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Abstract: The main idea of principal component analysis (PCA) is to transform the problem of
high-dimensional space into low-dimensional space, and obtain the output sample set after a series
of operations on the samples. However, the accuracy of the traditional principal component analysis
method in dimension reduction is not very high, and it is very sensitive to outliers. In order to
improve the robustness of image recognition to noise and the importance of geometric information
in a given data space, this paper proposes a new unsupervised feature extraction model based on
l2,p-norm PCA and manifold learning method. To improve robustness, the model method adopts
l2,p-norm to reconstruct the distance measure between the error and the original input data. When the
image is occluded, the projection direction will not significantly deviate from the expected solution
of the model, which can minimize the reconstruction error of the data and improve the recognition
accuracy. To verify whether the algorithm proposed by the method is robust, the data sets used in this
experiment include ORL database, Yale database, FERET database, and PolyU palmprint database.
In the experiments of these four databases, the recognition rate of the proposed method is higher
than that of other methods when p = 0.5. Finally, the experimental results show that the method
proposed in this paper is robust and effective.

Keywords: principal component analysis; manifold learning; features extracting; l2,p-norm;
neighborhood preserving embedding

MSC: 68U10

1. Introduction

To solve the problem caused by high dimensions, researchers have summarized many
dimensionality reduction methods [1–3], including principal component analysis (PCA) [4]
that belongs to unsupervised learning and linear discriminant analysis (LDA) [5] that
belongs to supervised learning, and these two methods generally project data from high-
dimensional space to low dimensional space first. In order to solve the problem of ignoring
the structure information embedded in the pixel when converting the two-dimensional
image data into one-dimensional image vector [6], 2DPCA [7] was proposed. Inspired by
2DPCA, 2DLDA [8] and multi-directional principal component analysis (MPCA) [9] have
also been proposed one after another. These algorithms can extract more effective features
from the image itself.

In recent years, l1-norm [10] has been greatly developed, and when the image is
noisy, the recognition accuracy of the image is still high [11–15]. To further improve the
robustness of subspace learning method, lp-norm is proposed, and because of it, PCA [16]
and LDA [17] are further developed. However, the above methods do not have the purpose
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of minimizing the reconstruction error. Therefore, Ding et al. [18] proposed a l1-norm
rotation invariant algorithm of PCA objective function, which is called rotation invariant
l1-norm PCA (R1-PCA). To further improve the performance of PCA algorithm, l2,p-norm [19]
is proposed. Bi et al. [20] proposed locally invariant robust principal component analysis
(LIRPCA), which uses l2,p-norm to constrain PCA to solve the problem of underwater image
recognition [21]. Although LIRPCA solves the problem of PCA in image reconstruction to
a certain extent, it also reduces the influence of large distance as much as possible. However,
LIRPCA is difficult to capture the nonlinear structure of manifolds, and there are also some
limitations, for example, it is unable to generalize new samples, and its training time is
too long.

The above methods can only deal with the dimensionality reduction of linear data.
Therefore, in order to solve some nonlinear image data dimensionality reduction problems,
scholars have proposed many dimensionality reduction methods that can solve nonlinear
problems, and manifold learning [22] is one of them. Isometric mapping (Isomap) [23] and
laplacian eigenmaps (LE) [24], which belongs to classical manifold learning methods, can
learn some nonlinear manifold structures, but these methods lack the ability of generaliza-
tion, in other words, it means that these algorithms have weak adaptability to new sample
databases. Locally linear embedding (LLE) [25] and neighborhood preserving embedding
(NPE) [26,27] based on manifold learning [28,29] solve this problem well. As a linear
approximation of LLE, NPE has a very good effect on image dimensionality reduction
and is easy to process new image samples. A manifold regularization is used to consider
non-linearity, so kernel PCA (KPCA) [30], which is another popular extension of PCA that
considers non-linearity, is proposed.

As we all know, images will be affected by various interferences in the process of
recognition, such as occlusion, blurring, etc. First of all, in order to extract important
features of an image, this paper improves the PCA algorithm, and proposes a new principal
component analysis method called manifold regularized principal component analysis
method using l2,p-norm (l2,p-MRPCA). This method uses l2,p-norm to reconstruct the dis-
tance measurement between the error and the original input data. If the noise of the
experimental data is relatively large, there is no obvious deviation between the expected
projection direction and the desired solution of l2,p-MRPCA, so as to minimize the recon-
struction error of the data and improve the recognition accuracy. Secondly, in order to
improve the modeling performance, manifold regularization terms are used. Manifold
learning shows that observations are always collected from low dimensional manifolds
embedded in high-dimensional environment space. l2,p-MRPCA is a generalized robust
metric learning method of PCA, and this method not only has strong robustness to outliers,
but also maintains the good characteristics of PCA. Finally, the structure of l2,p-MRPCA is
relatively simple, belonging to unsupervised subspace learning algorithm, and the ability of
model learning task is high. This paper mainly contains the following three contributions:

1. A new algorithm based on PCA is proposed. The model adopts l2,p-norm as the
function measure, which is a robust model.

2. This method combines the advantages of regularization and manifold learning, and
has higher robustness and recognition effect.

3. In the non greedy iterative algorithm, the weighted covariance matrix is considered
to further reduce the reconstruction error.

The following has four sections. Section 2 mainly presents the algorithms which
are related to this paper, including PCA, R1-PCA, NPE, and LIRPCA. Section 3 mainly
presents the objective function, algorithm optimization, and algorithm flow of l2,p-MRPCA.
Section 4 analyses experimental comparisons on the ORL, Yale, FERET, and PolyU palm-
print databases. Section 5 summarizes the full text.

2. Related Work

The related work includes the definition of the normal form mentioned in the paper
and some related algorithms, such as PCA, R1-PCA, NPE and LIRPCA.
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2.1. Symbols and Definitions

Let the data set X = (x1, x2, . . . , xn) to represent a standardized training sample matrix,
which contains n samples, and each sample is an m dimensional column vector. In this
paper, l2-norm, R1-norm and l2,p-norm are adopted. The definition of l2-norm is given
as follows:

‖X‖2 =

√
n

∑
i=1
|xi|2 (1)

R1-norm is defined as:

‖X‖R1
=

n

∑
i=1

√√√√ m

∑
j=1

∣∣xij
∣∣2 (2)

l2,p-norm is defined as:

‖X‖2,p =
1
p

√√√√√ n

∑
i=1

p
2

√√√√ m

∑
j=1

∣∣xij
∣∣2 (3)

2.2. Principal Component Analysis (PCA)

PCA is a common feature extraction algorithm, which is mainly used in image recog-
nition field. Assuming that U ∈ Rm×q is a projection matrix. This method uses l2-norm as
constraint, and we can obtain the optimal projection matrix U after finding the solution of
the following optimization problem:

min
U

n

∑
i=1

∥∥∥xi −UUTxi

∥∥∥2

2
s.t. UTU = Iq (4)

where Iq is a q × q identity matrix. Through matrix tracing operation, we can convert
Equation (4) into:

max
U

n

∑
i=1

∥∥∥UUTxi

∥∥∥2

2
= max

U
tr(UTGtU) (5)

where Gt =
n
∑

i=1
xi(xi)

T is called the image covariance matrix, and the projection matrix U

of Equation (4) is composed of Gt eigenvector corresponding to the maximum eigenvalue
of q. However, because l2-norm is sensitive to noise [31], and its robustness is low, and the
iterative process is cumbersome, the traditional PCA method is relatively limited.

2.3. Rotation Invariant L1-PCA (R1-PCA)

In R1-norm, we use l2-norm to measure spatial dimension and l1-norm to calculate the
sum of different data points. R1-PCA is not sensitive to noise [15], so it is easier to process
some blurred images. Here is the specific definition of R1-PCA:

min
U

n

∑
i=1

∥∥∥xi −UUTxi

∥∥∥
R1

s.t. UTU = Iq (6)

After a series of optimization iterative algorithms, we can obtain the optimal projection
matrix U. However, R1-PCA uses l2-norm to centralize the training samples, so it can not
guarantee that the final calculated mean is optimal, so there is still room for improvement.

2.4. Neighborhood Preserving Embedding (NPE)

The idea of NPE is the same as LLE, which is to keep the local linear structure of
manifold unchanged in the process of dimensionality reduction, so as to extract useful
information from data. The local linear structure is represented by the reconstruction of the
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weight matrix, which is the coefficient matrix of the linear reconstruction of the neighbors
to the nodes in the neighborhood.

Similar to other classical manifold learning algorithms, NPE has three steps:

1. Constructing Neighborhood Graph;
2. calculating Weight Matrix;
3. and computational mapping.

In conclusion, we can obtain the objective function of NPE in low dimensional space
as follows:

min
U

n

∑
i=1

∥∥∥∥∥UTxi −
m

∑
j=1

Wij ·UTxj

∥∥∥∥∥
2

2

s.t. UTXXTU = Iq (7)

where the weight matrix Wij mentioned in Formula (7) can be defined as:

m

∑
j=1

Wij = 1, i = 1, 2, . . . , n (8)

where Wij represents the weight value of the edge from node i to node j. If there is no such
edge, the value of Wij is 0.

2.5. Locally Invariant Robust Principal Component Analysis (LIRPCA)

LIRPCA hopes to minimize the deviation between the reconstructed image and the
original image of each projection data and further enhance the robustness of the model,
so as to ensure that the extracted features can well reflect the main information of the
original data space. Therefore, LIRPCA uses l2,p-norm to constrain PCA. In order to recover
low-dimensional information from high-dimensional environment space, we hope to find
a U that ensures that Uxk and Uxj are adjacent. Based on the above objectives, LIRPCA is
specifically defined as follows:

min
U

n

∑
i=1

∥∥xi −UUTxi
∥∥p

2

‖xi‖
p
2

+
1
2

Ψ
m

∑
j=1

∥∥∥UT(xi − xj
)∥∥∥2

2

Wij

 (9)

where Ψ > 0, and Wij is a weight matrix which can be defined as:

Wij =



exp
(
−‖xi−xj‖2

2
2σ2

)
, if xi ∈ Mh

(
xj
)
,

exp
(
−‖xi−xj‖2

2
2σ2

)
, if xj ∈ Mh(xi),

0 , otherwise,

(10)

where σ > 0, and Mh
(
xj
)

is the set of k nearest data of xi, Mh(xi) is the set of k nearest data
of xj and Wij represents the i-th, and the j-th column of the matrix W.

3. Manifold Regularized PCA Method Using l2,p-norm(l2,p-MRPCA)

This chapter mainly includes the definition of l2,p-MRPCA and its algorithm optimiza-
tion process and convergence analysis.
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3.1. Motivation and Objective Function

In order to reduce the influence of large distance as a measure and minimize the
reconstruction error, combining with the LIRPCA mentioned above, we use l2,p-norm
instead of l2-norm, and propose l2,p-PCA as follows:

min
U

n

∑
i=1

∥∥xi −UUTxi
∥∥p

2

‖xi‖
p
2

s.t. UTU = Iq (11)

where p is 0 < p < 2. By solving this constrained optimization problem, the optimal
projection matrix U will be obtained.

However, considering the importance of considering the internal geometric informa-
tion of data space to improve the performance of the algorithm and ensuring the rotation
invariance of the data of the algorithm, popular learning, such as NPE, can be applied to
this method. The specific formula of NPE is shown in Formula (7) mentioned above.

To sum up, combining Equations (4) and (11), we can obtain the following objective
function:

min
U

n

∑
i=1

∥∥xi −UUTxi
∥∥p

2

‖xi‖
p
2

+ φ
n

∑
i=1

∥∥∥∥∥UTxi −
m

∑
j=1

Wij ·UTxj

∥∥∥∥∥
2

2

s.t. UTU = Iq (12)

where ϕ > 0.

3.2. Optimization

Formula (12) is divided into two parts:
n
∑

i=1

‖xi−UUT xi‖p
2

‖xi‖
p
2

and
n
∑

i=1

∥∥∥∥∥UTxi −
m
∑

j=1
Wij ·UTxj

∥∥∥∥∥
2

2

.

First, we simplify the
n
∑

i=1

‖xi−UUT xi‖p
2

‖xi‖
p
2

part.

n
∑

i=1

‖xi−UUT xi‖p
2

‖xi‖
p
2

=
n
∑

i=1

‖xi−UUT xi‖2
2‖xi−UUT xi‖p−2

2
‖xi‖

p
2

=
n
∑

i=1
tr
[(

xi −UUTxi
)T(xi −UUTxi

)]
qi

=
n
∑

i=1
tr
[(

(xi)
T − (xi)

TUUT
)(

xi −UUTxi
)]

qi

=
n
∑

i=1
tr
[
(xi)

Txi − (xi)
TUUTxi

]
qi

= tr
(
XDXT)− tr

(
UTXDXTU

)

(13)

where qi =
‖xi−UUT xi‖p−2

2
‖xi‖

p
2

and D is a diagonal matrix whose elements on diagonal are qi.

Then, we simplify the
n
∑

i=1

∥∥∥∥∥UTxi −
m
∑

j=1
Wij ·UTxj

∥∥∥∥∥
2

2

part.

n
∑

i=1

∥∥∥∥∥UTxi −
m
∑

j=1
Wij ·UTxj

∥∥∥∥∥
2

2

=
n
∑

i=1

(
UTxi −

m
∑

j=1
Wij ·UTxj

)T

·
(

UTxi −
m
∑

j=1
Wij ·UTxj

)
= tr

(
UTX(I −W)T(I −W)XTU

)
= tr

(
UTXMXTU

)
(14)
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where I is a q× q identity matrix.
Finally, Equations (13) and (14) are combined and we obtain the equation:

min
U

n

∑
i=1

tr
(

XDXT
)
− tr

(
UTXDXTU

)
+ λtr

(
UTXMXTU

)
(15)

where λ is a regularization parameter which should be set to a small real value.

3.3. Algorithm Optimization

Since the unknown variables U and D have a certain relationship with U, it is difficult
to directly solve the optimal projection matrix U. However, in this case, we can use non
greedy iterative algorithm to solve U and D. The Lagrangian function of Equation (15) is

L(U, ξ) = tr
(

XDXT
)
− tr

(
UTXDXTU

)
+ λtr

(
UTXMXTU

)
+ tr

(
ξ
(

UTU − I
))

(16)

where ξ ∈ Rd×d is a symmetric matrix. Then we can apply the Karush–Kuhn–Tucker (KKT)
condition to find the projection matrix. We set ∂L(U,ξ)

∂U = 0, then,

∂L(U,ξ)
∂U =

∂tr(XDXT)
∂U − ∂tr(UT XDXTU)

∂U + λ
∂tr(UT XMXTU)

∂U

+
∂tr(ξ(UTU−I))

∂U

= 0−
(

XDXTU +
(
UTXDXT)T

)
+ λ

(
XMXTU +

(
UTXMXT)T

)
+ξ(U +

(
UT)T

)

= −2XDXTU + 2λXMXTU + 2Uξ

= 0

(17)

and Equation (17) can be converted into(
XDXT − λXMXT

)
U = Uξ (18)

We set ∂L(U,ξ)
∂ξ = 0, then,

UTU = Iq (19)

We can substitute Equations (18) and (19) into Equation (15), and the projection matrix
U satisfies the objective function can be obtained. Algorithm 1 gives the whole flow of U
and qi calculation.

Algorithm 1. l2,p-MRPCA

Input: Training set X, iterations T, parameters λ, p, q, t = 1
Output: U(t+1) ∈ Rm×q

Compute: W ∈ Rn×n, D ∈ Rn×n and M ∈ Rn×n where M = I −W
Initialize: U(t) to a m× q orthogonal matrix
Repeat:

1. compute the diagonal matrix D by each diagonal element qi.
2. Compute the weighted covariance matrix XDXT − λXMXT

3. Update matrix U(t+1) which is called the optimal projection matrix by Equation (14).

4. If J
(

U(t)
)
− J
(

U(t+1)
)
≤ δ (δ is a small positive real number, such as 10−8), where

J(U) = tr
(
XDXT)− tr

(
UT XDXTU

)
+ λtr

(
UT XMXTU

)
5. t← t + 1

Output the optimal projection matrix U(t+1), and the Algorithm 1 ends.
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Theorem 1. Let any two vectors et ∈ Rm, et+1 ∈ Rm, if 0 < p < 2, we can obtain the following
inequality: ∥∥∥e(t+1)

∥∥∥p

2∥∥e(t)
∥∥p

2

− p
2

∥∥∥e(t+1)
∥∥∥2

2∥∥e(t)
∥∥2

2

− 1 +
p
2
≤ 0 (20)

where et must be a non-zero vector, otherwise the denominator is zero, and the inequality is meaningless.

Proof of Theorem 1. Let f (y) = yp − p
2 y2 + p

2 − 1, through simple algebraic calculation,
we can obtain:

∂ f
∂y

= py
(

yp−2 − 1
)

(21)

It can be seen from Equation (21) that when y > 0 and 0 < p < 2, y = 1 is the only
extreme optimal solution of function f . In addition, we have f ′(y) > 0 (0 < y < 1) and
f ′(y) < 0 (1 < y). So y = 1 is the maximum point of function f . Substitute y = 1 into the
function y to obtain f = 0.

Combined with the previous analysis, we obtain that for any y > 0, f (y) ≤ 0,

Theorem 1 can be proved by setting y =
‖et+1‖2
‖et‖2

. �

Theorem 2. By using the iterative method which is described in Algorithm 1, we can obtain
that the value of Equation (12) decreases monotonically in each iteration until it converges to the
local optimum.

Proof of Theorem 2. As shown in Algorithm 1, in the t + 1 iteration, we have:

n
∑

i=1
tr
(
(xi)

Txiqi
(t)
)
−

n
∑

i=1
tr
((

U(t+1)
)T

xi(xi)
TU(t+1)qi

(t)
)

+λtr
((

U(t+1)
)T

XMXTU(t+1)
)

≤
n
∑

i=1
tr
(
(xi)

Txiqi
(t)
)
−

n
∑

i=1
tr
((

U(t)
)T

xi(xi)
TU(t)qi

(t)
)

+λtr
((

U(t)
)T

XMXTU(t)
)

(22)

Equation (22) can be transformed into:

n
∑

i=1

∥∥∥∥xi −U(t+1)
(

U(t+1)
)T

xi

∥∥∥∥2

2
qi
(t) + λtr

((
U(t+1)

)T
XMXTU(t+1)

)
≤

n
∑

i=1

∥∥∥∥xi −U(t)
(

U(t)
)T

xi

∥∥∥∥2

2
qi
(t) + λtr

((
U((t))

)T
XMXTU((t))

) (23)

Assuming that ei
(t+1) = xi − U(t+1)(U(t+1)T)xi, ei

(t) = xi − U(t)(U(t)T)xi and

v(t) = xi. As we already know that qi =
‖xi−UUT‖p−2

2
‖xi‖

p
2

, so Equation (23) can be converted into

n
∑

i=1

‖ei
(t+1)‖2

2

‖vi
(t)‖p

2‖ei
(t)‖2

2

∥∥∥ei
(t)
∥∥∥p

2
+ λtr

((
U(t+1)

)T
XMXTU(t+1)

)
≤

n
∑

i=1

‖ei
(t)‖p

2

‖vi
(t)‖p

2

+ λtr
((

U(t)
)T

XMXTU(t+1)
) (24)
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Equation (24) can be transposition into

n
∑

i=1

‖ei
(t+1)‖2

2

‖vi
(t)‖p

2‖ei
(t)‖2

2

∥∥∥ei
(t)
∥∥∥p

2

≤
n
∑

i=1

‖ei
(t)‖p

2

‖vi
(t)‖p

2

+ λtr
((

U(t)
)T

XMXTU(t)
)
− λtr

((
U(t+1)

)T
XMXTU(t+1)

) (25)

According to the properties of Theorem 1, we multiply 1
‖vi

(t)‖p
2

> 0 on both sides of

Equation (20) to obtain the inequality of each index i:

n

∑
i=1

p
2

∥∥∥ei
(t+1)

∥∥∥2

2∥∥vi
(t)
∥∥p

2

∥∥ei
(t)
∥∥2

2

∥∥∥ei
(t)
∥∥∥p

2
≥

n

∑
i=1

∥∥∥ei
(t+1)

∥∥∥p

2∥∥vi
(t)
∥∥p

2

−
n

∑
i=1

∥∥∥ei
(t)
∥∥∥p

2∥∥vi
(t)
∥∥p

2

+
n

∑
i=1

p
2

∥∥∥ei
(t)
∥∥∥p

2∥∥vi
(t)
∥∥p

2

(26)

Then, we multiply the whole of Equation (25) by p
2 and substitute it into Equation (26),

and we obtain
n
∑

i=1

‖ei
(t+1)‖p

2

‖vi
(t)‖p

2

− p
2 λtr

((
U(t)

)T
XMXTU(t)

)
≤

n
∑

i=1

‖ei
(t)‖p

2

‖vi
(t)‖p

2

− p
2 λtr

((
U(t+1)

)T
XMXTU(t+1)

) (27)

We substitute ei
(t+1) = xi −U(t+1)(U(t+1)T)xi, ei

(t) = xi −U(t)(U(t)T)xi and v(t) = xi
into Equation (27), and we can obtain

n
∑

i=1

∥∥∥xi−U(t+1)(U(t+1))
T

xi

∥∥∥p

2
‖xi‖

p
2

+ p
2 λtr

((
U(t+1)

)T
XMXTU(t+1)

)
≤

n
∑

i=1

∥∥∥xi−U(t)(U(t))
T

xi

∥∥∥p

2
‖xi‖

p
2

+ p
2 λtr

((
U(t)

)T
XMXTU(t)

) (28)

Note that 0 < p < 2, so p
2 λ > 0 is true. Finally, ensuring that ξ = p

2 λ is established, and
combine Equation (28) with Equation (15) to obtain Equation (28):

n
∑

i=1

∥∥∥xi−U(t+1)(U(t+1))
T

xi

∥∥∥p

2
‖xi‖

p
2

+ ξtr
((

U(t+1)
)T

XMXTU(t+1)
)

≤
n
∑

i=1

∥∥∥xi−U(t)(U(t))
T

xi

∥∥∥p

2
‖xi‖

p
2

+ ξtr
((

U(t)
)T

XMXTU(t)
) (29)

Equation (29) shows that the objective function of Equation (12) decreases monotoni-
cally in each iteration. Combining the convergence conditions given by Algorithm 1, it can
be determined that the objective function (12) has a lower bound, and finally converges to
the local optimal solution, so Theorem 2 is true. �

4. Experiments

The experiment part mainly includes the introduction of several databases, the presen-
tation of the experimental results on each database, and the analysis of the experimental
results. The whole experimental analysis is carried out under the windows system which
is configured with i5-1035G1 processor, 8G memory, PCI-E 1T solid state disk, and MX250
2G single display. All codes are compiled by using matlab tools.

4.1. Data Sets and Experimental Parameters

In order to verify the effectiveness of l2,p-MRPCA algorithm, this experiment compares
l2,p-MRPCA with PCA, R1-PCA, KPCA, NPE, and LIRPCA. The databases used in this
experiment include ORL face database, YALE face database and FERET face database,
and PolyU palmprint database. In order to verify the robustness of the algorithm under
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different levels of occlusion, we add 5 × 5 occlusion block and 10 × 10 occlusion block
to ORL face database and YALE face database respectively, and 5 × 5 occlusion block to
the FERET face database. The original images and continuous occlusion images of the
four libraries are shown in Figure 1. The ORL face database randomly selects training
samples n = 3, 4, 5, 6, YALE face database randomly selects training samples n = 4, 5,
and FERET face database randomly selects training samples n = 2, 3, 4, 5.
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For the parameters mentioned in l2,p-MRPCA algorithm, λ, p, and q are briefly de-
scribed. We select the optimal parameters of l2,p-MRPCA by crossing validation strategy,
and set parameters λ = 0.1 in the ORL face database, parameters λ = 0.08 in YALE face
database, parameters λ = 0.05 in FERET face database. Parameter p is chosen as 0.5 and 1,
and the two parameters values are substituted into the experiment to obtain the experimen-
tal results, so as to select better parameter values. The parameter q represents the number
of extracted feature information, which can be determined empirically through Cumulative
Percent Variance (CPV), and its formula is as follows:

CPV =

[
q

∑
i=1

λi

/
m

∑
j=1

λj

]
× 100%→ 90% (30)

In order to ensure that CPV can reach 90% during the experiment, the corresponding
q value is selected. In order to ensure the universality of the experimental results, the
experiments in each database are repeated at least 100 times.

4.2. The ORL Face Database

The database has 400 images, including 40 people with 10 images, and each image is
56 × 46 pixels. The shooting background of these images is relatively dark, which is the
front face collected in different time, light, facial expression, and facial detail environment
(some images have slight deviation). We obtain the broken line diagram of the recognition
rate of ORL database and its occlusion images in PCA, R1-PCA, KPCA, NPE, LIRPCA
(p = 1), LIRPCA (p = 0.5), l2,p-MRPCA (p = 1), and l2,p-MRPCA (p = 0.5), as shown in
Figure 2.
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First of all, it can be seen from Figure 2 that with the increase of the number of training
samples, the recognition rates of PCA, R1-PCA, KPCA, NPE, LIRPCA (p = 1), LIRPCA
(p = 0.5), l2,p-MRPCA (p = 1), and l2,p-MRPCA (p = 0.5) also increase. Secondly, we
compare the robustness of these algorithms. With the increase size of occlusion block, the
recognition rate of NPE is improved, which shows that the robustness of NPE algorithm is
relatively high, and it is suitable for recognizing occluded images. However, PCA, R1-PCA,
and KPCA reduce the recognition rate with the increase of occluded block size, which
indicates that the two methods are not suitable for recognizing occluded images. Finally,
the effect of parameter p on the experiment was observed. It can be seen from Figure 2
that the recognition rate of l2,p-MRPCA is higher than that of LIRPCA when the number of
training samples is the same, no matter whether the picture is occluded or not, no matter
p = 0.5 or p = 1. Moreover, the recognition effect of l2,p-MRPCA (p = 0.5) is higher than
that of l2,p-MRPCA (p = 1), which indicates that the value of p also has some influence on
the recognition rate.

4.3. The Yale Face Database

The face dataset contains 15 volunteers with 11 images, and each image is 80 × 100 pixels.
The shooting background of these images has more obvious changes in illumination, facial
expression, posture, and occlusion than ORL face database. We obtain the histogram of the
recognition rate of Yale database and its occlusion images in PCA, R1-PCA, KPCA, NPE,
LIRPCA (p = 1), LIRPCA (p = 0.5), l2,p-MRPCA (p = 1), and l2,p-MRPCA (p = 0.5), as
shown in Figure 3.

First of all, the pixels of YALE is 80 × 100 where the pixels of ORL is 56 × 46, so YALE
has a higher recognition rate than ORL. The reason may be that the shooting background of
ORL database is dark, while that of YALE database is bright. It may also be because YALE
database has high pixels. Secondly, in this experiment, the recognition rate of LIRPCA is
only slightly higher than that of PCA, or even lower than that of NPE. This may be because
LIRPCA is not able to capture the linear structure of manifolds. However, the recognition
rate of l2,p-MRPCA is still relatively high, which indicates that even if the methods are
based on l2,p-PCA, different regularization terms have a greater impact on the experimental
results. Finally, in the YALE experiment, the recognition rate of l2,p-MRPCA (p = 1) is
higher than that of LIRPCA (p = 0.5) when the training samples are the same, regardless
of whether the pictures are occluded or not. This shows that the robustness and stability
of l2,p-MRPCA are higher than that of LIRPCA. Therefore, the introduction of popular
regularization in l2,p-MRPCA has certain advantages.
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4.4. The FERET Face Database

There are 1400 images in this face dataset, including 200 people, and 7 images for
each person, and each image is adjusted to 40 × 40 pixels. These images are collected
under different illumination, facial expression, posture, and age. Most of the subjects are
westerners, and the changes of face images contained by each person are relatively single.
We obtain the original image of FERET database, and the database when block size is 5 × 5.
The histogram of the recognition rate of the pictures of occlusion blocks in PCA, R1-PCA,
KPCA, NPE, LIRPCA (p = 1), LIRPCA (p = 0.5), l2,p-MRPCA (p = 1), and l2,p-MRPCA
(p = 0.5) is shown in Figure 4.

First of all, from the results, the recognition rate of the database is relatively low,
which may be because the database has more people but fewer images for each person,
insufficient training samples, or the database image pixel is low. Since the recognition rate
on the original data is low, the experiment is only carried out on the original database
and 5 × 5 occlusion block. Secondly, on FERET database, the recognition rate of NPE is
relatively low, but it is relatively high on ORL database and YALE database. This may
be because the stability of NPE is not very strong, so the recognition rate varies greatly
on different databases. The recognition rate of R1-PCA decreases suddenly when the
training sample is 3, and increases suddenly when the training sample is 4. Combined
with previous experiments, it may be because of some errors in the experimental process,
or because the stability of R1-PCA is not very strong. Third, KPCA performs better on
FERET database than on ORL database and YALE database, and it is greatly affected by the
database and the number of training samples. Finally, the recognition rate of most methods
in this experiment is lower when the training sample number is 5 than when the training
sample number is 4, which is related to the number of each sample on FERET database. As
the results of the previous two experiments, when the number of training samples is the
same, the recognition rate of LIRPCA (p = 0.5) is higher than that of LIRPCA (p = 1), the
recognition rate of l2,p-MRPCA (p = 0.5) is higher than that of l2,p-MRPCA (p = 1), which
once again shows that the recognition rate effect of p = 0.5 is higher than that of p = 1.
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4.5. The PolyU Palmprint Verification Experiment

There are 600 images in this database, including the palmprint of 100 people. Each
person has 6 images, and each image is cut into 50 × 40 pixels. To better verify the
robustness of l2,p-MRPCA, we add 5 × 5, 10 × 10 and 20 × 20 occlusion blocks to the
database as shown in Figure 5, and three palmprint pictures of each person are selected
as training samples. Finally, the average recognition accuracy of each algorithm when the
number of training samples n = 3 can be obtained as shown in Table 1, the training time
on PolyU palmprint database is shown in Figure 6, classification recognition rate on PolyU
palmprint database is shown in Figure 7.
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Table 1. Experimental results of recognition rate (standard deviation)(%) on PolyU palmprint database.

TN 3

Occlusion Block Size None 5 × 5 10 × 10 20 × 20

PCA/% 76.32 (0.53) 67.32 (0.51) 61.98 (0.49) 43.12 (0.22)
R1-PCA/% 79.82 (0.42) 70.14 (0.44) 65.75 (0.53) 53.54 (0.35)
KPCA/% 77.23 (0.12) 73.04 (0.50) 58.33 (0.49) 40.98 (0.16)
NPE/% 83.06 (0.42) 71.17 (0.44) 67.38 (0.47) 54.17 (0.54)

LIRPCA (p = 1)/% 81.78 (0.27) 72.00 (0.33) 65.47 (0.35) 57.10 (0.41)
LIRPCA (p = 0.5)/% 86.53 (0.32) 73.15 (0.35) 66.56 (0.31) 57.64 (0.29)

l2,p-MRPCA (p = 1)/% 86.91 (0.30) 73.03 (0.38) 68.96 (0.32) 61.82 (0.07)
l2,p-MRPCA (p = 0.5)/% 89.01 (0.33) 74.54 (0.36) 69.34 (0.35) 63.01 (0.43)

Mathematics 2022, 10, x FOR PEER REVIEW 17 of 21 
 

 

 

Figure 6. Training time on the PolyU palmprint database. 

 

Figure 7. Classification recognition rate of PCA, 𝑅1-PCA, KPCA, NPE, LIRPCA (𝑝 = 0.5), LIRPCA 

(𝑝 = 1), 𝑙2,𝑝-MRPCA (𝑝 = 0.5), 𝑙2,𝑝-MRPCA (𝑝 = 1) on the PolyU palmprint database. 

4.6. Result Analysis 

1. From the experimental results, 𝑅1-PCA, as an improved algorithm of PCA algorithm, 

has a high recognition rate both in the original image database and in the occluded 

database. 

2. When the experimental data is occluded, NPE, as a manifold learning method, most 

of the recognition rates are higher than PCA, indicating that the algorithm is less af-

fected by occlusion. When the image is occluded, the recognition effect is better. 

3. Compared to LIRPCA, 𝑙2,𝑝 -MRPCA introduces manifold learning method, so the 

recognition rate is more significant. In addition, it takes into account the advantages 

of manifold regularization when the image is occluded, so the recognition effect is 

better. As the clarity of each database in the experiment is different, the recognition 

rate made by different databases is relatively different. 

4. The training time on 𝑙2,𝑝-MRPCA is longer than PCA, KPCA and NPE, and is shorter 

than 𝑅1-PCA and LIRPCA. Considering the recognition rate, robustness, and algo-

rithm time of the algorithm, the training time on 𝑙2,𝑝-MRPCA is acceptable. 

Figure 6. Training time on the PolyU palmprint database.

First, it can be seen from Table 1 that l2,p-MRPCA (p = 0.5) has the best recognition
effect. With the increase of the number of occluded blocks, the recognition rate of PCA,
R1-PCA, KPCA, NPE, LIRPCA (p = 1), LIRPCA (p = 0.5), l2,p-MRPCA (p = 1), and
l2,p-MRPCA (p = 0.5) decreases gradually. Secondly, when the picture has no occlusion
block, the recognition rate of l2,p-MRPCA is only slightly higher than that of other al-
gorithms. However, as the size of the occlusion block becomes higher, the advantages
of l2,p-MRPCA become larger, which shows that the method is robust and suitable for
recognizing noisy images. Compared to PCA, R1-PCA, and KPCA, LIRPCA has a certain
recognition effect, but the recognition rate is always lower than that of l2,p-MRPCA. Al-
though LIRPCA, l2,p-MRPCA all use l2,p-PCA with good robustness, the regularization
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term of LIRPCA lacks a certain normalization ability, so the recognition effect is not as
good as that of l2,p-MRPCA. Finally, in general, l2,p-MRPCA has good recognition effect
and high robustness.
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4.6. Result Analysis

1. From the experimental results, R1-PCA, as an improved algorithm of PCA algo-
rithm, has a high recognition rate both in the original image database and in the
occluded database.

2. When the experimental data is occluded, NPE, as a manifold learning method, most
of the recognition rates are higher than PCA, indicating that the algorithm is less
affected by occlusion. When the image is occluded, the recognition effect is better.

3. Compared to LIRPCA, l2,p-MRPCA introduces manifold learning method, so the
recognition rate is more significant. In addition, it takes into account the advantages
of manifold regularization when the image is occluded, so the recognition effect is
better. As the clarity of each database in the experiment is different, the recognition
rate made by different databases is relatively different.

4. The training time on l2,p-MRPCA is longer than PCA, KPCA and NPE, and is shorter
than R1-PCA and LIRPCA. Considering the recognition rate, robustness, and algo-
rithm time of the algorithm, the training time on l2,p-MRPCA is acceptable.

5. The parameter p also has a certain impact on the recognition effect. Whether it is
LIRPCA or l2,p-MRPCA, the recognition efficiency is slightly higher when p = 0.5
than when p = 1.

In order to further verify the stability of l2,p-MRPCA, the algorithm is tested on PolyU
palmprint dataset. The results show that even in the case of occlusion, l2,p-MRPCA can still
have a high recognition rate, so it shows that the algorithm has good robustness.

5. Conclusions

In this paper, we propose a manifold regularization principal component analysis
method by using l2,p-norm constraints. This method effectively combines l2,p-PCA and
manifold learning methods. It is not only robust to outliers, but also maintains the rotation
invariance of the algorithm, and protects the true geometric information of the original
data space. In the non greedy iterative algorithm of the model, the weight covariance
matrix is considered to further reduce the reconstruction error. Therefore, the model has
good expression ability, and it can effectively extract the algebraic features of images. This
method is mainly divided into the following three steps:
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1. Optimize the formula of l2,p-MRPCA;
2. the equation of the optimal matrix is obtained by using KKT condition;
3. and according to the algorithm proposed in this paper, the convergence of the objective

function is obtained, and the optimal projection matrix is obtained.

The experimental results show that the recognition rate of l2,p-MRPCA algorithm is
higher than some of the existing advanced algorithms, and it still has good robustness
when there is occlusion. However, since this algorithm specifies many parameters in the
implementation, which limits its application in practice, the following research will focus
on parameter adjustment.

Author Contributions: Conceptualization, M.W. and X.W.; methodology, M.W.; software, X.W.; vali-
dation, M.W., X.W. and G.Y.; formal analysis, M.W.; investigation, X.W.; resources, G.Y. and H.T.; data
curation, X.W.; writing—original draft preparation, X.W.; writing—review and editing, X.W.; visual-
ization, G.Y.; supervision, M.W. and H.T.; project administration, M.W. and H.T.; funding acquisition,
M.W and X.W. All authors have read and agreed to the published version of the manuscript.

Funding: This work is partially supported by the Postgraduate Research and Practice Innova-
tion Program of Jiangsu Province Nos. SJCX21_0890; the National Science Foundation of China
under Grant Nos. 61876213, 61861033, 61991401, 62172229, 61976117, 71972102, 61976118; the
KeyR&D Program Science Foundation in Colleges and Universities of Jiangsu Province Grant Nos.
18KJA520005, 19KJA360001, 20KJA520002; the Natural Science Fund of Jiangsu Province under
Grants Nos. BK20201397, BK20191409, BK20211295; and the Jiangsu Key Laboratory of Image and
Video Understanding for Social Safety of Nanjing University of Science and Technology under Grants
J2021-4. The Future Network Scientific Research Fund Project SRFP-2021-YB-25, and China’s Jiangxi
Province Natural Science Foundation (No. 20202ACBL202007). The Significant Project of Jiangsu
College Philosophy and Social Sciences Research “Research on Knowledge Reasoning of Emergency
Plan for Emergency Decision” (No: 2021SJZDA153). This work is funded in part by the ”Qinglan
Project” of Jiangsu Universities under Grant D202062032.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data
can be found here: [http://www.cl.cam.ac.uk/Research/DTG/attarchive:pub/data/att_faces.tar.Z;
http://www.itl.nist.gov/iad/humanid/feret/; http://www.comp.polyu.edu.hk/~biometrics] (all
accessed on 1 October 2022).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses or interpretation of data; in the writing of the manuscript or
in the decision to publish the results.

References
1. Wu, X.T.; Yan, Q.D. Analysis and Research on data dimensionality reduction method. Comput. Appl. Res. 2009, 26, 2832–2835.
2. Yu, X.X.; Zhou, N. Research on dimensionality reduction method of high-dimensional data. Inf. Sci. 2007, 25, 1248–1251.
3. Wan, M.H.; Lai, Z.H.; Yang, G.W. Local graph embedding based on maximum margin criterion via fuzzy set. Fuzzy Sets Syst.

2017, 2017, 120–131. [CrossRef]
4. Yang, J.; Zhang, D.D.; Yang, J.Y. Constructing PCA Baseline Algorithms to Reevaluate ICA-Based Face-Recognition Performance.

IEEE Trans Multimed. 2007, 37, 1015–1021.
5. Zuo, W.; Zhang, D.; Yang, J.; Wang, K. BDPCA plus LDA:a novel fast feature extraction technique for face recognition. IEEE Trans.

Syst. Man Cybern. B Cybern. 2006, 36, 946–953.
6. Kim, Y.G.; Song, Y.J.; Chang, U.D.; Kim, D.W.; Yun, T.S.; Ahn, J.H. Face recognition using a fusion method based on bidirectional

2DPCA. Appl. Math. Comput. 2008, 205, 601–607. [CrossRef]
7. Yang, J.; Zhang, D.; Frangi, A.F.; Yang, J.Y. Two dimensional PCA: A new approach to appearance-based face representation and

recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2004, 26, 131–137. [CrossRef]
8. Yang, J.; Zhang, D.; Yong, X.; Yang, J.Y. Two dimensional discriminant transform for face recognition. Pattern Recognit. 2005, 38,

1125–1129. [CrossRef]
9. Wang, J.; Barreto, A.; Wang, L.; Chen, Y.; Rishe, N.; Andrian, J.; Adjouadi, M. Multilinear principal component analysis for face

recognition with fewer features. Neurocomputing 2010, 73, 1550–1555. [CrossRef]

http://www.cl.cam.ac.uk/Research/DTG/attarchive:pub/data/att_faces.tar.Z
www.itl.nist.gov/iad/humanid/feret/
www.comp.polyu.edu.hk/~biometrics
http://doi.org/10.1016/j.fss.2016.06.001
http://doi.org/10.1016/j.amc.2008.05.032
http://doi.org/10.1109/TPAMI.2004.1261097
http://doi.org/10.1016/j.patcog.2004.11.019
http://doi.org/10.1016/j.neucom.2009.08.022


Mathematics 2022, 10, 4603 17 of 17

10. Wan, M.; Yao, Y.; Zhan, T.; Yang, G. Supervised Low-Rank Embedded Regression (SLRER) for Robust Subspace Learning.
IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 1917–1927. [CrossRef]

11. Wright, J.; Ganesh, A.; Rao, S.; Peng, Y.; Ma, Y. Robust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank
Matrice. Adv. Neural Inf. Process. Syst. 2009, 22, 2080–2088.

12. Wan, M.; Chen, X.; Zhao, C.; Zhan, T.; Yang, G. A new weakly supervised discrete discriminant hashing for robust data
representation. Inf. Sci. 2022, 611, 335–348. [CrossRef]

13. Ke, Q.F.; Kanade, T. Robust L1 norm factorization in the presence of outliers and missing data by alternative convex programming.
In Proceedings of the IEEE Computer Society Conference on Computer Vision & Pattern Recognition, San Diego, CA, USA,
20–25 June 2005; Volume 1, pp. 739–746.

14. He, R.; Hu, B.G.; Zheng, W.S.; Kong, X.W. Robust Principal Component Analysis Based on Maximum Correntropy Criterion.
IEEE Trans. Image Process. 2011, 20, 1485–1494.

15. Kwak, N. Principal Component Analysis Based on L1-Norm Maximization. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30,
1672–1680. [CrossRef] [PubMed]

16. Kwak, N. Principal Component Analysis by L-p-Norm Maximization. IEEE Trans. Cybern. 2014, 44, 594–609. [CrossRef] [PubMed]
17. Ye, Q.; Fu, L.; Zhang, Z.; Zhao, H.; Naiem, M. Lp- and Ls-Norm Distance Based Robust Linear Discriminant Analysis. Neural Netw.

2018, 105, 393–404. [CrossRef]
18. Ding, C.; Zhou, D.; He, X.; Zha, H. R1-PCA:Rotational invariant L1-norm principal component analysis for robust subspace factor-

ization. In Proceedings of the 23rd International Conference on Machine Learning, ACM, New York, NY, USA, 25–29 June 2006;
pp. 281–288.

19. Wang, Q.; Gao, Q.; Gao, X.; Nie, F. L2,p-norm based PCA for image recognition. IEEE Trans. Image Process. 2008, 27, 1336–1346.
[CrossRef]

20. Bi, P.; Du, X. Application of Locally Invariant Robust PCA for Underwater Image Recognition. IEEE Access 2021, 9, 29470–29481.
[CrossRef]

21. Xu, J.; Bi, P.; Du, X.; Li, J.; Chen, D. Generalized Robust PCA: A New Distance Metric Method for Underwater Target Recognition.
IEEE Access 2019, 7, 51952–51964. [CrossRef]

22. Wan, M.; Chen, X.; Zhan, T.; Xu, C.; Yang, G.; Zhou, H. Sparse Fuzzy Two-Dimensional Discriminant Local Preserving Projection
(SF2DDLPP) for Robust Image Feature Extraction. Inf. Sci. 2021, 563, 1–15. [CrossRef]

23. Tasoulis, S.; Pavlidis, N.G.; Roos, T. Nonlinear Dimensionality Reduction for Clustering. Pattern Recognit. 2020, 107, 107508.
[CrossRef]

24. Luo, W.Q. Face recognition based on Laplacian Eigenmaps. In Proceedings of the International Conference on Computer Science
and Service System, Nanjing, China, 27–29 June 2011; pp. 27–29.

25. Roweis, S.; Saul, L. Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science 2000, 290, 2323–2326. [CrossRef]
[PubMed]

26. Hu, K.L.; Yuan, J.Q. Statistical monitoring of fed-batch process using dynamic multiway neighborhood preserving embedding.
Chemom. Intell. Lab. Syst. 2008, 90, 195–203. [CrossRef]

27. Song, B.; Ma, Y.; Shi, H. Multimode process monitoring using improved dynamic neighborhood preserving embedding.
Chemom. Intell. Lab. Syst. 2014, 135, 17–30. [CrossRef]

28. Wan, M.; Chen, X.; Zhan, T.; Yang, G.; Tan, H.; Zheng, H. Low-rank 2D Local Discriminant Graph Embedding for Robust Image
Feature Extraction. Pattern Recognit. 2023, 133, 109034. [CrossRef]

29. Chen, X.; Wan, M.; Zheng, H.; Xu, C.; Sun, C.; Fan, Z. A New Bilinear Supervised Neighborhood Discrete Discriminant Hashing.
Mathematics 2022, 10, 2110. [CrossRef]

30. Li, W.H.; Gong, W.G.; Cheng, W.M. Method based on wavelet multiresolution analysis and KPCA for face recognition.
Comput. Appl. 2005, 25, 2339–2341.

31. De, F.; Torre, L.; Black, M.J. A Framework for Robust Subspace Learning. Int. J. Comput. Vis. 2003, 54, 117–142.

http://doi.org/10.1109/TCSVT.2021.3090420
http://doi.org/10.1016/j.ins.2022.08.015
http://doi.org/10.1109/TPAMI.2008.114
http://www.ncbi.nlm.nih.gov/pubmed/18617723
http://doi.org/10.1109/TCYB.2013.2262936
http://www.ncbi.nlm.nih.gov/pubmed/23807479
http://doi.org/10.1016/j.neunet.2018.05.020
http://doi.org/10.1109/TIP.2017.2777184
http://doi.org/10.1109/ACCESS.2021.3058761
http://doi.org/10.1109/ACCESS.2019.2911132
http://doi.org/10.1016/j.ins.2021.02.006
http://doi.org/10.1016/j.patcog.2020.107508
http://doi.org/10.1126/science.290.5500.2323
http://www.ncbi.nlm.nih.gov/pubmed/11125150
http://doi.org/10.1016/j.chemolab.2007.10.002
http://doi.org/10.1016/j.chemolab.2014.03.013
http://doi.org/10.1016/j.patcog.2022.109034
http://doi.org/10.3390/math10122110

	Introduction 
	Related Work 
	Symbols and Definitions 
	Principal Component Analysis (PCA) 
	Rotation Invariant L1-PCA (R1-PCA) 
	Neighborhood Preserving Embedding (NPE) 
	Locally Invariant Robust Principal Component Analysis (LIRPCA) 

	Manifold Regularized PCA Method Using l2,p-norm(l2,p-MRPCA) 
	Motivation and Objective Function 
	Optimization 
	Algorithm Optimization 

	Experiments 
	Data Sets and Experimental Parameters 
	The ORL Face Database 
	The Yale Face Database 
	The FERET Face Database 
	The PolyU Palmprint Verification Experiment 
	Result Analysis 

	Conclusions 
	References

