ≤ 0)}ds

∣∣∣
≤ 2

∣∣BT
ij(αj − α0

j )
∣∣ ≤ 2(|Sj|Ln)

1/2‖αj − α0
j ‖,

where the last line is because ‖Bk‖∞ ≤ 1. Thus, it follows that

sup
‖αj−α0

j ‖≤C(rn Ln)1/2n−κ

∣∣Vij(αj)
∣∣ ≤ 2(|Sj|Ln)

1/2
{

sup
‖αj−α0

j ‖≤C(rn Ln)1/2n−κ

‖αj − α0
j ‖
}

≤ 2CrnLnn−κ . (A28)

Let ε1, . . . , εn be a Rademacher sequence independent of Vij(αj). By Lemmas A4 and A5,
we have

E
{

sup
‖αj−α0

j ‖≤C(rn Ln)1/2n−κ

∣∣∣ 1
n

n

∑
i=1

[Vij(αj)− E{Vij(αj)}]
∣∣∣}

≤ 2E
{

sup
‖αj−α0

j ‖≤C(rn Ln)1/2n−κ

∣∣∣ 1
n

n

∑
i=1

εiVij(αj)
∣∣∣}

= 2E
{

sup
‖αj−α0

j ‖≤C(rn Ln)1/2n−κ

∣∣∣ 1
n

n

∑
i=1

εi[ρτ(Yi − BT
ijαj)− ρτ(Yi − BT

ijα
0
j )]
∣∣∣}

≤ 4E
{

sup
‖αj−α0

j ‖≤C(rn Ln)1/2n−κ

∣∣∣ 1
n

n

∑
i=1

εiBT
ij(αj − α0

j )
∣∣∣}

≤ 4C(rnLn)
1/2n−κE

{∥∥∥ 1
n

n

∑
i=1

εiBij

∥∥∥}
≤ 4C(rnLn)

1/2n−κ
{

E
∥∥∥ 1

n

n

∑
i=1

εiBij

∥∥∥2}1/2

= 4C(rnLn)
1/2n−κ

{
n−2 ∑

k∈Sj

Ln

∑
l=1

n

∑
i=1

E[ε2
i B2

l (Xik)]
}1/2

≤ c10rnL1/2
n n−

1
2−κ ,

where c10 = 4CC1/2
3 and we have used (10) in the last line. With the above arguments, we

can apply Lemma A6 to derive Jn2 in equation (A27). Set

U = sup
‖αj−α0

j ‖≤C(rn Ln)1/2n−κ

∣∣ 1
n

n

∑
i=1

[
Vij(αj)− E{Vij(αj)}

]∣∣.
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Taking t = 1
4 c8arn

0 rnn−2κ − c10rnL1/2
n n−

1
2−κ in Lemma A6, we have

Jn2 = P
(

U ≥ 1
4

c8arn
0 rnn−2κ

)
= P

(
U ≥ E{U}+ (

1
4

c8arn
0 rnn−2κ − E{U})

)
≤ P

(
U ≥ E{U}+ (

1
4

c8arn
0 rnn−2κ − c10rnL1/2

n n−
1
2−κ)

)
≤ exp

(
−

n( 1
4 c8arn

0 rnn−2κ − c10rnL1/2
n n−

1
2−κ)2

2(2CrnLnn−κ)2

)
≤ exp

(
− c11a2rn

0 L−2
n n1−2κ

)
(A29)

foe some positive constant c11, provided a−2rn
0 Ln/n1−2κ = o(1). Plugging (A26) and (A29)

into (A25) gives the desired result.

Lemma A10. Under conditions (C1)–(C5), for every 1 ≤ j ≤ p and for any given constant c∗5 ,
there exist some positive constants c∗6 and c∗7 such that

P
(∣∣∣ 1

n

n

∑
i=1

ψτ(Yi − BT
ij α̂j)(Xij − BT

ij θ̂j)− E{ψτ(Yi − BT
ijα

0
j )(Xij − BT

ijθ
0
j )}
∣∣∣ ≥ c∗5rnn−κ

)
≤ 7 exp

(
− c∗6 a2rn

0 r2
nn1−4κ

)
+ [8(rnLn)

2 + 4rnLn] exp
(
− c∗7 a2rn

0 r−2
n L−3

n n
)
.

Proof of Lemma A10. Since E{Bijψτ(Yi − BT
ijθ

0
j )} = 0 by definition, so

E{ψτ(Yi − BT
ijθ

0
j )(Xij − BT

ijθ
0
j )} = E{ψτ(Yi − BT

ijθ
0
j )Xij}. A simple decomposition gives

n−1
n

∑
i=1

ψτ(Yi − BT
ij α̂j)(Xij − BT

ij θ̂j)− E{ψτ(Yi − BT
j α0

j )Xij}

= n−1
n

∑
i=1

[ψτ(Yi − BT
ijα

0
j )Xij − E{ψτ(Y− BT

j α0
j )Xj}]

+n−1
n

∑
i=1
{ψτ(Yi − BT

ij α̂j)− ψτ(Yi − BT
ijα

0
j )}Xij − n−1

n

∑
i=1

ψτ(Yi − BT
ij α̂j)BT

ij θ̂j

, ∆n1j + ∆n2j + ∆n3j. (A30)

The rest is to find exponential bounds for the tail probabilities of ∆n1j, ∆n2j and ∆n3j,
respectively.

For ∆n1j, since |ψτ(u)| ≤ max(τ, 1− τ) ≤ 1, so it follows from the Cr inequality and
Lemma A1 that for each r ≥ 2,

E
{∣∣ψτ(Yi − BT

ijα
0
j )Xij − E{ψτ(Y− BT

j α0
j )Xj}

∣∣r}
≤ 2rE

{∣∣ψτ(Yi − BT
ijα

0
j )Xij

∣∣r} ≤ 2rE
{
|Xij|r

}
= 2rE

{
E(|Xij|r|X−j)

}
≤ 2rK1Kr

2r! = r!(2K2)
r−28K1K2

2/2.

Invoking Lemma A2, for any δ > 0, we have

P
(
|∆n1j| ≥ δ/n

)
≤ 2 exp

(
− δ2

c12n + c13δ

)
, (A31)

where c12 = 16K1K2
2 and c13 = 4K2.

For ∆n2j, note that for each r ≥ 2,

P
(
|∆n2j| ≥ δ/n

)
≤ P

(
|∆n2j| ≥ δ/n, ‖α̂j − α0

j ‖ < C(rnLn)
1/2n−κ

)
+P
(
‖α̂j − α0

j ‖ ≥ C(rnLn)
1/2n−κ

)
, Hn1j + Hn2j, (A32)



Mathematics 2022, 10, 4638 25 of 32

where a direct application of Lemma A9 yields Hn2j ≤ 2 exp
(
− c9a2rn

0 r2
nn1−4κ

)
+

exp
(
− c11a2rn

0 L−2
n n1−2κ

)
. Let α̂j = α0

j + C(rnLn)1/2n−κu with ‖u‖ ≤ 1. Denote

Πij = sup
‖u‖≤1

|{ψτ(Yi − BT
ijα

0
j − C(rnLn)

1/2n−κBT
iju)− ψτ(Yi − BT

ijα
0
j )}Xij|.

Then,

Hn1j ≤ P
(∣∣∣n−1

n

∑
i=1

Πij

∣∣∣ ≥ δ

n

)
. (A33)

Furthermore, there exists a u∗ = ({u∗k
T , k ∈ Sj})T with ‖u∗‖ ≤ 1 and u∗k ∈ RLn such that

E{Πij} = E{|{ψτ(Yi − BT
ijα

0
j − C(rnLn)

1/2n−κBT
iju
∗)− ψτ(Yi − BT

ijα
0
j )}Xij|}

≤ E
{∣∣∣ ∫ BT

ij α
0
j +C(rn Ln)1/2n−κBT

ij u
∗

BT
ij α

0
j

fY|X(y)dy
∣∣∣|Xij|

}
≤ c4 f C(rnLn)

1/2n−κE
{∣∣BT

iju
∗∣∣|Xij|

}
≤ c4 f C(rnLn)

1/2n−κ

√
E
{∣∣BT

iju
∗
∣∣2}E{|Xij|2}

≤ c14rnn−κ

for some positive constant c14, where we have used condition (C4) in the third line, Cauchy–
Schwarz inequality in the fourth line, Lemmas 1 and A1 in the last line. Analogously to
(A31), we have for each r ≥ 2,

E{|Πij − E(Πij)|r} ≤ 2rE{|Πij|r} ≤ 2rE{2r|Xij|r} ≤ r!(4K2)
r−232K2

2K1/2

and it follows from Lemma A2 that for any δ > 0,

P
(∣∣∣ 1

n

n

∑
i=1
{Πi − E(Πij)}

∣∣∣ ≥ δ

n

)
≤ 2 exp

(
− δ2

c15n + c16δ

)
, (A34)

where c15 = 64K1K2
2 and c16 = 8K2. Setting δ = c14rnn1−κ in (A34), we obtain

P
(∣∣∣ 1

n

n

∑
i=1

Πi

∣∣∣ ≥ 2c14rnn−κ
)

≤ P
(∣∣∣ 1

n

n

∑
i=1
{Πi − E(Πij)}

∣∣∣ ≥ 2c14rnn−κ − E(Πij)
)

≤ P
(∣∣∣ 1

n

n

∑
i=1
{Πi − E(Πij)}

∣∣∣ ≥ c14rnn−κ
)

≤ 2 exp
(
− c17r2

nn1−2κ
)
. (A35)

As r2
nn1−2κ/(a2rn

0 L−2
n n1−2κ) → ∞ as n → ∞, combining (A32), (A33) and (A35),

we obtain

P
(
|∆n2j| ≥ 2c14rnn−κ

)
≤ 2 exp

(
− c9a2rn

0 r2
nn1−4κ

)
+ 3 exp

(
− c11a2rn

0 L−2
n n1−2κ

)
≤ 5 exp

(
− c18a2rn

0 r2
nn1−4κ

)
(A36)

for some positive constant c18.
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Finally, we consider ∆n3j. Denote Φ(αj) = n−1 ∑n
i=1 ρτ(Yi − BT

ijαj) and define its

subdifferential as ∂Φ(αj) = ({∂Φ(k−1)Ln+l(αj) : k ∈ Sj, l = 1, . . . , Ln})T with

∂Φ(k−1)Ln+l(αj) = −n−1
n

∑
i=1

ψτ(Yi − BT
ijαj)Bl(Xik)− n−1

n

∑
i=1

I(Yi − BT
ijαj = 0)viBl(Xik)

and vi ∈ [τ − 1, τ]. Recalling the definition of α̂j, there exists v∗i ∈ [τ − 1.τ] such that
∂Φ(k−1)Ln+l(α̂j) = 0. This yields

∆n3j = n−1
n

∑
i=1

I(Yi − BT
ij α̂j = 0)viBT

ij θ̂j.

Thus, by condition (C5), it follows that

|∆n3j| ≤ n−1
n

∑
i=1

I(Yi − BT
ij α̂j = 0)|BT

ij θ̂j|

≤ n−1
n

∑
i=1

I(Yi − BT
ij α̂j = 0)|BT

ijθ
0
j |

+n−1
n

∑
i=1

I(Yi − BT
ij α̂j = 0)|BT

ij(θ̂j − θ0
j )|

≤ n−1
n

∑
i=1

I(Yi − BT
ij α̂j = 0)(M2 + (rnLn)

1/2‖θ̂j − θ0
j ‖). (A37)

Using Lemma A8, we obtain

P(M2 + (rnLn)
1/2‖θ̂j − θ0

j ‖ ≥ M2 + c∗1 a−rn
0 rnL3/2

n )

≤ [8(rnLn)
2 + 4rnLn] exp

(
− c∗2 a2rn

0 r−2
n L−3

n n
)
. (A38)

Note that P(n−1 ∑n
i=1 I(Yi − BT

ij α̂j = 0) ≥ ε) = 0 for any ε > 0. Letting ε = n−1L−3/2
n ,

we thus have

P
(

n−1
n

∑
i=1

I(Yi − BT
ij α̂j = 0) ≥ n−1L−3/2

n

)
= 0. (A39)

Gathering (A37)–(A39) gives

P
(
|∆n3j| ≥ n−1L−3/2

n (M2 + c∗1 a−rn
0 rnL3/2

n )
)

≤ [8(rnLn)
2 + 4rnLn] exp

(
− c∗2 a2rn

0 r−2
n L−3

n n
)
. (A40)

Furthermore, using (A31) with δ = c14rnn1−κ , we have

P
(
|∆n1j ≥ c14rnn−κ

)
≤ 2 exp

(
− c∗3r2

nn1−2κ
)

(A41)

for some positive constant c∗3 . Accordingly, by (A36), (A40) and (A41), we obtain

P
(
|∆n1j + ∆n2j + ∆n3j| ≥ 3c14rnn−κ + n−1L−3/2

n (M2 + c∗1 a−rn
0 rnL3/2

n )
)

≤ 2 exp
(
− c∗3r2

nn1−2κ
)
+ 5 exp

(
− c18a2rn

0 r2
nn1−4κ

)
+[8(rnLn)

2 + 4rnLn] exp
(
− c∗2 a2rn

0 r−2
n L−3

n n
)

≤ 7 exp
(
− c∗4 a2rn

0 r2
nn1−4κ

)
+ [8(rnLn)

2 + 4rnLn] exp
(
− c∗2 a2rn

0 r−2
n L−3

n n
)

for some positive constant c∗4 . As a result, the desired result follows for some given positive
constant c∗5 = 3c14 + M2 + c∗1 and for sufficiently large n.
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Lemma A11. Under conditions (C1)–(C5), for every 1 ≤ j ≤ p and for any given constant c∗8 ,
there exist some positive constants c∗10 and c∗12 such that

P
(
|σ̂2

j − σ2
j | ≥ c∗5rnn−κ

)
≤ [8(rnLn)

2 + 6rnLn + 2] exp
(
− c∗13a2rn

0 L−3
n n1−2κ

)
+[10(rnLn)

2 + 4rnLn] exp
(
− c∗10a4rn

0 r−3
n L−4

n n1−κ
)

when n is sufficiently large. In addition, for some c̃1 ∈ (0, 1),

P
(
|σ̂2

j − σ2
j | ≥ c̃1σ2

j
)
≤ [8(rnLn)

2 + 6rnLn + 2] exp
(
− c∗13a2rn

0 L−3
n n1−2κ

)
+[10(rnLn)

2 + 4rnLn] exp
(
− c∗10a4rn

0 r−3
n L−4

n n1−κ
)

Proof of Lemma A11. Recalling the definition of σ̂2
j and σ2

j , we have

|σ̂2
j − σ2

j | ≤
∣∣∣n−1

n

∑
i=1

(Xij − BT
ijθ

0
j )

2 − E{(Xij − BT
ijθ

0
j )

2}
∣∣∣

+
∣∣∣n−1

n

∑
i=1

(Xij − BT
ij θ̂j)

2 − n−1
n

∑
i=1

(Xij − BT
ijθ

0
j )

2
∣∣∣

, Ξn1j + Ξn2j. (A42)

Let ξij = (Xij − BT
ijθ

0
j )

2 − E{(Xij − BT
ijθ

0
j )

2}. For every r ≥ 2, by the Cr inequality

and condition (C5), we have E{|ξij|r} ≤ 2rE{(Xij − BT
ijθ

0
j )

2r} ≤ 23r−1{E|Xij|2r + M2r
2 } ≤

23r−1{K1K2r
2 (2r)!+ M2r

2 } ≤ 23rK̃1K̃2r
2 (2r)! ≤ 23rK̃1K̃2r

2 (2r)rr! = r!(16rK̃2
2)

r−2512(rK̃2
2)

2K̃1/2
with K̃1 = max(K1, 1) and K̃2 = max(K2, M2). Thus, by Lemma A2, it follows

P
(

Ξn1j ≥
1
2

c∗5rnn−κ
)
≤ 2 exp(−c∗6r2

nn1−2κ) (A43)

for some positive constant c∗6 . In addition, it is easily derived that

Ξn2j ≤ (θ̂j − θ0
j )

TDnj(θ̂j − θ0
j ) +

∣∣∣2n−1
n

∑
i=1

(Xij − BT
ijθ

0
j )B

T
ij(θ̂j − θ0

j )
∣∣∣

, Ξ(1)
n2j + Ξ(2)

n2j, (A44)

where Ξ(1)
n2j ≤ λmax(Dnj)‖θ̂j − θ0

j ‖2. Similarly, applying the arguments used in deriving
Lemma A7(ii), we have that for any constant c̃1 ∈ (0, 1), there exists some finite positive
constant c∗7 such that

P
(∣∣λmax(Dnj)

∣∣ ≥ (1 + c̃1)λmax(Dj)
)
≤ 2(rnLn)

2 exp
(
− c∗7 a2rn

0 r−2
n L−3

n n
)
.

This together with Lemma 1 yields

P
(∣∣λmax(Dnj)

∣∣ ≥ (1 + c̃1)C2rnL−1
n
)
≤ 2(rnLn)

2 exp
(
− c∗7 a2rn

0 r−2
n L−3

n n
)
. (A45)

Moreover, employing (A21) with δ = (1 + c̃1)
−1/2C−1/2

2 (c∗5/4)1/2c∗−1
1

a2rn
0 r−3/2

n L−5/2
n n1−κ/2, we have

P(‖θ̂j − θ0
j ‖ ≥ (1 + c̃1)

−1/2C−1/2
2 (c∗5/4)1/2L1/2

n n−κ/2)

≤ 4[(rnLn)
2 + rnLn] exp

(
− c∗8 a4rn

0 r−3
n L−4

n n1−κ
)

+4(rnLn)
2 exp

(
− c∗2 a2rn

0 r−2
n L−3

n n
)

≤ 4[2(rnLn)
2 + rnLn] exp

(
− c∗9 a4rn

0 r−3
n L−4

n n1−κ
)
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for some positive constants c∗8 and c∗9 . This in conjunction with (A45) gives

P
(

Ξ(1)
n2j ≥

1
4

c∗5rnn−κ
)
≤ P

(∣∣λmax(Dnj)
∣∣ ≥ (1 + c̃1)C2rnL−1

n
)

+P
(
‖θ̂j − θ0

j ‖ ≥ (1 + c̃1)
−1/2C−1/2

2 (c∗5/4)1/2L1/2
n n−κ/2)

≤ [10(rnLn)
2 + 4rnLn] exp

(
− c∗10a4rn

0 r−3
n L−4

n n1−κ
)

(A46)

for some positive constant c∗10. For Ξ(2)
n2j, let Nikl j = (Xij − BT

ijθ
0
j )Bl(Xik), k ∈ Sj, l =

1, . . . , Ln, and then for every r ≥ 2, E{|Nikl j|r} ≤ E{|Xij − BT
ijθ

0
j |r} ≤ 2r−1{E|Xij|r +

supi,j |BT
ijθ

0
j |r} ≤ 2r−1(K1Kr

2r! + Mr
2) ≤ 2r−1(2K̃1K̃r

2r!) = r!(2K̃2)
r−28K̃1K̃2

2/2, where K̃1 =

max(K1, 1) and K̃2 = max(K2, M2). Thus, it follows from Lemma A2 that

P
(∣∣∣n−1

n

∑
i=1

Nikl j

∣∣∣ ≥ 1
8

c∗5c∗−1
1 arn

0 L−3/2
n n−κ

)
≤ 2 exp(−c∗11a2rn

0 L−3
n n1−2κ) (A47)

for some positive constant c∗11. Note that ‖n−1 ∑n
i=1(Xij − BT

ijθ
0
j )Bij‖ ≤ (rnLn)1/2 maxk,l

|Nikl j|. This together with (A47) and the union bound of probability gives

P
(∥∥∥n−1

n

∑
i=1

(Xij − BT
ijθ

0
j )Bij

∥∥∥ ≥ 1
8

c∗5c∗−1
1 arn

0 r1/2
n L−1

n n−κ
)

≤ 2(rnLn) exp(−c∗11a2rn
0 L−3

n n1−2κ). (A48)

Using Lemma A8 and (A48), we obtain

P
(

Ξ(2)
n2j ≥

1
4

c∗5rnn−κ
)
≤ P

(∥∥∥n−1
n

∑
i=1

(Xij − BT
ijθ

0
j )Bij

∥∥∥‖θ̂j − θ0
j ‖ ≥

1
8

c∗5rnn−κ
)

≤ P
(∥∥∥n−1

n

∑
i=1

(Xij − BT
ijθ

0
j )Bij

∥∥∥ ≥ 1
8

c∗−1
1 c∗5 arn

0 r1/2
n L−1

n n−κ
)

+P(‖θ̂j − θ0
j ‖ ≥ c∗1 a−rn

0 r1/2
n Ln)

≤ 2(rnLn) exp(−c∗11a2rn
0 L−3

n n1−2κ)

+[8(rnLn)
2 + 4rnLn] exp

(
− c∗2 a2rn

0 r−2
n L−3

n n
)

≤ [8(rnLn)
2 + 6rnLn] exp

(
− c∗12a2rn

0 r−2
n L−3

n n
)

(A49)

for some positive constant c∗12. Therefore, combining (A43), (A44), (A46) and (A49), we
can conclude the first result of Lemma A11. Moreover, the assumption that rnn−κ = o(1)
implies c∗5rnn−κ ≤ c̃1σ2

j for large n. Hence, the second result of Lemma A11 follows from
the first result.

Proof of Theorem 1. (i) We first show the first assertion. Let Hn1j = 1
n ∑n

i=1 ψτ(Yi −
BT

ij α̂j)(Xij − BT
ij θ̂j), Hn2j =

√
σ̂2

j = σ̂j, h1j = E{ψτ(Yi − BT
ijα

0
j )(Xij − BT

ijθ
0
j )} and h2j = σj.

Then, ∣∣$̂τ(Y, Xj|XSj)− $∗τ(Y, Xj|XSj)
∣∣

= H−1
n2jh

−1
2j

∣∣(Hn1j − h1j)h2j − h1j(Hn2j − h2j)
∣∣

≤ H−1
n2j

∣∣Hn1j − h1j
∣∣+ H−1

n2jh
−1
2j |h1j|

∣∣Hn2j − h2j
∣∣. (A50)
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We first show that for some given constant C7 = (
√

1− c̃1 + 1)−1M−1/2
3 c∗5 , there exists

a positive constant c∗13 such that

P(|Hn2j − h2j| ≥ C7rnn−κ) ≤ 2[8(rnLn)
2 + 6rnLn + 2] exp(−c∗13a2rn

0 L−3
n n1−2κ)

+2[10(rnLn)
2 + 4rnLn] exp(−c∗10a4rn

0 r−3
n L−4

n n1−κ).(A51)

To this end, using the fact that
√

x−√y = (x− y)/(
√

x +
√

y) for positive x and y,
we have

P(|Hn2j − h2j| ≥ C7rnn−κ) = P
(
|σ̂2

j − σ2
j | ≥ C7rnn−κ(σ̂j + σj)

)
≤ P

(
|σ̂2

j − σ2
j | ≥ C7rnn−κ(σ̂j + σj), σ̂2

j > (1− c̃1)σ
2
j
)

+P
(
σ̂2

j ≤ (1− c̃1)σ
2
j
)

≤ P
(
|σ̂2

j − σ2
j | ≥ c∗5rnn−κ

)
+ P

(
|σ̂2

j − σ2
j | ≥ c̃1σ2

j
)
,

where the last line uses condition (C5). This together with Lemma A11 implies (A51).
Notice that since C7rnn−κ = o(1), we have, for sufficiently large n, there exists a constant
c̃2 ∈ (0, 1) such that C7rnn−κ ≤ c̃2M1/2

3 ≤ c̃2σj. Thus,

P(Hn2j ≤ (1− c̃2)h2j) ≤ P(|Hn2j − h2j| ≥ c̃2σj) ≤ P(|Hn2j − h2j| ≥ C7rnn−κ)

≤ 2[8(rnLn)
2 + 6rnLn + 2] exp(−c∗13a2rn

0 L−3
n n1−2κ)

+2[10(rnLn)
2 + 4rnLn] exp(−c∗10a4rn

0 r−3
n L−4

n n1−κ). (A52)

Accordingly,

P
(

H−1
n2j|Hn1j − h1j| ≥ (1− c̃2)

−1 M−1/2
3 c∗5rnn−κ

)
≤ P

(
|Hn1j − h1j| ≥ (1− c̃2)

−1 M−1/2
3 c∗5rnn−κ Hn2j, Hn2j > (1− c̃2)h2j

)
+P(Hn2j ≤ (1− c̃2)h2j)

≤ P
(
|Hn1j − h1j| ≥ c∗5rnn−κ

)
+ P(Hn2j ≤ (1− c̃2)h2j)

≤ 7 exp
(
− c∗6 a2rn

0 r2
nn1−4κ

)
+ [8(rnLn)

2 + 4rnLn] exp
(
− c∗7 a2rn

0 r−2
n L−3

n n
)

+2[8(rnLn)
2 + 6rnLn + 2] exp(−c∗13a2rn

0 L−3
n n1−2κ)

+2[10(rnLn)
2 + 4rnLn] exp(−c∗10a4rn

0 r−3
n L−4

n n1−κ)

≤ 7 exp
(
− c∗6 a2rn

0 r2
nn1−4κ

)
+ [44(rnLn)

2 + 20rnLn + 2] exp(−c∗14a2rn
0 L−3

n n1−2κ), (A53)

where c∗14 = min(c∗7 , c∗13, c∗10) and the last inequality is due to a−2rn
0 r3

nLnn−κ = o(1). More-
over, observe that, by the definition of θ0

j and Lemma A1,

|h1j| =
∣∣E{ψτ(Yi − BT

ijα
0
j )(Xij − BT

ijθ
0
j )}
∣∣ = ∣∣E{ψτ(Yi − BT

ijα
0
j )Xij}

∣∣
≤ max(τ, 1− τ)E{|Xij|} ≤ max(τ, 1− τ){E(X2

ij)}1/2 ≤ M4,
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where M4 = max(τ, 1− τ)
√

2K1K2
2. So it follows from condition (C5) and (A51) and (A51)

that

P
(

H−1
n2jh

−1
2j |h1j|

∣∣Hn2j − h2j
∣∣ ≥ (1− c̃2)

−1M4M−3/2
3 (

√
1− c̃1 + 1)−1c∗5rnn−κ

)
≤ P

(∣∣Hn2j − h2j
∣∣ ≥ (1− c̃2)

−1M−1
3 (
√

1− c̃1 + 1)−1c∗5rnn−κ Hn2j
)

≤ P
(∣∣Hn2j − h2j

∣∣ ≥ (1− c̃2)
−1M−1

3 (
√

1− c̃1 + 1)−1c∗5rnn−κ Hn2j, Hn2j > (1− c̃2)h2j
)

+P(Hn2j ≤ (1− c̃2)h2j)

≤ P
(∣∣Hn2j − h2j

∣∣ ≥ C7rnn−κ
)
+ P(Hn2j ≤ (1− c̃2)h2j)

≤ 4[8(rnLn)
2 + 6rnLn + 2] exp(−c∗13a2rn

0 L−3
n n1−2κ)

+4[10(rnLn)
2 + 4rnLn] exp(−c∗10a4rn

0 r−3
n L−4

n n1−κ). (A54)

Put C = (1− c̃2)
−1c∗5 M−1/2

3 [1 + M4
M3

(
√

1− c̃1 + 1)−1]/
√

τ(1− τ). Therefore, a direct
application of (A53) and (A54) as well as the fact that |x− y| ≥

∣∣|x| − |y|∣∣, we can obtain

max
1≤j≤p

P
(
|ûj − uj| ≥ Crnn−κ

)
≤ 7 exp

(
− c∗6 a2rn

0 r2
nn1−4κ

)
+ [116(rnLn)

2 + 60rnLn + 10] exp(−c∗14a2rn
0 L−3

n n1−2κ).

This together with the union bound of probability proves the first assertion.
(ii) Next, we show the second assertion. By the choice of νn = C̃0rnn−κ with C̃0 ≤ C0/2

and condition (C6), we have

P
(
M∗ ⊂ M̂

)
≥ P

(
min
j∈M∗

ûj > νn

)
= P

(
min
j∈M∗

uj − min
j∈M∗

ûj < min
j∈M∗

uj − νn

)
≥ P

(
min
j∈M∗

(ûj − uj) > νn − min
j∈M∗

uj

)
≥ P

(
min
j∈M∗

uj − max
j∈M∗

∣∣ûj − uj
∣∣ > νn

)
= 1− P

(
max
j∈M∗

∣∣ûj − uj
∣∣ ≥ min

j∈M∗
uj − νn

)
≥ 1− P

(
max
j∈M∗

∣∣ûj − uj
∣∣ ≥ νn

)
≥ 1− sn{7 exp

(
− c∗6 a2rn

0 r2
nn1−4κ

)
+ [116(rnLn)

2 + 60rnLn + 10] exp(−c∗14a2rn
0 L−3

n n1−2κ)}.

Thus, this completes the proof.

Proof of Theorem 2. . By the assumption that ∑
p
i=1 u∗j = O(nς) which implies that the size

of {j : u∗j > C̃0rnn−κ} cannot exceed O
(
r−1

n nκ+ς
)
. Thus, it follows that for any δ > 0, on

the setAn =
{

max1≤j≤p
∣∣ûj− u∗j

∣∣ ≤ δrnn−κ
}

, the size of {j : ûj > 2δrnn−κ} cannot exceed

the size of {j : u∗j > δrnn−κ}, which is bounded by O
(
r−1

n nκ+ς
)
. Then, taking δ = C̃0 and

νn = 2C̃0rnn−κ , we have

P
(∣∣M̂∣∣ ≤ O

(
r−1

n nκ+κ
))
≥ P

(
An
)
≥ 1− P

(
max

1≤j≤p

∣∣ûj − u∗j
∣∣ > C̃0rnn−κ

)
.

Therefore, the desired conclusion follows from part (i) of Theorem 1.
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