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Abstract: Modern engineering systems are designed and utilized to realize complicated functions,
and their operation mechanisms are becoming more complex. Nevertheless, prior related research
mainly focused on the reliability evaluations of the systems with a single operation mechanism, which
are not appropriate to depict the operation process of systems with multiple operation mechanisms.
Faced with the research gaps and practical needs, this paper establishes a new reliability model for
the multi-state k-out-of-n: F system composed of n subsystems, which runs under multiple interactive
operation mechanisms, including performance sharing, balanced requirement, and protection strategy.
The units in each subsystem can share the performance via a common bus, with the purpose of
regulating the performance of all equal units. A new triggering criterion of the protection device
in each subsystem is proposed based on the total performance of the units. Due to the protection
from the device, the degradation rate of the units between two adjacent states decreases to a lower
rate. Each subsystem breaks down when the total performance of the units reaches a critical value.
According to the number of failed subsystems, the state of the entire system can be divided into
multiple states. The Markov process imbedding method combined with the finite Markov chain
imbedding approach is developed to obtain the probabilistic indexes of each subsystem and the
entire system. The applicability of the proposed model and the effectiveness of the method can be
sufficiently demonstrated by illustrative examples and sensitivity analyses.

Keywords: multi-state k-out-of-n: F system; multiple operation mechanisms; reliability analysis;
Markov process imbedding approach; finite Markov chain imbedding approach

MSC: 93E20

1. Introduction

Currently, the operation mechanisms of modern industrial systems become increas-
ingly complicated [1], owing to the great diversity of their designed functions, such as the
performance sharing mechanism via the common bus of different multi-unit systems, the
balanced requirements during the operation of the balanced systems, and the multi-stage
operation process of the systems determined by the functioning state of protective devices.
From different research perspectives, many studies have been devoted to depicting the
operation mechanisms of engineering systems and analyzing their reliability quantities,
based on some practical engineering applications.

The performance sharing mechanism via the common bus of the system was first
studied by [2], where only two units were considered and the performance surplus could be
transmitted from the reserve unit to the main unit. As an extensive study, Levitin [3] built a
system containing n units with the performance sharing mechanism, where a common bus
was responsible for transmitting the surplus performance among all units. Subsequently,
the reliability of different systems with performance sharing mechanisms through common
bus has been widely investigated. For example, Yu et al. [4], Zhao et al. [5], and Peng et al. [6]
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studied the performance-sharing mechanisms for the series-parallel repairable binary-state
system, multi-state k-out-of-n: G system, and system with two performance sharing groups,
respectively. Furthermore, the research on performance-sharing mechanisms has been
enriched by considering the multiple stages of operation process [7–9], transmission loss
during performance sharing [9–11], related optimization problems [12–14], and so on.

The operation mechanisms of diverse balanced systems have been extensively ex-
plored by abundant literature. The previous balanced systems are built according to the
specific balanced requirement in their operation mechanisms. The balanced requirements
in previous research can be summarized as the following main categories: largest state
(capability) difference among all units in the system being at an acceptable level [15–17], no
or acceptable difference among the number of working units in different sectors [18–20],
simultaneous satisfying of two units in a pair in the same state with the working units
symmetric [21–23], and performance (degradation) level of the units in the system identi-
cal [24,25].

Protective devices are always installed in many engineering systems to mitigate the
system degradation process and enhance system reliability [26]. For example, the cabin
pressure control system (CPCS) and power saving system can be regarded as the protective
devices for an aircraft system and a battery system, respectively [27–29]. Due to the great
practical values in applications, the research on the operation mechanisms of systems
with protective devices has aroused strong interest in the domain of reliability. A joint
optimization model was constructed by Zhao et al. [30] to optimize the mission abort
policy and protective device selection for single-unit systems. References [28,31] analyzed
the operation mechanism of a single-unit system with a protective device triggered by
system state, by considering the self-exciting shock mechanisms and the shock magnitude
thresholds, respectively. Zhao et al. [32] proposed the competing triggering criteria of the
device based on the system state and shock numbers. As an extension, Zhao et al. [33]
established a k-out-of-n: F system with a multi-state protective device subject to external
shocks. By considering the impact of internal degradation, Wang et al. [34] investigated the
operation process of the k-out-of-n: F system with m subsystems supported by multiple
protective devices. Wang et al. [35] studied a compound operation mechanism containing
the protection from devices and balanced requirements of two types of balanced systems.

Through reviewing the literature about the reliability of systems with the abovemen-
tioned operation mechanisms, some research gaps can be figured out as follows. First, it
can be observed that most research only focused on one specific operation mechanism, and
the combination of two or more operation mechanisms has not been thoroughly investi-
gated. Because the actual operation processes of engineering systems are getting more
complex, a single operation mechanism, as in previous studies, cannot accurately describe
their operation processes. Second, the triggering conditions of protective devices in prior
studies included the system state [28,30], competing criteria of the system state and shock
numbers, number of failed units [33,34], and the largest state difference among units [35].
There are other triggering criteria of devices worthy to be explored, motivated by real
engineering cases.

To fill up the above research gaps, this paper constructs a new reliability model of
a multi-state k-out-of-n: F system with multiple operation mechanisms, integrating the
performance sharing mechanism via common bus, the balanced condition required for
stable operation, and the protection from the devices during operation. The entire system is
composed of n subsystems, and each subsystem can be perceived as a performance sharing
and balanced subsystem. Each unit in the subsystem has multiple levels of performance. All
units in one subsystem are connected via a common bus, which is in charge of transmitting
and sharing the surplus performance in order to maintain the same performance among
all units. Furthermore, each subsystem is equipped with a protective device, which can
be triggered to provide protection for the subsystem when the total performance of the
corresponding subsystem is lower than or equal to a threshold. During the functioning of
the protective device, the degradation rates of the units degrading to an adjacent lower
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state in the subsystem decreases. The protective device may break down, and then the
degradation rate of the units in the subsystem becomes the original rate with the loss of
protection. The insufficient total performance results in the failure of each subsystem, and
the entire system has multiple states according to the number of failed subsystems.

The establishment of the proposed model intends to depict the complex operation of
the engineering systems, represented by a lithium battery system, whose multiple operation
mechanisms are complicated and interactive. The lithium battery system consists of n
battery subsystems, and each battery subsystem has multiple battery cells. Each battery
cell possesses multiple states of charge (SOC), and different cells may be in different SOCs
because of their intrinsic manufacturing tolerances and difference in deterioration process.
The surplus SOCs can be transmitted to the cells with lower SOC to ensure the same level
of SOC among all units, which is well-known as the cell balancing problem. Meanwhile,
once the total SOC of the battery subsystem is insufficient, the power saving device is
activated to decrease the degradation process of the cells. The entire lithium battery system
can be recognized as different grades of power capability, according to the total number of
failed subsystems.

In this paper, a two-stage modeling methodology is applied to derive the probabilis-
tic indexes of the subsystems and the entire system, by combining the Markov process
imbedding approach (MPIA) and finite Markov chain imbedding approach (FMCIA). High
efficiency can be achieved by employing MPIA to describe the deterioration process of
various systems and analyze a series of reliability indexes [36]. Compared with other
methods, such as the recursive method and order statistics technique, MPIA shows its
great superiority as a powerful tool to determine the reliability indexes with much higher
efficiency due to the reduced amount of computation [19]. For example, MPIA has been
applied to depict the operation process of balanced systems and formulate their reliability
expressions [24,37–39]. FMCIA has become a popular approach in various research fields
owing to its effectiveness in addressing complex reliability problems, such as assessing
system reliability [40,41], building probabilistic distributions [42–44], and analyzing shock
models [45–47]. The developments and advantages of FMCIA have been fully demon-
strated by the literature review of the method [48].

To sum up, the remarkable contributions of this paper to current study are listed in
the following.

1. This paper first constructs a multi-state k-out-of-n: F systems composed of n subsys-
tems under multiple and interactive operation mechanisms.

2. This paper proposes an interactive and complex operation mechanism, including the
performance sharing mechanism, balanced mechanism, and protection mechanism.

3. This paper put forwards a new triggering criterion of protective devices based on the
total performance of the units in each subsystem.

4. This paper formulates a two-stage methodology, including MPIA for each subsystem
and FMCIA for the entire system, and the reliability indexes are derived accurately,
which makes the complicated reliability problem tractable.

The remainder of this paper is organized as follows. In Section 2, the detailed model
descriptions and assumptions are introduced. Section 3 focuses on the reliability analyses
for individual subsystems and the entire system, and derives the related reliability indexes
efficiently by utilizing the MPIA and FMCIA. Section 4 provides numerical examples
based on the lithium battery system to validate the proposed reliability model and applied
method. In Section 5, the concluding remarks and future research directions of this paper
are presented.

2. Model Assumptions and Descriptions

The system contains n subsystems, and each subsystem can be regarded as a performance-
balanced system with a protective device. The total number of units in the i-th subsystem is
ni. Each unit has total Hi levels of performance, represented as Gi(t) =

{
gi,1, gi,2, . . . , gi,Hi

}
,

where level Hi and 1 denote the maximum and zero performance of the unit, respectively. The
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state residence times of units in one subsystem follow the exponential distribution, which
has been sufficiently proven by existing research that exponential distribution can be used to
model the distribution of the state residence times for the units [18–20].

All the units in one subsystem are connected via a common bus, which is used to
transmit the shared performance among units. The balance of each subsystem is defined as
the same performance of each unit in the subsystem. When the performances of all units are
not equal, the units with the performance above the average share the surplus performance
to the units with the performance below the average via the common bus in order to regain
the performance balance. It is assumed that the time needed for performance rebalancing
actions is negligible.

When the total performance of the units in the i-th subsystem is not more than di,1,
the protection device is triggered to protect the corresponding subsystem. During the
function of the protective device, the degradation rate of the units in state hi degrading
to state hi − 1 in the subsystem i is λi,2

hi(hi−1). It means that the subsystem runs without
the protection and the degradation rate of the unit in state hi deteriorating to state hi − 1
is λi,1

hi(hi−1) (λi,1
hi(hi−1) > λi,2

hi(hi−1)), before the protective device is triggered and after the
protective device fails. The protective device may break down due to internal degradation
with a rate λi,p. When the total performance of the units in subsystem i is not greater than
di,2 (di,2 < di,1), the subsystem i fails. Based on the number of failed subsystems in the
system, the entire system is divided into M + 1 states, where the cases that all subsystems in
the system work and fail are recognized as state 0 and M, respectively. State m (0 < m < M)
is defined as the number of failed subsystems larger than km−1 and not more than km
(km−1 < km). The system structure diagram is shown in Figure 1.

Problems in the paper with ID ‘mathematics-2023952’ 
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Example 1. To better understand the operation of a single subsystem, possible operation
cases of subsystem i are shown in Figure 2. The subsystem i contains 3 (ni = 3) units,
and each unit has 3 (Hi = 3) performance levels with corresponding performance val-
ues Gi(t) = {0, 3, 6}. When the total performance of the units is less than or equal to
12 (di,1 = 12), the protective device is triggered to work. When the total performance of the
units is not more than 9 (di,2 = 9), the subsystem fails. At the initial time, each unit is in
the best state with the performance 6, shown in Figure 2a. At t = 1, the state of the first
unit drops by one with the degradation rate λi,1

32 , and the performance value changes from
6 to 3. At this moment, the subsystem is obviously unbalanced, and the second and third
unit transmit 1 unit of performance to the first unit through the common bus. Hence, the
subsystem is rebalanced, and works normally until t = 2, presented in Figure 2b. At t = 2,



Mathematics 2022, 10, 4615 5 of 16

the state of the second unit is degraded by one level with the rate λi,1
32 and its performance

changes to 3. Then the subsystem can regain the balance through transmitting performance
via the common bus. At this time, the total performance of the subsystem is 12, which leads
to the triggering of the protective device, as displayed in Figure 2c. At t = 4, the second
unit becomes failed after it degrades from state 2 to 1 with the rate λi,2

21 , and its performance
equals zero. The total performance of the subsystem equals 9, which results in the failure
of the subsystem due to reaching the failure criterion of the subsystem.

Figure 2 in the published PDF: 

 

The Figure 2 should be presented as follows: 
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Figure 2. Possible operation cases of the subsystem i.

3. Reliability Evaluations for the System

The first step is applying the Markov process imbedding method to describe the
operation of each subsystem and obtain the reliability of each subsystem. Then, as the
second step, the finite Markov chain imbedding method is employed to derive the state
probability function of the entire system by using the results obtained in the first step.
The following Figure 3 summarizes the detailed steps of reliability evaluations for the
proposed model.
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3.1. Reliability Evaluation for an Individual Subsystem

The state residence times of units in one subsystem follow the exponential distribution.
Therefore, the behavior of a single subsystem can be characterized by applying a Markov
process and n Markov processes can be applied to describe the operation of n subsys-
tems, respectively. The Markov process of the i-th subsystem {Xi(t), t ≥ 0} is established
as follows:

Xi(t) = ui,ci , ci = 1, 2, . . . , Ni

where ui,ci represents a state in the state space Si of the i-th subsystem, and |Si| = Ni.
Si = Wi ∪ Fi, where Wi and Fi represent the working and the failed state space of the i-th
subsystem, respectively.

Suppose that ui,ci = (xi,Hi , xi,Hi−1, . . . , xi,1, xi,p), where (xi,Hi , xi,Hi−1, . . . , xi,1) repre-
sents the total number of units in each performance state in the i-th subsystem, and define

xi,p =


0, protective device is untriggered;
1, protective device is working;
2, protective device is failed.

For convenience,I(x) is used as an indicator function, such that I(x) =
{

1 if x is true
0 if x is false

.

The transition rates between all states of the i-th subsystem are given as follows.

(1) Condition:
Hi
∑

hi=1
gi,hi

xi,hi
> di,1,

Hi
∑

hi=1
gi,hi

xi,hi
− gi,hi

+ gi,hi−1 > di,1, and xi,hi
> 0;

Transition: (xi,Hi , xi,Hi−1, . . . , xi,hi , xi,hi−1, . . . , xi,1, 0)→ (xi,Hi , xi,Hi−1, . . . , xi,hi − 1, xi,hi−1 + 1, . . . , xi,1, 0) ;

Transition rate: xi,hi
λi,1

hi(hi−1).

(2) Condition:
Hi
∑

hi=1
gi,hi

xi,hi
> di,1, di,2 <

Hi
∑

hi=1
gi,hi

xi,hi
− gi,hi

+ gi,hi−1 ≤ di,1, and xi,hi
> 0;

Transition: (xi,Hi , xi,Hi−1, . . . , xi,hi , xi,hi−1, . . . , xi,1, 0)→ (xi,Hi , xi,Hi−1, . . . , xi,hi − 1, xi,hi−1 + 1, . . . , xi,1, 1) ;

Transition rate: xi,hi
λi,1

hi(hi−1).

(3) Condition: di,2 <
Hi
∑

hi=1
gi,hi xi,hi ≤ di,1, di,2 <

Hi
∑

hi=1
gi,hi xi,hi − gi,hi + gi,hi−1 ≤ di,1, and xi,hi

> 0;

Transition: (xi,Hi , xi,Hi−1, . . . , xi,hi , xi,hi−1, . . . , xi,1, 1)→ (xi,Hi , xi,Hi−1, . . . , xi,hi − 1, xi,hi−1 + 1, . . . , xi,1, 1) ;

Transition rate: xi,hi
λi,2

hi(hi−1).

(4) Conditions: di,2 <
Hi
∑

hi=1
gi,hi

xi,hi
≤ di,1;

Transition: (xi,Hi , xi,Hi−1, . . . , xi,hi , xi,hi−1, . . . , xi,1, 1)→ (xi,Hi , xi,Hi−1, . . . , xi,hi , xi,hi−1, . . . , xi,1, 2) ;

Transition rate: λi,p.

(5) Condition: di,2 <
Hi
∑

hi=1
gi,hi xi,hi ≤ di,1, di,2 <

Hi
∑

hi=1
gi,hi xi,hi − gi,hi + gi,hi−1 ≤ di,1, and xi,hi

> 0;

Transition: (xi,Hi , xi,Hi−1, . . . , xi,hi , xi,hi−1, . . . , xi,1, 2)→ (xi,Hi , xi,Hi−1, . . . , xi,hi − 1, xi,hi−1 + 1, . . . , xi,1, 2) ;
Transition rate: xi,hi

λi,1
hi(hi−1).

(6) Condition: di,2 <
Hi
∑

hi=1
gi,hi xi,hi ,

Hi
∑

hi=1
I

((
gi,hi − gi,hi−1

)
I
(
xi,hi > 0

)
≥

Hi
∑

hi=1
gi,hi xi,hi − di,2

)
> 0;

(6.1) Transition: (xi,Hi , xi,Hi−1, . . . , xi,hi
, xi,hi−1, . . . , xi,1, 1)→ Fi ;

(6.1) Transition rate:
Hi
∑

hi=1
I

((
gi,hi
− gi,hi−1

)
I
(
xi,hi

> 0
)
≥

Hi
∑

hi=1
gi,hi

xi,hi
− di,2

)
xi,hi

λi,2
hi(hi−1),

(6.2) Transition: (xi,Hi , xi,Hi−1, . . . , xi,hi
, xi,hi−1, . . . , xi,1, 0)→ Fi ;

(6.2) Transition rate:
Hi
∑

hi=1
I

((
gi,hi
− gi,hi−1

)
I
(
xi,hi

> 0
)
≥

Hi
∑

hi=1
gi,hi

xi,hi
− di,2

)
xi,hi

λi,1
hi(hi−1);

(6.3) Transition: (xi,Hi , xi,Hi−1, . . . , xi,hi
, xi,hi−1, . . . , xi,1, 2)→ Fi ;

(6.3) Transition rate:
Hi
∑

hi=1
I

((
gi,hi
− gi,hi−1

)
I
(

xi,hi
> 0

)
≥

Hi
∑

hi=1
gi,hi

xi,hi
− di,2

)
xi,hi

λi,1
hi(hi−1).
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After identifying the one-step transition rules, the transition rate matrix Qi of the i-th
subsystem can be obtained as

Qi =

[
QWiWi

QWi Fi
QFiWi

QFi Fi

]
=

[
QWiWi

QWi Fi
0 0

]
(1)

The matrix QWiWi
represents the transitions between the working states, and QWi Fi

is
composed of the transition rates from the working states to the failed state. In addition,
QFiWi

and QFi Fi
denote the matrix containing the transition rates from the failed state to the

working states and from the failed state to the failed state, respectively.

Example 2. An illustration is provided to construct the Markov process for the i-th subsys-
tem. There are 3 (ni = 3) units in the i-th subsystem, and each unit has 4 (Hi = 4) states
with corresponding performance Gi(t) = {0, 2, 4, 8}. Once the total performance is less
than or equals 14 (di,1 = 14), the protection device is activated to work. When the total
performance is not more than 12 (di,2 = 12), the subsystem fails. The degradation rate
of units from state g to g− 1 (g = 3, 2, 1) is λi,1

g(g−1) and λi,2
g(g−1), without and under the

protection from the device, respectively. The failure rate of the protective device is denoted
as λi,p.

Based on the above analyses, the state space of the Markov process for subsystem i
can be obtained as

Si = Wi ∪ Fi =

{
(3, 0, 0, 0, 0), (2, 1, 0, 0, 0), (1, 2, 0, 0, 0), (2, 0, 1, 0, 0),
(1, 1, 1, 0, 1), (1, 1, 1, 0, 2), (2, 0, 0, 1, 0)

}
∪ Fi.

Based on the obtained transition rules, the state transition diagram of the Markov
process for the subsystem i is presented in Figure 4 as follows.
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According to the one-step transition rate matrix for the subsystem i, the reliability,
the lifetime distribution, and the lth moments of the lifetime of the subsystem i can be
expressed respectively as,

Ri(t) = αi exp(QWiWi
t)Ii, (2)

Fi(t) = 1− Ri(t) = 1−αi exp(QWiWi
t)Ii, (3)

E
[

Ti
l
]
= (−1)l l!αiQ−1

WiWi
Ii

T , (l = 1, 2, . . .), (4)

where αi = (1, 0, 0, . . . , 0)1×|Wi| represents the initial state at t = 0, and Ii = (1, 1, . . . , 1)T
1×|Wi|.

3.2. Reliability Evaluation for Entire System

After acquiring knowledge of the reliability of a single subsystem, the finite Markov
chain imbedding method is applied to formulate the state probability function of the entire
system. Define a random variable Ns

i to represent the number of failed subsystems in the
first i subsystems of the entire system. A Markov chain with the random variable Ns

i is
built as

Yi = Ns
i , i = 1, 2, . . . , n,

where the initial state of the Markov chain is Y0 = 0 at t = 0.
The state space of the defined Markov chain is

Ω = W ∪ F = {ns
i : 0 ≤ ns

i ≤ n− 1} ∪ {ns
i : ns

i = n},

where W is the set of the working states of the system and F denotes the failed state of
the system with a meaning of no working subsystem. Therefore, this Markov chain has
n + 1 states in total. The transient rules among the states of the Markov chain for the entire
system are listed as follows.

(1) If ns
i ∈ {0, 1, . . . , n− 1}, P

{
Yi+1 = ns

i

∣∣Yi = ns
i
}
= Ri(t).

(2) If ns
i ∈ {0, 1, . . . , n− 2}, P

{
Yi+1 = ns

i + 1
∣∣Yi = ns

i
}
= 1− Ri(t).

(3) P{Yi+1 = F|Yi = n− 1} = 1− Ri(t).
(4) P{Yi+1 = F|Yi = F} = 1.
(5) All other transition probabilities are zeros.

After figuring out the transition rules, the one-step transition probability matrix can
be formulated as:

Ai =

0
1
...

n− 2
n− 1

F



Ri(t) 1− Ri(t) · · · 0 0 0
0 Ri(t) · · · 0 0 0
...

...
. . .

...
...

...
0 0 · · · Ri(t) 1− Ri(t) 0
0 0 · · · 0 Ri(t) 1− Ri(t)
0 0 · · · 0 0 1


Subsequently, the state probability of the Markov chain can be expressed as follows:

P(t) = α
n

∏
i=1

Ai (5)

where α = [1, 0, . . . , 0]1×(n+1). Then the state probability function of the entire system is
represented as:

Rs
m(t) =


P(t, 1), m = 0

km
∑

j=kn−1+1
P(t, j), m = 1, 2, . . . , M− 1

P(t, n + 1), m = M

(6)

where P(t, j) represents the value of the j-th element in the vector P(t).
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Example 3. The application of the finite Markov chain imbedding method is illustrated as
follows to derive the state probability function of the entire system. The system consists of
5 (n = 5) subsystems, and the reliability of each subsystem is r1, r2, r3, r4, r5. State 1 of the
entire system indicates that the number of failed subsystems in the system is greater than
0 (k0 = 0) and less than or equal to 2 (k1 = 2). State 2 denotes that the number of failed
subsystems in the system is greater than 2 (k1 = 2) and not more than 4 (k2 = 4). Then the
Markov chain is constructed as,

Yi = Ns
i , i = 1, 2, 3, 4, 5

with the initial state Y0 = 0 at t = 0.

The state space of the Markov chain is obtained as

Ω = W ∪ F = {0, 1, 2, 3, 4} ∪ {5}

The one-step transition probability matrix Ai for i = 1, 2, 3, 4, 5 can be written as

Ai =

0
1
2
3
4
F



ri 1− ri 0 0 0 0
0 ri 1− ri 0 0 0
0 0 ri 1− ri 0 0
0 0 0 ri 1− ri 0
0 0 0 0 ri 1− ri
0 0 0 0 0 1


The state probability vector of the Markov chain is derived as:

P(t) = [1, 0, 0, 0, 0, 0]
5

∏
i=1

Ai =
[
P(t, 1) P(t, 2) P(t, 3) P(t, 4) P(t, 5) P(t, 6)

]
,

where P(t, 1) = r1r2r3r4r5,
P(t, 2) = −r5(r4(r3(r1(r2 − 1)+r2(r1 − 1))+r1r2(r3 − 1))

+r1r2r3(r4 − 1))− r1r2r3r4(r5 − 1)
,

P(t, 3) = r5(( r4 − 1)(r3(r1(r2 − 1)+r2(r1 − 1))+r1r2(r3 − 1))
+r4(( r1(r2 − 1)+r2(r1 − 1))(r3 − 1)+r3(r1 − 1)(r2 − 1)))
+(r4(r3(r1(r2 − 1)+r2(r1 − 1))+r1r2(r3 − 1))+r1r2r3(r4 − 1))(r5 − 1)

,

P(t, 4) = −(r5 − 1)(( r4 − 1)(r3(r1(r2 − 1)+r2(r1 − 1))+r1r2(r3 − 1))
+r4(( r1(r2 − 1)+r2(r1 − 1))(r3 − 1)+r3(r1 − 1)(r2 − 1)))
−r5((( r1(r2 − 1)+r2(r1 − 1))(r3 − 1)+r3(r1 − 1)(r2 − 1))(r4 − 1)+r4(r1 − 1)(r2 − 1)(r3 − 1))

,

P(t, 5) = ((( r1(r2 − 1)+r2(r1 − 1))(r3 − 1)+r3(r1 − 1)(r2 − 1))(r4 − 1)+r4(r1 − 1)(r2 − 1)(r3 − 1))(r5 − 1)
+r5(r1 − 1)(r2 − 1)(r3 − 1)(r4 − 1)

and P(t, 6) = −(r1 − 1)(r2 − 1)(r3 − 1)(r4 − 1)(r5 − 1) .
Subsequently, the state probability function of the entire system can be gained

as follows:

Rs
m(t) =


P(t, 1), m = 0
P(t, 2) + P(t, 3), m = 1
P(t, 4) + P(t, 5), m = 2
P(t, 6), m = 3

4. Numerical Examples

A lithium battery system is used to demonstrate the applicability of the proposed
model and the validity of the applied method. In a lithium battery pack, there are 6 (n = 6)
subsystems, each of which consists of several battery cells. During operation, the batteries
in each subsystem should maintain the SOC balance, that is, the batteries belonging to the
same subsystem should maintain the same level of SOC. Sharing the SOC via the common
bus is one of the commonly used methods for the SOC balance of the lithium battery system.
It refers to the fact that the degradation paths of individual cells are not the same, which
may lead to unequal SOC between batteries. The common bus transmits the SOC to the
cells with a SOC below the average value, thereby making the SOC equal between the cells
in real time. Since this process happens instantaneously, the time is negligible. When the
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total performance of the lithium battery subsystem reduces to a certain value, the battery
protection will be automatically turned on to lower the degradation rate and slow down
the deterioration of the batteries. Meanwhile, the battery protection may also fail over time.
Once the total performance of the lithium battery subsystem is not greater than a certain
threshold, the subsystem is regarded as failed. The entire battery system is divided into
multiple states according to the number of failed subsystems, as shown in Table 1. The
parameters of the batteries in each subsystem are presented in Table 2.

Table 1. Multiple states of entire system and corresponding number of failed subsystems.

State of entire
System 0 1 2 3 4

Number of failed
subsystems 0 1, 2 3, 4 5 6

Parameters of state
division - k0 = 0, k1 = 2 k2 = 4 k3 = 5 -

Table 2. Model parameters in the operation mechanism of each subsystem.

Subsystem i ni
(λi,1

hi(hi−1),λ
i,2
hi(hi−1)),

hi=3,2,1
λi,p Gi di,1,di,2

1 3 (0.02, 0.01) 0.15 {0, 2, 4, 8} 14, 12
2 3 (0.02, 0.01) 0.1 {0, 2, 4, 8} 14, 10
3 3 (0.02, 0.01) 0.1 {0, 2, 4, 8} 14, 12
4 3 (0.02, 0.01) 0.15 {0, 2, 4, 8} 16, 12
5 3 (0.02, 0.005) 0.1 {0, 2, 4, 8} 14, 12
6 4 (0.15, 0.01) 0.1 {0, 2, 4, 8} 14, 12

When the proposed model is utilized in practice, the confidence intervals of the
reliability indexes and a set of model parameters can be estimated based on the data. For
example, the literature [49–51] can provide reference values for the confidence intervals of
the reliability indexes. Estimation methods, such as the moment estimation and maximum
likelihood estimation, can be employed to estimate the model parameters [52–54].

Based on the above analysis processes, the reliability of a single subsystem and the
state probability function of the entire system can be obtained. The reliability curves of
each subsystem are presented in Figure 5. As seen in Figure 5, the reliability of each
subsystem decreases along with time until it converges to 0. This is because the batteries in
the subsystem degrade over time, without considering maintenance, which includes the
activities to improve the battery performance.

Figure 6 gives multiple comparisons of the reliability between two subsystems, with
the aim of carrying out the sensitivity analysis of the model parameters of the subsystems.
By comparing subsystem 1 and 3, the reliability of these two subsystems is not obviously
different with different failure rates of the protective device, as shown in Figure 6a. Fig-
ure 6b shows the comparison of subsystem 1 and 4, which examine the effect of varying
triggering parameters of protective devices on the subsystem reliability. The reliability of
subsystem 4 is slightly larger than that of subsystem 1 because its device can be triggered
earlier. In Figure 6c, the parameter difference between subsystem 2 and 3 is the different
failure criteria of the entire system. It can be observed in Figure 6c that the parameter of
the failure criterion of the entire system exerts great influence on the system reliability, and
the reliability of subsystem 2, with a more stringent failure criterion, is much greater than
that of subsystem 3. In Figure 6d, the failure rate and triggering parameters of protective
device are all different, but the difference in the reliability of subsystem 3 and 4 is not large.
As seen in Figure 6e, the reliability curve of subsystem 5 is in a higher place than that of
subsystem 3, resulting from the smaller degradation rate of the units during the operation
of the protective device. Figure 6f reveals that the reliability of subsystem 3 is significantly
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higher than that of subsystem 6, owing to the much smaller degradation rates of the units
during operation without protection from the device. To sum up, it can be determined
that the failure rates of the units and the failure threshold of the subsystem have a greater
impact on the reliability of the subsystem.

Figure 5 in the published PDF: 
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Figure 5. Reliability of each subsystem in the system. 

4. Figure 6 is not clear in the published PDF. It should be presented in the following. 

Figure 6 in the published PDF: 

Figure 5. Reliability of each subsystem in the system.

 

 
 

The Figure 6 should be presented as follows: 

 

 
0 50 100 150 200

t (month)

0

0.2

0.4

0.6

0.8

1

R
i(t

)

i=1
i=3

(a) Reliability of subsystem 1 and 3

 

 
Figure 6. Comparisons of the reliability of different subsystems. 

5. Figure 7 is not clear in the published PDF. It should be presented in the following. 

Figure 7 in the published PDF: 

 

The Figure 7 should be presented as follows: 

Figure 6. Cont.



Mathematics 2022, 10, 4615 12 of 16

 

 
Figure 6. Comparisons of the reliability of different subsystems. 

5. Figure 7 is not clear in the published PDF. It should be presented in the following. 

Figure 7 in the published PDF: 

 

The Figure 7 should be presented as follows: 

Figure 6. Comparisons of the reliability of different subsystems.

Figure 7 presents the state probability function of the entire system reliability varying
with time. The system is in state 0 at the initial time, and then the probability of the system
in state 0 gradually decreases until converging to 0 at about t = 40 months. Along with
the time, the probability of the system in the intermediate states (states 1, 2, and 3) rises
first and then decreases until they drop to 0. The likelihood that the system is in state
4 equals 0 at the initial moment and gradually gets larger until reaching the value 1. It can
be interpreted that the number of failed subsystems gradually increases with the time, and
the conditions of being in the intermediate states will be satisfied at first, and eventually all
subsystems will fail, which leads to the system staying in state 4.

 
Figure 7. Analytic and simulative results of state probability function of an entire system. 
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Figure 7. Analytic and simulative results of state probability function of an entire system.

Additionally, this paper constructs a Monte Carlo simulation-based algorithm to derive
the state probability function of the entire system, presented in Figure 8. As displayed in
Figure 7, the curves of the simulative and analytical results fit perfectly, which demonstrates
the correctness of the state probability function of the system obtained by the proposed
method. In the simulation procedure, it is applicable that the state residence times of units
and the lifetime of protective devices follow other appropriate stochastic distributions,
which are not limited to exponential distributions.
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Based on the above results, it can be summarized that the degradation rates of the units,
the failure rate of the protective device, the triggering conditions of the protective device
and the failure threshold of the subsystem all affect the reliability of the system. Neverthe-
less, various influencing factors exert different degrees of effects on the system reliability.
Therefore, under the condition of limited cost, sensitivity analyses of various influencing
factors can be conducted to determine the key factors, and then feasible suggestions can be
put forward for the engineers.
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5. Conclusions

This work builds a reliability model that comprehensively considers the balancing
mechanism, performance sharing mechanism, and protection mechanism. The entire
system contains several subsystems, and each subsystem consists of multiple units. In
one subsystem, each unit has multiple levels of performance, and the equal performance
among all units is required for the smooth operation of the subsystem. When some units
are in different performance states and the subsystem is unbalanced, the performance can
be transmitted through the common bus to make the subsystem regain the performance
balance. When the total performance of the subsystem reaches a certain threshold, the
protective device is triggered and starts to work on reducing the degradation rates of the
units. In addition, the protective device may also fail, and the degradation rates of the
units return to the original values after the device failure. The subsystem fails once the
total performance of the units is lower than or equals a certain threshold. Based on the
number of failed subsystems, the state of the system is divided into multiple states. The
research results show that the system reliability is affected by many factors, such as the
unit degradation rates, protection device triggering conditions, degradation rate of the
protective device, system failure threshold, and so on. Nevertheless, the above factors all
have limits to their influence on the system reliability.

Despite this research fruit regarding the reliability of the multi-state k-out-of-n system
with multiple operation mechanisms, some extensive works can be conducted in the
following three aspects. First, the common bus for the performance rebalancing actions is
considered to have infinite capacity. Future study can consider the capacity of the common
bus as having a maximum value, which may result in the failure of performance rebalancing
actions, causing system imbalance. Second, it is assumed that the protective device has
binary states in this paper. It is worth studying the case where the protective device has
multiple states in the future, which is more general. Third, deriving the confidence intervals
of the reliability functions of the proposed model could be another interesting topic in
the future.

Author Contributions: Conceptualization and writing—original draft preparation, Y.S.; Methodol-
ogy, funding acquisition and writing—review and editing, X.W. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by Beijing Social Science Foundation (Grant No. 20GLC052).

Data Availability Statement: All data is included in the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

n Total number of subsystems in entire system
ni Total number of units in subsystem i

λi,1
hi(hi−1)

Degradation rate of the units deteriorating from state hi to hi − 1 in subsystem i
without the protection from protective device

λi,2
hi(hi−1)

Degradation rate of the units deteriorating from state hito hi − 1 in subsystem i
when the protective device works

λi,p Degradation rate of the protective device in subsystem i when the protective device works

di,1
Critical threshold of the total performance of the subsystem i leading to the trigger of
its protective device

di,2 Critical value of the total performance of the subsystem i leading to its failure
M + 1 Total number of system states
Ri(t) Reliability function of the subsystem i
Rs

m(t) State probability function of the entire system
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