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Abstract: This study investigates the solution of an ocean waste plastic management system model.
The model is represented by a nonlinear system which is divided into three compartments: the waste
plastic materialsW(τ), marine debrisM(τ), and the process of recyclingR(τ). These compartments
form a simulated model that is solved using two collocation techniques based on a shifted version of
the Morgan-Voyce (MV) functions, while the first matrix collocation procedure is directly applied to
the given model, in the second approach we fuse the technique of quasilinearization together with the
shifted MV (SMV) collocation strategy. Moreover, we give the basic reproduction number and discuss
the existence of equilibria and the local stability of equilibria are investigated. The basic definitions of
the SMV polynomials are introduced and detailed convergence analysis of the related power series
expansion in both weighted L2 and L∞ norms are presented. Diverse numerical simulations are
performed to prove the accurateness and effectiveness of the presented approaches and the results
ate illustrated through tables and figures.

Keywords: collocation points; convergent analysis; shifted Morgan-Voyce functions; ocean system;
waste plastic management

MSC: 65L60; 41A10; 35N70; 65L20

1. Introduction

Over time, people have been trying to introduce plastic waste into the marine and
oceanic environment in several direct or indirect ways, damaging the ecosystem and also
putting human lives at risk. With the lag-of control intervention of marine protection, most
of the oceans all over the world are filled with a different form of plastic waste [1]. The
increased rate of plastic use is referred to as the fact of being low in cost and better in
performance compared to other natural materials pushing the world to increase the use of
plastic and thus the increase of the produced waste flushing eventually to the oceans and
increasing the risk [2]. The initial estimation of the annual plastic waste being delivered to
the oceanic world was estimated in 2010 to be almost 100 million within 50 km of the coastal
region, including approximately 240,000 microplastic materials which are considered a big
threat to the environment. These microplastics affect both oceanic entities while digesting
them and the possibility of releasing toxic metals that may harm marine ecology. About
54 parentages of the known marine species are estimated to be affected by this plastic
waste according to [3]. The United Nations Environment Program (UNEP) issued a report
on a global assessment of the effect of oceanic plastic waste and its effect on different
marine species ranging from plankton, birds, mammals, and shellfish [4]. They issued
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a warning that every living creature in the ocean is affected by this plastic waste in one
way or another, either by poisoning, starvation, or suffocation. The thrown plastic bottles
manufactured from poly (ethylene terephthalate) (PET) in the ocean have been proved
through several studies that they can be recycled after being found floating into the ocean
but the missing part is the application of collection methods [5]. The presence of plastic
waste in the ocean comes from the increasing demand for plastic use in several parts of
multiple industries. The use of plastic, for example, in the medical field, can save human
lives through the manufacturing of prostatic parts for people with disabilities. On the
other side, the disadvantages of using a large amount of plastic also have a prominent
part since plastic does not decompose easily in the environment and this may result in
its accumulation in the Ocean exponentially [6]. The accumulative productivity of plastic
exceeds more than 8 million tons per year and around 80 percent of this amount is dumped
into the ocean illegally through countries from the Middle East and Asia [7]. With the rapid
and increasing economy of these countries and with the lack of wastewater management
systems, 16 out of the top 20 countries come from middle-income countries [8]. The
overcome this crisis, countries have to come up with a plan to limit the amount of plastic
waste dumped into their oceans to support marine protection. The “G20 Action Plan on
Marine Litter” targets the limitation of such plastic garbage through some approaches
depending on the circular economy. To find some solution to this problem, researchers
have been trying to find some suitable ways to overcome this problem with the aid of
mathematical modeling which may help in giving more understanding in dealing with
such issues. For more details, the reader may refer to [9,10] and references therein.

Mathematical modeling for such problems gains over the past few years and increas-
ing interest in these issues arising with the present need for efficient solutions. These
models have many applications in different areas of science including physics, chemistry,
biology, and earth since. These mathematical models have proven to be valuable tools for
simulating several areas in biology. For example, Yoram et al. [11] have investigated the
modeling of pancreatic cancer growth, suggesting some treatment strategies to encounter
such a dangerous disease. In addition, the simulation of brain tumors and the immunother-
apy effect on the glioma-immune interaction have been simulated by Khajanchi in [12]
concluding reducing the growth of the glioma cell population and increasing the cell count
of macrophages. Furthermore, some types of cancer such as bladder cancer have been
analyzed, taking into account different treatments such as BCG immunotherapy as indi-
cated by Lazebnik et al. [13]. In epidemiology, understanding the dynamics of diseases
through mathematical modeling represents a critical factor in controlling these diseases.
Gude et al. [14] developed a decision support system for detecting and understanding the
COVID-19 virus through system dynamics. Shtilerman et al. [15] adapted a novel version
of the Laplace method to predict the number of species in a cretin region. The effect of
memory is witnessed while simulating these diseases and the use of fractional calculus
helps in this regard. For example, Shaikh et al. [16] considered a fractional order definition
of the with Mittag–Leffler kernel to simulate the HIV/AIDS model. The fractional-order
HIV-1 infection of CD4+ T-cells considering the impact of antiviral drug treatment is inves-
tigated in [17]. For more details on the modeling of real life phenomenon, see [18–22] and
references therein.

In this paper, we are concerned with the (local) stability properties and the simulation
of a system describing the waste plastic management (WPM) in the ocean. The waste plastic
management (WPM) includes three compartments: waste plastic material, marine debris,
and reprocess (recycle). The amount (size) of each compartment at time τ is, respectively,
denoted byW(τ),M(τ), andR(τ). The marine debris comes from the transformation of
plastic waste. This process occurs at a bilinear incidence rate and it is added by βWM per
unit of time. The waste plastic is recycled directly at a rate γ, while an amount of λ of new
waste plastic is reproduced per unit of time. The recycling rate of marine debris is α, while
recycled material may become waste again at the rate µ or may be lost from the system of
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plastic management at the rate θ. The transitions among compartments in the waste plastic
management are shown in Figure 1.

Figure 1. Flow diagram of the waste plastic management.

Thus, the WPM is stated through the following three differential equations with
quadratic nonlinearity system given by [23]

dW
dτ

(τ) = −W(τ)
(

γ + βM(τ)
)
+ µR(τ) + λ,

dM
dτ

(τ) =M(τ)
(

βW(τ)− α
)

,

dR
dτ

(τ) = γW(τ) + αM(τ)−
(

µ + θ
)
R(τ),

(1)

where τ > 0. Along with (1), the given initial conditions are

W(0) =W0, M(0) =M0, R(0) = R0. (2)

In the model (1), the three constantsW0,M0,R0 are the initial amounts of the variables
W(τ),M(τ), andR(τ) at the beginning, which are non-negative.

In this work, we first analyze stability properties of the WPM system (1) from the
viewpoint of dynamical system. To this end, the existence of two equilibria of this nonlinear
dynamic systems are obtained in the first place. Then, we utilize the next-generation method
to find the basic reproduction number of the system. Hence, by imposing some reasonable
conditions on this number we prove that the given system is locally asymptotically stable
at each equilibrium point.

To solve (1) numerically, we propose a novel collocation approach using a shifted
version of the known Morgan-Voyce polynomials. Collocation techniques have been widely
used through the use of different bases including Legendre, Chebyshev, Bernoulli, Bessel,
Genocchi, Lucas, and Vieta–Fibonacci polynomials, see [24–27]. Each of these polynomials
has its own set of parameters and orthogonality properties that help us to prove their
convergence whenever they are used in the approximation procedures. In this paper, we
investigate the application of the shifted Morgan-Voyce (SMV) polynomials for simulating
system (1). The MV polynomials are related to the well-known Fibonacci polynomials and
were first introduced in 1960 [28] and ever since the MV polynomials have been widely
used for solving different real-life problems with complex geometry. For example, the
MV polynomial has been used for simulating the delay integral differential equations
in [29]. In addition, the authors in [30] adapted a matrix collocation technique with the aid
of the MV polynomials for simulating the nonlinear ordinary differential equations with
cubic and quadratic nonlinearity. To the best of our knowledge, this is the first attempt
toward solving such a model by the shifted MV polynomials, and with the efficiency of
the use of such polynomials, we were interested to see how this novel technique shall deal
with such a problem. In order to get rid of the nonlinearity of WPM (1), we employ the
quasilinearization method (QLM) combined to SMV collocation approach, which is more
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efficient than the direct approach. Another novelty of this paper is that the convergence
analysis of SMV functions are established in two norms rigorously.

This content of this research paper is organized as follows: We introduce the details of
the MV polynomials of the second kind in Section 2. Then, the uniform convergence analysis
of SMV series is carried out. In Section 3, the direct SMV collocation approach is developed
and then used to solve the presented model. Section 4 is devoted to the combined QLM-
SMV approach based on the quasilinearization and collocation technique. The accuracy
of the proposed techniques is tested through the calculation of the residual error analysis
in Sections 3 and 4. The numerical results are illustrated in Section 5. Furthermore,
some comparisons are made with the outcomes of ode45 and the results of an available
existing computational scheme. The conclusion of the study is summarized in Section 6.
In Appendix A, we calculate the equilibrium points, the basic reproduction number and
discuss the locally asymptotic stability of each equilibrium point.

2. The Shifted Morgan-Voyce Functions and Their Convergence Results

Here, in the first part, we review the definition of the original second-kind Morgan-
Voyce (MV) functions and review some main properties of them. The shifted version of
these polynomial is then introduced. The convergence analysis of shifted MV functions is
established finally.

2.1. The Main Ingredients of Morgan-Voyce Functions: A Shifted Version

The second-kind of Morgan-Voyce (MV) polynomials are defined by [28,31]

Bq(t) =
sin[(q + 1)φ]

sin φ
, 2 cos φ = t + 2, (3)

for t ∈ [−4, 0]. For q = 0, we clearly obtain B0(t) = 1. By setting q = 1, we use the
trigonometric relation sin 2φ = 2 sin φ cos φ to arrive at B1(t) = t + 2. In order to obtain the
rest of MV polynomials for q ≥ 2, it is sufficient to expand sin(1 + q)φ, which gives us the
following recurrence

Bq(t) = (2 + t)Bq−1(t)− Bq−2(t), q = 2, 3, . . . . (4)

In addition, one may write them in an explicit representation form as

Bq(t) =
q

∑
p=0

(
q + p + 1

q− p

)
tp, q ∈ N. (5)

One can check that these polynomial functions are the (unique) solutions of the
following differential equations

(4t + t2)B′′q (t) + 3(t + 2)B′q(t) = q(q + 2)Bq(t), q ∈ N. (6)

Let us derive the orthogonality property of the MV functions of the second kind.
It is just mentioned in [31] that the set of MV functions are orthogonal with regard to
ω(t) =

(
4− (t + 2)2)1/2

=
√
−t(t + 4) for t ∈ [−4, 0].

Lemma 1. The set of MV polynomials are orthogonal with respect to weighting function ω(t) ≡√
−t(t + 4) on [−4, 0],

∫ 0

−4
Bq(t)Bp(t)ω(t) dt =

{
2π, q = p,
0, q 6= p.

(7)
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Proof. By utilizing the change of variable 2 cos φ = t + 2 one can easily seen that
√−t =

2 sin φ
2 and

√
t + 4 = 2 cos φ

2 . Thus, we obtain ω(t) = 2 sin φ. Thus, we have

∫ 0

−4
Bq(t)Bp(t)w(t) dt =

∫ 0

π

sin[(q + 1)φ] sin[(p + 1)φ]
sin2 φ

2 sin φ(−2 sin φ dφ).

We now simplify the terms and exploit the trigonometric relations to render∫ 0

−4
Bq(t)Bp(t)ω(t) dt = 2

∫ π

0

(
cos[(q− p)φ]− cos[(q + p + 2)φ]

)
dφ.

The result is obviously zero when we take q 6= p. In contrast to this, for q = p the
result of integral is not zero and is equal to 2π. Thus, the proof is completed.

The locations of zeros of the second kind MV polynomial Bq(t) are determined in the
following Lemma. They are all on (−4, 0), see [28].

Lemma 2. The roots of Bq(t) of degree q are all distinct, real, and negative given by

tζ = −4 sin2
[

ζ π

2q + 2

]
, ζ = 1, 2, . . . , q. (8)

In real applications, we are mainly interested in utilizing of the MV functions on an
arbitrary interval [τa, τb]. Therefore, the shifted MV polynomials are considered next:

Definition 1. The shifted MV functions (SMVFs) on [τa, τb] will be denoted by B?
q(τ) and are

defined as

B?
q(τ) = Bq(t), t = 4

(
τ − τb
τb − τa

)
, τ ∈ Ωa,b := [τa, τb]. (9)

In the explicit form, they are given by

B?
q(τ) =

q

∑
p=0

(
4
L

)p (q + p + 1
q− p

)
(τ − τb)

p, q ∈ N. (10)

where L = τb − τa.

According to (7), it is not a difficult task to prove that the set of shifted MV polynomials
{B?

q(τ)}∞
q=0 are orthogonal with regard to weight function ω?(τ) =

√
(τb − τ)(τ − τa). It

is sufficient to utilize the change of variable (9) in the orthogonality condition (7). The
resulting relation is ∫

Ωa,b

B?
q(τ)B?

p(τ)ω?(τ) dτ =
Lπ

2
δqp, (11)

where δqp represents the Kronecker delta function,which is δqp = 1 if q 6= p, and is zero
otherwise. It is also interesting to specify the locations of zeros associated with SMV
functions.The proof of the next result is given in Appendix B and is based on Lemma 2
and Definition 1.

Lemma 3. All roots of the shifted MV functions B?(τ) are located inside Ωa,b defined by

τζ = tζ
L
4
+ τb, ζ = 1, 2, . . . , q, (12)

where tζ are given in (8). These points will be utilized as the collocation points in our algorithm, below.

Finally, let us consider the transformed SMV differential equation. Based on the given
change of variable, the new equation can be obtained via (6) given by
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(τ − τa)(τ − τb)
d2

dτ2 B?
q(τ) + 3

(
τ − 1

2
(3τb − τa)

)
d

dτ
B?

q(τ) = q(q + 2)B?
q(τ).

2.2. Convergent and Error Analysis

Our goal now is to establish the convergence of the SMVFs of the second kind. Any
function h(τ) ∈ L2(Ωa,b) can be expressed as a linear of combination of SMVFs. Therefore,
we write

h(τ) =
∞

∑
q=0

ηq B?
q(τ). (13)

By virtue of orthogonality relation (11), it is concluded that the coefficients ηq, q ≥ 1
can be written in the form

ηq :=
2

L π

∫
Ωa,b

B?
q(τ) h(τ)ω?(τ) dτ, q = 1, 2, . . . . (14)

In order to show that the series solution (13) is uniformly convergent, we need to estimate
the coefficients ηq. The following Theorem provides an upper bound for these coefficients.

Theorem 1. Suppose that a function h ∈ C(2)(Ωa,b) ∩ L2
ω?
(Ωa,b) can be written as (13) and

M2 := maxτ∈Ωa,b |h′′(τ)|. Then, we have the following upper bound for the coefficients of SMVFs
functions in (14)

|ηq| < C q−5, q > 1, (15)

where C = 8L3 M2
π .

Proof. By utilizing the substitution τ = S
2 + L

2 cos φ =: g(φ), where S = τa + τb in (14)
one obtains

ηq =
L

2π

∫ π

0
h(g(φ)) sin[(q + 1)φ] sin φ dφ =

L
4π

∫ π

0
h(g(φ)) (cos[qφ]− cos[(q + 2)φ]) dφ. (16)

Twice integration by parts on (16) reveals

ηq =
L3

32π

∫ π

0
h′′(g(φ)) χq(φ) sin(φ) dφ, (17)

where

χq(φ) :=
1
q

(
sin((q− 1)φ)

q− 1
− sin((q + 1)φ)

q + 1

)
− 1

q + 2

(
sin((q + 1)φ)

q + 1
− sin((q + 3)φ)

q + 3

)
.

By using | sin(φ)| ≤ 1 and the assumption on the second derivative we claim that

|ηq| ≤
L3 M2

32π

∣∣∣∣∫ π

0
χq(φ) dφ

∣∣∣∣. (18)

We now estimate the integral term in (18). By utilizing the change of variables v = mφ,
for m = q± 1, q + 3 we obtain

∫ π

0
χq(φ) dφ =

1− (−1)q−1

(q− 1)2q
+

(−1)q+1 − 1
q(q + 1)2 +

(−1)q+1 − 1
(q + 1)2(q + 2)

+
1− (−1)q+3

(q + 2)(q + 3)2 .

It can be clearly observed that for an odd q > 1, the value of integral is zero. On the
other hand, for an even q > 1 we have∫ π

0
χq(φ) dφ =

2
(q− 1)2q

+
−2

q(q + 1)2 +
−2

(q + 1)2(q + 2)
+

2
(q + 2)(q + 3)2 .
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An easy calculation shows that∫ π

0
χq(φ) dφ =

8
(q− 1)2(q + 1)2 −

8
(q + 1)2(q + 3)2 =

64
(q− 1)2(q + 1)(q + 3)2 .

Note that the inequality q− 1 ≥ q
2 is true for all q ≥ 2. Thus, we obtain∣∣∣∣∫ π

0
χq(φ) dφ

∣∣∣∣ < 256
q5 . (19)

Inserting (19) into (18), we completed the the desired result (15).

In practice, we take a finite series solution to approximate h(τ) rather than an infinite
series solution given in (13). This implies that we cut this series solution and take only
(Q + 1) SMVFs as

h(τ) ≈ hQ(τ) =
Q

∑
q=0

ηq B?
q(τ). (20)

We proceed by defining the error between two consecutive approximations hQ and
hQ+1. We will denote it by eQ and is defined by

eQ(τ) := hQ+1(τ)− hQ(τ). (21)

In addition, we use ‖ f ‖2,? to denote the weighted L2,? norm on Ωa,b with regard to
weight function ω?(τ). An error estimation for the error eQ in the weighted L2 norm is
given in the next Theorem.

Theorem 2. Under the assumptions of Theorem 1, the following error estimate his valid

‖eQ(τ)‖2,? < C1 Q−5, C1 =
Lπ

2
C.,

where the constant C is defined in (15).

Proof. According to the definition of error and (20) we obtain

‖eQ(τ)‖2,? = ‖hQ+1(τ)− hQ(τ)‖2,?

=
∥∥∥ Q+1

∑
q=0

ηq B?
q(τ)−

Q

∑
q=0

ηq B?
q(τ)

∥∥∥
2,?

= ‖ηQ+1 B?
Q+1(τ)‖2,?

= |ηQ+1| ‖B?
Q+1(τ)‖2,?

It is now sufficient to use the orthogonality condition (11) and the result of Theorem 1
to obtain

‖eQ(τ)‖2,? = |ηQ+1|
Lπ

2

< C(Q + 1)−5 Lπ

2
< CLπ Q−5/2.

Finding an upper bound for (global) error between the infinite series expansion of h(τ)
in (13) and its cut series solution hQ(τ) in (20) is performed next. To this end, we define
EQ(τ) = h(τ)− hQ(τ). We first prove the result in the weighted L2,?(Ωa,b) norm.
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Theorem 3. Under the hypotheses of Theorem 1, let us assume that h(τ) satisfies the cut series (20).
Then, the following estimate for the (global) error EQ(τ) in the L2,?(Ωa,b) norm

‖EQ‖2,? < C2Q−
9
2 , C2 :=

√
πL
18

C,

where the constant C is defined in (15).

Proof. Using (13) and (20) we have

‖EQ‖2
2,? =

∥∥∥ ∞

∑
q=0

ηq B?
q(τ)−

Q

∑
q=0

ηq B?
q(τ)

∥∥∥2

2,?
=
∥∥∥ ∞

∑
q=Q+1

ηq B?
q(τ)

∥∥∥2

2,?
.

Utilizing the orthogonality condition (11) reveals that

‖EQ‖2
2,? =

πL
2

∞

∑
q=Q+1

η2
q .

By employing the inequality (15) given in Theorem 3 to the former equality to obtain

‖EQ‖2
2,? ≤

πL
2

C2
∞

∑
q=Q+1

1
q10 . (22)

Now, the well-known Integral Test from calculus gives us [32]

∞

∑
q=Q+1

1
q10 ≤

∫ ∞

Q

dx
x10 =

1
9Q9 .

We finally insert the former inequality into (22). By taking the square root, the proof
is accomplished.

In order to obtain an error estimate for the global error (21) in the L∞ norm, the
following Lemma is required.

Lemma 4. The following upper bound for the SMV functions holds for all q ≥ 0

|B?
q(τ)| ≤ q + 1, τ ∈ Ωa,b. (23)

Proof. To prove the result, we use the fact that MV functions (3) satisfies [31]

Bq(t) = Uq(1 +
t
2
).

Here, Uq(z) represents the Chebyshev functions of the second kind. Furthermore, we
know that [33]

|Uq(z)| ≤ q + 1, ∀ |z| ≤ 1.

Now the proof is straightforward by changing of variable t = 4(τ − τb)/L and then
taking the absolute values.

Theorem 4. Let assumptions of Theorem 1 hold for h(τ) and hQ(τ) is the truncated series in (20).
Then, the following estimate for the (global) error EQ(τ) = ∑∞

q=Q+1 ηq B?
q(τ) in the L∞(Ωa,b)

norm is valid

‖EQ‖∞ < C3Q−3, C3 :=
2
3

C, (24)

where the constant C is defined in (15).
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Proof. We first apply the inequality (23) given in Lemma (4) to arrive at

|EQ(τ)| ≤
∞

∑
q=Q+1

|ηq| |B?
q(τ)|

≤
∞

∑
q=Q+1

(q + 1)|ηq| ≤
∞

∑
q=Q+1

2q|ηq|.

By applying the inequality (15) in Theorem 3 render

|EQ(τ)| < 2C
∞

∑
q=Q+1

1
q4 .

A repeated application of the Integral Test [32] yields

∞

∑
q=Q+1

1
q4 ≤

∫ ∞

Q

dx
x4 =

1
3Q3 .

The required result is immediately followed by taking the supremum over all values
of τ ∈ Ωa,b.

3. The SMV Matrix Approach

We continue by writing the WPM system (1) in the following matrix form

d
dτ

vvv(τ)− ccc vvv(τ)− ppp vvv12(τ) = hhh. (25)

Here, vvv12(τ) = [W(τ) ·M(τ)] denotes the nonlinear term in (1) and we have utilized
the following vectors and matrix

vvv(τ) =

W(τ)
M(τ)
R(τ)

, ccc =

−γ 0 µ
0 −α 0
γ α −µ− θ

, ppp =

−β
β
0

, hhh =

λ
0
0

.

The aim is to approximate the unknown solutions as a combination of cutted SMV
series solutions (20) with (Q + 1)-terms. Thus, we have

W(τ) ≈ WQ(τ) = ∑Q
q=0 ηq,1 B?

q(τ),

M(τ) ≈MQ(τ) = ∑Q
q=0 ηq,2 B?

q(τ),

R(τ) ≈ RQ(τ) = ∑Q
q=0 ηq,3 B?

q(τ),

τ ∈ Ωa,b. (26)

Below, we seek the unknown coefficients {ηq,s}Q
q=0 for s = 1, 2, 3 through a matrix

collocation technique based on SMVFs. To proceed, we state the following Lemma, proof
of which is straightforward.

Lemma 5. The cut series solutions in (26) can be written for s = 1, 2, 3 as

Q

∑
q=0

ηq,s B?
q(τ) = BBBQ(τ)EEEQ,s, (27)

where EEEQ,s =
[
η0,s η1,s . . . ηQ,s

]T and BBBQ(τ) =
[
B?

0(τ) B?
1(τ) . . . B?

Q(τ)
]

is the
vector of SMVFs.

Next Lemma provides a decomposition for the vector BBBQ(τ).
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Lemma 6. The vector of SMVFs can be decomposed as

BBBQ(τ) = TTTQ(τ)MMMQ, (28)

where TTTQ(τ) =
[
1 (τ − τb) (τ − τb)

2 . . . (τ − τb)
Q] is the vector of shifted monomials

and MMMQ is an upper triangular matrix given by

MMMQ =



d0
(

2
1

) (
3
2

)
. . .

(
Q

Q− 1

) (
Q + 1

Q

)
0 d1 d1

(
4
1

)
. . . d1

(
Q + 1
Q− 2

)
d1
(

Q + 2
Q− 1

)
0 0 d2 . . . d2

(
Q + 2
Q− 3

)
d2
(

Q + 3
Q− 2

)
...

...
. . . . . . . . .

...

0 0 0 . . . dQ−1 dQ−1
(

2Q
1

)
0 0 0 . . . 0 dQ



, d =
4
L

.

Proof. The proof is straightforward in view of relation (10) in Definition (1). It is sufficient
to multiply the matrix MMMQ by TTTQ from the left.

It should be noted that this matrix MMMQ is non-singular as one can easily observe that
det(MMMQ) = dQ(Q+1)/2. An immediate consequence of combining the results of two former
Lemmas (two relations (27) and (28)) to arrive at

WQ(τ) = BBBQ(τ)EEEQ,1 = TTTQ(τ)MMMQ EEEQ,1,
MQ(τ) = BBBQ(τ)EEEQ,2 = TTTQ(τ)MMMQ EEEQ,2,
RQ(τ) = BBBQ(τ)EEEQ,3 = TTTQ(τ)MMMQ EEEQ,3.

τ ∈ Ωa,b. (29)

A simple calculation shows that

d
dτ

TTTQ(τ) = TTTQ(τ)DDDQ, DDDQ =



0 1 0 . . . 0
0 0 2 . . . 0
...

... 0
...

...

0 0 0
. . . Q

0 0 0 . . . 0


(Q+1)×(Q+1)

. (30)

It follows that the derivatives of the cut series solutions in (29) can be written as
d

dτWQ(τ) = TTTQ(τ)DDDQ MMMQ EEEQ,1,
d

dτMQ(τ) = TTTQ(τ)DDDQ MMMQ EEEQ,2,
d

dτRQ(τ) = TTTQ(τ)DDDQ MMMQ EEEQ,3.

τ ∈ Ωa,b. (31)

We now return to the matrix form of WPM (25). Two vectors vvv(τ) and d
dτ vvv(τ) in (25)

can be approximated as

vvv(τ) ≈ vvvQ(τ) :=

WQ(τ)
MQ(τ)
RQ(τ)

,
d

dτ
vvv(τ) ≈ d

dτ
vvvQ(τ) :=

 d
dτWQ(τ)
d

dτMQ(τ)
d

dτRQ(τ)

. (32)
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Lemma 7. The concatenated solution vvvQ(τ) and its derivative d
dτ vvvQ(τ) in (32) can be expressed as

vvvQ(τ) = ŤTT(τ) M̂MM EEE,
d

dτ
vvvQ(τ) = ŤTT(τ) D̂DD M̂MM EEE, (33)

where we have EEE =
(
EEEQ,1 EEEQ,2 EEEQ,3

)T and

ŤTT(τ) =

TTTQ(τ) 000 000
000 TTTQ(τ) 000
000 000 TTTQ(τ)

, M̂MM =

MMMQ 000 000
000 MMMQ 000
000 000 MMMQ

, D̂DD =

DDDQ 000 000
000 DDDQ 000
000 000 DDDQ

.

Proof. The proof can be easily obtainable by just inserting relations (29) and (31) into the
corresponding vector form in (32).

To continue, one needs a set of collocation points on Ωa,b. One possible choice is to
employ the roots of SMVFs given in (12). Clearly, we have (Q + 1) unknowns for each
solution in (26). Therefore, we consider the zeros of B?

Q+1(τ) on Ωa,b. For convenience, we
label these zeros as τ0, τ1, . . . , τQ and will denote them by

C0,Q := {τ` | ` = 0, 1, . . . , Q}. (34)

The following result is obtained by placing the foregoing SMV nodes into the matrix
form (25) of the WPM system (1) as

d
dτ

vvvQ(τ`)− ccc vvvQ(τ`)− ppp
(
vvvQ
)

12(τ`) = hhh, ` = 0, 1, . . . , Q. (35)

Lemma 8. (a) The matrix form of relations (35) can be expressed compactly as

V̇VV −CCC VVV − PPP VVV12 = HHH, (36)

where

V̇VV =


d

dτ vvvQ(τ0)
d

dτ vvvQ(τ1)
...

d
dτ vvvQ(τQ)

, VVV =


vvvQ(τ0)
vvvQ(τ1)

...
vvvQ(τQ)

, CCC =


ccc 000 . . . 000
000 ccc . . . 000
...

...
. . .

...
000 000 . . . ccc

, HHH =


hhh
hhh
...
hhh

,

VVV12 =


(vvvQ)13(τ0)
(vvvQ)13(τ1)

...
(vvvQ)13(τQ)

, PPP =


ppp 000 . . . 000
000 ppp . . . 000
...

...
. . .

...
000 000 . . . ppp

.

(b) Similarly, the matrix forms of relations (33) at the SMV nodes (34) are given by

VVV = T̂TT M̂MM EEE, V̇VV = T̂TT M̂MM D̂DD EEE, (37)

where the matrix T̂TT is defined by

T̂TT = [ŤTT(τ0) ŤTT(τ1) . . . ŤTT(τQ)]
T .

Here, the matrices ŤTT, M̂MM, D̂DD, the vector EEE are already defined in (33).

In the next Lemma, we provide a matrix representation form for the nonlinear expres-
sion VVV12.
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Lemma 9. The matrix representation of VVV12 in (35) is given by

VVV12 = V̄VV1 V̄VV2, (38)

where V̄VV1 = T̄TT M̃MM ẼEE1, and V̄VV2 = ̂̄TTT M̄MM EEE so that

T̄TT =


TTTQ(τ0) 000 . . . 000

000 TTTQ(τ1) . . . 000
...

...
. . .

...
000 000 . . . TTTQ(τQ)

, M̃MM =


MMMQ 000 . . . 000

000 MMMQ . . . 000
...

...
. . .

...
000 000 . . . MMMQ

, ̂̄TTT =


TTTQ(τ0)
TTTQ(τ1)

...
TTTQ(τQ)

,

ẼEE1 =


EEEQ,1 000 . . . 000

000 EEEQ,1 . . . 000
...

...
. . .

...
000 000 . . . EEEQ,1

, M̄MM =
(
ZZZ MMMQ ZZZ

)
, ZZZ =


0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0


(Q+1)×(Q+1)

.

Proof. The proof is relied on the following matrix representation

VVV12 =


WQ(τ0) ·MQ(τ0)
WQ(τ1) ·MQ(τ1)

...
WQ(τQ) ·MQ(τQ)

 =


WQ(τ0) 0 . . . 0

0 WQ(τ1) . . . 0
...

...
. . .

...
0 0 . . . WQ(τQ)



MQ(τ0)
MQ(τ1)

...
MQ(τQ)

.

Now, it is sufficient to use the relations (26) forWQ andMQ.

Ultimately, the so-called fundamental matrix equation will be constituted by placing
the foregoing relations (35) and (37) into (36). It has the following form

YYY EEE = HHH, or [YYY; HHH], (39)

where
YYY := T̂TT M̂MM D̂DD−CCC T̂TT M̂MM− PPP TTT M̃MM ẼEE1

̂̄TTT M̄MM.

It can be noticed that the former matrix Equation (39) is a nonlinear system comprising
of 3(Q + 1) unknowns ηq,s for q = 0, 1, . . . , Q and s = 1, 2, 3 to be found as the SMV
coefficients. However, this nonlinear system is incomplete, since we have not yet taking
the initial conditions (2) into account. Next, we will consider this task.

3.1. Converting the Initial Conditions into Matrix Form

Let us continue by entering the initial conditions (2) into the matrix Equation (39).
First, we consider the matrix form (33) for the approximate solution vvvQ(τ). Now, it suffices
to tend τ → 0 to obtain

Y̌YY0 EEE = HHH0, Y̌YY0 := ŤTT(0) M̂MM, HHH0 =

W0
M0
R0

.

Here, the constantsW0,M0, and R0 are known from (2). The replacement of three
rows of matrix [YYY; HHH] will be carried out next by the row matrices [Y̌YY0; HHH0]. The new
fundamental matrix equation will be denoted by

Y̌YY EEE = ȞHH, or
[
Y̌YY; ȞHH

]
. (40)

Therefore, through solving the modified algebraic nonlinear system (40), we obtain the
unknown SMV coefficients. The solution of this nonlinear system can be obtained utilizing
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any nonlinear solver such Newton type methods. After finding the vector EEE, all unknowns
ηq,s, for s = 1, 2, 3, and q = 0, 1, . . . , Q as the coefficients in the expansion series (26) are
determined. Thus, we obtain an approximate solution of model (1).

3.2. Error Estimation via REFs

As we mentioned earlier, it is very difficult to find the exact true solution of WPM
system (1). This implies that one needs some alternative tools to measure the quality
of approximate solutions proposed by our direct SMV collocation matrix method. One
possible strategy is to estimate the achieved error via technique of residual error functions
(REFs). So, it is sufficient to insert the (Q + 1)-truncated series solutions (26) into the WPM
system (1). Thus, we define the (Q + 1)-truncated REFs related to (1) as

Res1,Q(τ) :=
∣∣∣∣ d
dτ
WQ(τ) +WQ(τ)

(
γ + βMQ(τ)

)
− µRQ(τ)− λ

∣∣∣∣ ∼= 0,

Res2,Q(τ) :=
∣∣∣∣ d
dτ
MQ(τ)−MQ(τ)

(
βWQ(τ)− α

)∣∣∣∣ ∼= 0,

Res3,Q(τ) :=
∣∣∣∣ d
dτ
RQ(τ)− γWQ(τ)− αMQ(τ) + (µ + θ)RQ(τ)

∣∣∣∣ ∼= 0.

(41)

4. The Methodology of QLM-SMV

A description of the direct SMV-collocation approach applied to WPM system (1) is
already conducted in the last section. However, a disadvantage of this approach is that we
have to solve a non-linear system of equations. In fact, to gain more accuracy one needs
to increase Q. In this case, the convergence of invoked non-linear algorithm usually does
not takes place in a reasonable time or even we have not such convergence at all. As a
remedy, one has to adopt the technique of quasi-linearization to convert the non-linear
WPM system (1) into a family of linearized systems of equations. Starting from a rough
first approximation, the method converges quadratically to the solution of the original
problem (1).

Below, we will describe the main idea behind the quasilinearization method (QLM).
Once the original non-linear model problem (1) is converted into a family of linear problems,
we will employ the direct SMV matrix collocation procedure to each linearized equation.
Below, this combined technique is called QLM-SMV. For more detailed information on
QLM, we refer to [34–36].

To continue, we first reformulate the non-linear WPM system (1) as

ŻZZ(τ) = KKK(ZZZ(τ), τ), (42)

where

ZZZ(τ) =

W(τ)
M(τ)
R(τ)

, KKK(ZZZ(τ), τ) =

k1(τ)
k2(τ)
k3(τ)

 =

−W(τ)(γ− βM(τ)) + µR(τ) + λ
M(τ)(βW(τ)− α)

γW(τ) + αM(τ)− (µ + θ)R(τ)

.

Let the rough first approximation to ZZZ(τ) is denoted by ZZZ0(τ). The, the QLM
for (42) reads

ŻZZd+1(τ) ≈ KKK(ZZZd(τ), τ) +KKKZ(ZZZd(τ), τ)
(

ZZZd+1(τ)−ZZZd(τ)
)

, d = 0, 1, . . . .

Note, along with former equations, we have the same initial conditions as (2). We
also used the symbol KKKZ = dKKK

dZZZ to denote the corresponding Jacobian matrix. After some
calculations, the applied QLM for the given model (42) has the following representation

ŻZZd+1 = sssd(τ)ZZZd+1(τ) + hhhd(τ), d = 0, 1, . . . , (43)
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where

ZZZd+1(τ) =

Wd+1(τ)
Md+1(τ)
Rd+1(τ)

, sssd(τ) =

−γ− βMd(τ) −βWd(τ) µ
βMd(τ) βWd(τ)− α 0

γ α −µ− θ

,

hhhd(τ) =

λ + βMd(τ)Wd(τ)
−βMd(τ)Wd(τ)

0

.

According to (2), the supplemented initial conditions are given by

ZZZd+1(0) =

Wd+1(0)
Md+1(0)
Rd+1(0)

 =

W0
M0
R0

.

Now, we are in a position to solve the family of linearized Equations (43). In an
analogue way as in the direct SMV matrix collocation procedure, we let the approximate
solutions of this system can be expressed as a cut series with (Q + 1) bases as

Wd+1(τ) ≈ W (d+1)
Q (τ) = ∑Q

q=0 η
(d)
q,1 B?

q(τ),

Md+1(τ) ≈M(d+1)
Q (τ) = ∑Q

q=0 η
(d)
q,2 B?

q(τ),

Rd+1(τ) ≈ R(d+1)
Q (τ) = ∑Q

q=0 η
(d)
q,3 B?

q(τ).

(44)

Concisely speaking, we now insert the SMV nodes (34) into (43). Utilizing the follow-
ing matrix and vectors

SSSd =


sssd(τ0) 000 . . . 000

000 sssd(τ1) . . . 000
...

...
. . .

...
000 000 . . . sssd(τQ)

, EEEd =

EEEd,1
EEEd,2
EEEd,3

, HHHd =


hhhd(τ0)
hhhd(τ1)

...
hhhd(τQ)

,

and by using the relations (37) the following linear fundamental matrix equation is obtained{
T̂TT M̂MM D̂DD− SSSd T̂TT M̂MM

}
EEEd = HHHd.

This can be equivalently rephrased as follows

YYYd EEEd = HHHd, or [YYYd; HHHd], YYYd := T̂TT M̂MM D̂DD− SSSd T̂TT M̂MM, d = 0, 1, . . . . (45)

Here, the matrices T̂TT, D̂DD, and M̂MM are defined in (33) and

EEEd,s =
(

η
(d)
0,s η

(d)
1,s . . . η

(d)
Q,s

)T
s = 1, 2, 3.

According to what we have discussed in the previous section, one requires to im-
plement the initial condition ZZZd+1(0) =

(
W0 M0 R0

)T in the matrix form and then
enter into the fundamental matrix Equation (45). Let us the resulting modified system
denoted by

[Y̌YYd; ȞHHd], d = 0, 1, . . . . (46)

By solving (46), we obtain the unknown coefficients η
(d)
q,s for q = 0, 1, . . . , Q and

s = 1, 2, 3. Note that in practice usually taking d = 5 is sufficient to attain an accurate result
as the solution obtained via direct SMV approach (40). However, the QLM-SVM technique
is more efficient and consumes less computational time than the direct approach (40) as we
show in the numerical section, below.
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Similar to relations (41), the obtained approximate solutions (44) will be substituted
into (1) to arrive at the following REFs

Res(d+1)
1,Q (τ) :=

∣∣∣ d
dτ
Wd+1

Q (τ) +Wd+1
Q (τ)

(
γ + βMd+1

Q (τ)
)
− µRd+1

Q (τ)− λ
∣∣∣ ∼= 0,

Res(d+1)
2,Q (τ) :=

∣∣∣ d
dτ
Md+1

Q (τ)−Md+1
Q (τ)

(
βWd+1

Q (τ)− α
)∣∣∣ ∼= 0,

Res(d+1)
3,Q (τ) :=

∣∣∣ d
dτ
Rd+1

Q (τ)− γWd+1
Q (τ)− αMd+1

Q (τ) + (µ + θ)Rd+1
Q (τ)

∣∣∣ ∼= 0.

(47)

Note, these REFs can be used in the QLM-SMV approach to measure the accuracy of
the obtained solutions of WPM system (1).

5. Numerical Experimental Results

Here, we intend to apply two proposed matrix algorithms based on SMVFs to the
WPM system (1). In this respect, three set of parameters are considered to show the
performance of these techniques. Various numerical simulations are performed to show
the efficiency of the proposed collocation methods. The platform of simulations is Matlab
software version 2021a.

The QLM parameter d = 5 is chosen in the computational results, below. In the QLM-
SVM, we use the initial approximation ZZZ0(τ) as the initial condition (2). A comparison
with only available numerical model, i.e., the advanced numerical artificial neural network
(ANN) technique described in [23]. As in [23], the following initial conditions in (2)
are taken

W0 = 2, M0 = 1.5, R0 = 1. (48)

We further use the Matlab function ode45 to validate our results.

Test 1. We first set the following parameters for the WPM system (1), which borrowed from [23]
given by

β = 0.75, γ = 0.21, α = 0.5, µ = 0.4, λ = 0.36, θ = 0.05.

To begin our computations, we let Q = 5. Using the direct SMV collocation matrix
technique we obtain

W5(τ) = 1.27007− 0.49412 τ + 0.550561 (τ − 1.0)2 − 0.239594 (τ − 1.0)3 + 0.115821 (τ − 1.0)4

+ 0.176049 (τ − 1.0)5,

M5(τ) = 2.14888 + 0.19141 τ − 0.432437 (τ − 1.0)2 + 0.246174 (τ − 1.0)3 − 0.157005 (τ − 1.0)4

− 0.186735 (τ − 1.0)5,

R5(τ) = 1.09734 + 0.57890 τ − 0.132581 (τ − 1.0)2 − 0.0042899 (τ − 1.0)3 + 0.041433 (τ − 1.0)4

+ 0.0104866 (τ − 1.0)5.

Similarly, by employing the QLM-SMV using d = 5 iterations, the following approxi-
mate solutions are obtained on 0 ≤ τ ≤ 1 as

W (6)
5 (τ) = 1.2700731− 0.49411953 τ + 0.5505607 (τ − 1.0)2 − 0.23959393 (τ − 1.0)3

+ 0.11582111 (τ − 1.0)4 + 0.17604881 (τ − 1.0)5,

M(6)
5 (τ) = 2.1488816 + 0.19141096 τ − 0.43243722 (τ − 1.0)2 + 0.24617374 (τ − 1.0)3

− 0.15700552 (τ − 1.0)4 − 0.18673487 (τ − 1.0)5,

R(6)
5 (τ) = 1.0973448 + 0.57889741 τ − 0.13258133 (τ − 1.0)2 − 0.0042898511 (τ − 1.0)3

+ 0.041433282 (τ − 1.0)4 + 0.010486649 (τ − 1.0)5.



Mathematics 2022, 10, 4601 16 of 26

It can be readily seen that the coefficients of each pair of solutions are approximately
coincided up to five or six digits. To further justify, we plot all the above approximations in
Figure 2. We also validate our obtained results by comparing the solutions with the outputs
of the well-known Matlab function, i.e., ode45 as shown in Figure 2.

The corresponding REFs corresponding to Q = 5 are visualized in Figure 3. Since
the accuracy of both approaches are the same for different values of Q, we just consider
the QLM-SMV and the related achieved REFs obtained via (47). Figure 3 displays the
REFs for diverse values of Q = 5, 10, 15, 20, 25. Let us compare our results in terms of the
achieved errors in Test case 1 with the corresponding results obtained via ANN in [23].
In Figure 14a–c of [23], the absolute errors (AE) related to three solutions W(τ),M(τ),
and R(τ) were visualized. However, it is not known how the authors in [23] obtained
such results. The achieved AE for these three solutions are in the ranges [10−4, 10−6],
[10−5, 10−6], and [10−4, 10−6], respectively. Obviously, our obtained results with Q = 10 are
comparable with the outcomes of ANN. However, our method with simple implementation
than ANN produces results within the desired level of accuracy by just increasing Q as
shown in Figure 3.

Besides the visualizations we have plotted in Figures 2 and 3 for the first Test Case (1),
we also report the numerical results together with related REFs in both SVM and QLM-
SVM collocation techniques in Tables 1–3. Using Q = 10, we tabulate the results related
toW(τ),M(τ),R(τ) of WPM system (1) in these tables. For comparisons, the outputs of
ode45 are also given at some points τ ∈ [0, 1]. Obviously, our results are accurate enough
and by increasing Q we obtain more accuracy as shown in the previous Figure 3 graphically.

Again, we emphasize that the QLM-SMV technique is more efficient than SVM matrix
method especially when Q is becoming large. To show an evidence, we measure the elapsed
times needed to solve the fundamental matrix Equations (40) and (46). For Q = 10, the
required CPU time to solve it via SMV approach is 47.131 s while the consumed time is
only 2.181 s when solving the (d = 5) sequence of linear matrix equations via QLM-SMV.
Obviously, the latter matrix collocation approach is effective about a factor of 20. This factor
will be drastically increased by increasing the number of bases.
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Figure 2. Comparisons of numerical solutions obtained via SMV/QLM-SMV in Test Case 1 with
Q = 5.
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Figure 3. Comparisons of achieved REFs via QLM-SMV in Test Case 1 with Q = 5, 10, 15, 20, 25.

Table 1. The comparison of numerical results forW(τ) in SMV/QLM-SMV procedure using Q = 10
in Test Case 1.

τ W10(τ) Res1,10(τ) W (6)
10 (τ) Res(6)

1,10(τ) ode45

0.0 2.000000000000000 3.0098× 10−6 2.000000000000000 5.2109× 10−8 2.000000000000000
0.2 1.635344734677582 1.2163× 10−16 1.635344734677582 4.6738× 10−8 1.635344747643539
0.4 1.323147588290945 6.4882× 10−17 1.323147588290946 2.2660× 10−8 1.323147602581826
0.6 1.077756647036797 1.3715× 10−17 1.077756647036797 2.0233× 10−8 1.077756659372727
0.8 0.898530140763903 2.6187× 10−17 0.898530140763903 3.2780× 10−8 0.898530150249088
1.0 0.775734936086926 5.8324× 10−17 0.775734936086926 2.7905× 10−7 0.775734943518811

Table 2. The comparison of numerical results forM(τ) in SMV/QLM-SMV procedure using Q = 10
in Test Case 1.

τ M10(τ) Res2,10(τ) M(6)
10 (τ) Res(6)

2,10(τ) ode45

0.0 1.500000000000000 5.7438× 10−6 1.500000000000000 1.1850× 10−6 1.500000000000000
0.2 1.781785727569503 8.1666× 10−17 1.781785727569503 5.8633× 10−8 1.781785693817991
0.4 2.011174507752624 3.6701× 10−17 2.011174507752624 2.5766× 10−8 2.011174476939520
0.6 2.176954369572905 7.3343× 10−20 2.176954369572905 2.2273× 10−8 2.176954343717272
0.8 2.282723331023781 2.9268× 10−17 2.282723331023781 3.5560× 10−8 2.282723309823578
1.0 2.340376516291631 6.0820× 10−17 2.340376516291631 3.0049× 10−7 2.340376498247829

Table 3. The comparison of numerical results forR(τ) in SMV/QLM-SMV procedure using Q = 10
in Test Case 1.

τ R10(τ) Res3,10(τ) R(6)
10 (τ) Res(6)

3,10(τ) ode45

0.0 1.000000000000000 2.7399× 10−6 1.000000000000000 1.2401× 10−6 1.000000000000000
0.2 1.144148720397206 1.0165× 10−16 1.144148720397206 1.1925× 10−8 1.144148741032360
0.4 1.286799836761650 1.0208× 10−16 1.286799836761650 3.1127× 10−9 1.286799852962326
0.6 1.424847543018650 1.0235× 10−16 1.424847543018650 2.0448× 10−9 1.424847556103001
0.8 1.555396603046311 1.0261× 10−16 1.555396603046311 2.7865× 10−9 1.555396614250796
1.0 1.676371203400203 1.0336× 10−16 1.676371203400203 2.1495× 10−8 1.676371213443430
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Test 2. As the second test case, we consider the following parameters for the WPM system (1) taken
from [23]

β = 0.75, γ = 0.21, α = 0.5, µ = 0.4, λ = 0.66, θ = 0.05.

Here, we also use the same initial conditions (48) as before.

We take Q = 8 for this example. By utilizing the direct SVM collocation strategy we
obtain the following approximate solutions

W5(τ) = 1.38408− 0.496695 τ + 0.510251 (τ − 1)2 − 0.221746 (τ − 1)3 − 0.0182392 (τ − 1)4

+ 0.0406997 (τ − 1)5 − 0.091222 (τ − 1)6 − 0.0208731 (τ − 1)7 + 0.0132056 (τ − 1)8,

M5(τ) = 2.07695 + 0.412038 τ − 0.429339 (τ − 1)2 + 0.244504 (τ − 1)3 − 0.00338077 (τ − 1)4

− 0.0398247 (τ − 1)5 + 0.0891454 (τ − 1)6 + 0.0129265, (τ − 1)7 − 0.0157692 (τ − 1)8,

R5(τ) = 1.05659 + 0.658883 τ − 0.097384 (τ − 1)2 − 0.021133 (τ − 1)3 + 0.0218964 (τ − 1)4

− 0.00105248 (τ − 1)5 + 0.0021671 (τ − 1)6 + 0.0080240 (τ − 1)7 + 0.00257003 (τ − 1)8.

Figure 4 displays the graphics of the forgoing approximate solutions on the interval
τ ∈ [0, 1] along with the related REFs namely Ress,8(τ) for s = 1, 2, 3. Note also that we
have plotted the related solutions obtained via ode45 to validate our results as show by
dashed lines.

The numerical convergence of the proposed collocation approaches is investigated
next. For this purpose, we employ QLM-SMV with various Q = 10, 15, 20, 25, 30. The
results of REFs for these values are shown in Figure 5. It can be obviously observed that by
increasing Q we obtain the desired level of accuracy. In an analogue way as in Test Case 1
we compare our results in terms of the achieved errors in Test Case 2 with the real outcomes
obtained via ANN in [23]. In Figure 14a–c of [23], the reported AE associated with the
three solutions W(τ), M(τ), and R(τ) are in the ranges [10−5, 10−6], [10−5, 10−7], and
[10−4, 10−7], respectively. Consequently, our achieved REFs with Q = 10 are comparable
with the those obtained by ANN. It can be seen from Figure 5 that we can gain more
accurate results by increasing Q.
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Figure 4. Graphics of numerical solutions obtained via SMV technique (left) and related REFs (right)
in Test Case 2 with Q = 8.
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Figure 5. Comparisons of achieved REFs via QLM-SMV in Test Case 2 with Q = 10, 15, 20, 25, 30.

Some precise comparisons are also made in Tables 4–6 for the second Test Case. Similar
to the previous example, we utilize Q = 10 here. The outcomes of the method ode45 are
reported in these tables for validation. It should be noted that the maximum value of REFs
is occurred at the initial conditions for all three solutions as one sees from the former figures.

Table 4. The comparison of numerical results forW(τ) in SMV/QLM-SMV procedure using Q = 10
in Test Case 2.

τ W10(τ) Res1,10(τ) W (6)
10 (τ) Res(6)

1,10(τ) ode45

0.0 2.000000000000000 2.5031× 10−5 2.000000000000000 1.1977× 10−5 2.000000000000000
0.2 1.686724480504163 3.3756× 10−17 1.686724480504163 8.3444× 10−8 1.686724252185354
0.4 1.408026244093626 3.9045× 10−17 1.408026244093626 1.3747× 10−8 1.408026045424371
0.6 1.180693661616488 4.3653× 10−17 1.180693661616488 4.2778× 10−9 1.180693500541583
0.8 1.008871385496761 4.1311× 10−17 1.008871385496761 3.4220× 10−10 1.008871262717612
1.0 0.887394398606239 2.4634× 10−17 0.887394398606239 3.1504× 10−8 0.887394310412539

Table 5. The comparison of numerical results forM(τ) in SMV/QLM-SMV procedure using Q = 10
in Test Case 2.

τ M10(τ) Res2,10(τ) M(6)
10 (τ) Res(6)

2,10(τ) ode45

0.0 1.500000000000000 2.3165× 10−5 1.500000000000000 1.1152× 10−5 1.500000000000000
0.2 1.789060924429931 1.5462× 10−17 1.789060924429931 7.5504× 10−8 1.789061126908230
0.4 2.040571945783313 2.1394× 10−17 2.040571945783312 1.1675× 10−8 2.040572111526604
0.6 2.240478085469465 5.6577× 10−17 2.240478085469465 2.9163× 10−9 2.240478209135855
0.8 2.387458767134453 9.0178× 10−17 2.387458767134453 1.5132× 10−9 2.387458850352139
1.0 2.488984854647195 1.2223× 10−16 2.488984854647195 4.5816× 10−8 2.488984903113141
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Table 6. The comparison of numerical results forR(τ) in SMV/QLM-SMV procedure using Q = 10
in Test Case 2.

τ R10(τ) Res3,10(τ) R(6)
10 (τ) Res(6)

3,10(τ) ode45

0.0 1.000000000000000 1.8770× 10−6 1.000000000000000 8.3071× 10−7 1.000000000000000
0.2 1.145489377880121 5.6770× 10−17 1.145489377880121 7.9876× 10−9 1.145489403620375
0.4 1.292486897793709 5.8378× 10−17 1.292486897793709 2.0851× 10−9 1.292486930331389
0.6 1.438257383988312 6.2518× 10−17 1.438257383988312 1.3697× 10−9 1.438257420682760
0.8 1.580003268136816 6.9219× 10−17 1.580003268136816 1.8665× 10−9 1.580003306643738
1.0 1.715470833831343 7.8809× 10−17 1.715470833831343 1.4398× 10−8 1.715470872161920

We next go beyond the unit interval and take a relatively large interval Ωa,b = [0, 50].
The approximate solutions obtained by using the QLM-SMV and with Q = 50 bases
are presented in Figure 6. Plotting further solutions obtained by ode45 show that our
results are in good alignment with them. The related REFs are displayed in Figure 7.
From the parameters given in the second test problem we find that the values of the basic
reproduction number R0 in (A4) and the second equilibrium point P∗ in (A3) become

R0 =
βλ(µ + θ)

αγθ
=

297
7
≈ 42.429 > 1,

P∗ =
(

λ(µ + θ)

αθ
− γ

β
,

α

β
,

λ

θ

)
=

(
58
5

,
2
3

,
66
5

)
≈ (11.6, 0.667, 13.20).

By looking at the plots we can infer that the approximate solutions converge to the
stable point P∗ as τ → ∞.
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Figure 6. Comparisons of numerical solutions obtained via QLM-SMV in Test Case 2 with Q = 50.
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Figure 7. Graphics of achieved REFs via QLM-SMV in Test Case 2 with Q = 50.

Let us finally investigate the effectiveness and high-order accuracy of our proposed
QLM-SMV procedure through computing the errors in the L∞ norm. For a fixed d, we
calculate the maximum values of the REF norm of the solutionsW(τ),M(τ), andR(τ) by

Lj,∞ ≡ Lj,∞(Q) := max
τ∈[0,1]

Res(d)j,Q(τ),

for j = 1, 2, 3, where the REFs are defined in (47). To justify the theoretical findings and in
order to the check the numerical order of convergence of the QLM-SMV, we compute the
following expressions

rj,∞ := log2

(
Lj,∞(Q)

Lj,∞(2Q)

)
, j = 1, 2, 3. (49)

The results of Lj,∞ error norms and the related order of convergences rj,∞ for two
Test Case 1 and 2 are tabulated in Table 7. Here, we have used d = 5 and various Q = 2i,
i = 1, 2, . . . , 5. By looking at Table 7, it can be seen that the behavior of the obtained order
of convergences is exponentially similar. This confirms the high-order accuracy of the
QLM-SMV approach.

Table 7. The results of L∞ norms, the corresponding convergence rate in Test Case 1 and 2 using the
QLM-SMV procedure with diverse Q and d = 5.

Test Case 1 Test Case 2

Q L1,∞ r1,∞ L2,∞ r2,∞ L3,∞ r3,∞ L1,∞ r1,∞ L2,∞ r2,∞ L3,∞ r3,∞

2 8.72−2 − 6.72−2 − 5.98−2 − 1.68−1 − 1.05−1 − 6.18−2 −
4 6.37−2 0.454 6.79−2 −0.015 4.15−3 3.850 3.45−2 2.282 3.95−2 1.408 4.93−3 3.650
8 4.12−4 7.273 3.91−4 7.441 2.11−5 7.617 4.05−4 6.416 3.95−4 6.645 9.77−6 8.978

16 2.33−9 17.43 2.27−9 17.39 6.14−11 18.39 1.98−9 17.64 1.98−9 17.61 3.05−12 21.61
32 8.42−21 38.01 8.30−21 37.99 1.19−22 38.90 3.64−21 38.99 3.68−21 38.97 3.77−23 36.24

6. Conclusions

In this manuscript, we have described two accurate matrix collocation techniques
based on the (novel) shifted Morgan-Voyce (SMV) functions to find the approximate solu-
tions to a nonlinear system of differential equations arising in modeling of waste plastic
management. From theoretical point of view, the existence and the stability properties of
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equilibrium points of the underlying system are investigated based on the basic reproduc-
tion number R0. From numerical perspectives, we first employ the SMV matrix collocation
approach to solve this system accurately. In the second approach, we first convert the given
nonlinear system into a family of linearized systems followed by applying the SMV collo-
cation technique to them efficiently. Through a comprehensive error analysis we proved
that the SMV expansion series is convergent in the weighted L2 and L∞ norms. Numerical
simulations using various model parameters are presented to show the accurateness as
well as the effectiveness of the proposed collocation techniques. We compare our results
with those obtained via ANN [23] to validate the accuracy of the proposed techniques. In
conclusion, our second presented QLM-SMV technique produces comparable accurate re-
sults in comparison with the direct SVM approach. Furthermore, the calculations involved
in QLM-SMV are simple, straightforward, and have a lower computation cost.
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Appendix A. Properties and Stability of the Model

In the part, we first derive the equilibrium points of the given WPM model (1). Hence,
the basic reproduction number related to this system is obtained. Next, we investigate the
stability of two equilibrium points and establish some results.

Appendix A.1. Equilibria and Basic Reproduction Number of the Model

The equilibria of the model (1) are obtained by solving the following equations:

λ− γW̄ − βM̄ W̄ + µR̄ = 0,

βM̄ W̄ − αM̄ = 0,

αM̄ − µR̄+ γW̄ − θR̄ = 0.

(A1)

The system has two solutions: When M̄ = 0, the equilibrium P0 is obtained as follows

P0 = (M0,W0,R0) =

(
0,

λ(θ + µ)

γθ
,

λ

θ

)
, (A2)

and when M̄ > 0, the equilibrium point is

P∗ = (M∗,W∗,R∗) =
(

λ(µ + θ)

αθ
− γ

β
,

α

β
,

λ

θ

)
. (A3)

The basic reproduction number R0 can be obtained as dominant eigenvalue of the
next generation matrix [37]. Using this method, we write the second equation in (A1) as

M′ = F − G,
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where F = βMW and G = αM. By letting f = ∂F
∂M

∣∣∣
P0

= βW0 = βλ(µ+θ)
γθ and g =

∂G
∂M

∣∣∣
P0

= α, the basic reproduction number related to this model is given by

R0 = ρ( f g−1) =
βλ(µ + θ)

αγθ
. (A4)

For the equilibrium P∗ in whichM∗ 6= 0, we have

M∗ =
λ(µ + θ)

αθ
− γ

β
=

γ

β

( βλ(µ + θ)

γαθ
− 1
)
=

γ

β
(R0 − 1). (A5)

Thus, we haveM∗ > 0 if and only if R0 > 1. Hence, based on the former discussion
we can state the following Lemma:

Lemma A1. Model (1) has only the equilibrium P0 (corresponding to M̄ = 0) when R0 ≤ 1 and
it also has a unique equilibrium P∗ (corresponding to M̄ 6= 0) if R0 > 1.

Appendix A.2. Stability of the Model

For studying the local stability of the equilibria of the model (1), we consider the
eigenvalues of the Jacobian matrix at each equilibrium point. The equilibrium is stable
if and only if the eigenvalues of the related Jacobian matrix have negative real part. The
Jacobian matrix of the model (1) at (M,W ,R) has the following representation

J(M,W ,R) =
 βW − α βM 0
−βW −γ− βM µ

α γ −(µ + θ)

. (A6)

At equilibrium P0 we have

J0 = J(P0) =

 βW0 − α 0 0
−βW0 −γ µ

α γ −(µ + θ)

, (A7)

and its eigenvalues are λ1 = βW0 − α = βλ(θ+µ)
γθ − α = α(R0 − 1), which is negative if and

only if R0 < 1. Other eigenvalues of J0 are the eigenvalues of the following matrix

S =

( −γ µ
γ −(µ + θ)

)
. (A8)

By the Routh–Hurwitz criterion [38], the real part of eigenvalues of matrix S are
negative if and only if trace(S) < 0 and det(S) > 0. However, we have

trace(S) = −(µ + θ + γ) < 0, det(S) = γ(µ + θ)− µγ = γθ > 0.

Thus, all eigenvalues of J0 have negative real part and stability of the model at P0

is concluded.

Theorem A1. For model (1), the equilibrium point P0 is locally asymptotically stable if R0 < 1
and unstable if R0 > 1.

At equilibrium P∗ we have βW∗ = α and thus we obtain.

J∗ = J(P∗) =

 0 βM∗ 0
−α −γ− βM∗ µ
α γ −(µ + θ)

. (A9)
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It can be easily seen that

trace(J∗) = −βM∗ − (µ + θ + γ) < 0,

trace((J∗)2) = −2αβM∗ + 2γµ + (γ + βM∗)2 + (µ + θ)2.

The next observation is

trace((J∗)2)− (trace(J∗))2 = −2
{

γθ + (µ + θ + α)βM∗
}
< 0. (A10)

Moreover, we have

det(J∗) = −βM∗
(

α(µ + θ)− αµ
)
= −αθβM∗ < 0. (A11)

Note that in the former relations (A10) and (A11) we have used the fact thatM∗ >
0⇔ R0 < 1 due to (A5).

Theorem A2. The equilibrium P∗ for the model (1) is locally asymptotically stable if one has R0 > 1.

Proof. According to Routh–Hurwitz criterion [38], the roots of the characteristic polyno-
mial F(λ) = λ3 + a1λ2 + a2λ + a3 of the Jacobian matrix J lie in the left half of the Cartesian
plane if and only if a1 > 0, a3 > 0, and a1a2 > a3, where

a1 = − trace(J),

a2 = −1
2

(
trace(J2)− trace2(J)

)
,

a3 = −det(J).

(A12)

From preceding calculations (A10) and (A11) for matrix J∗ in (A9) we observe clearly
that a1 > 0 and a3 > 0. Moreover, we have

a1a2 − a3 = {βM∗ + (µ + θ + γ)}γθ + {βM∗ − (µ + γ)}(µ + θ + α)βM∗ + θ(µ + θ)βM∗ > 0. (A13)

Thus, the proof is completed.

Appendix B

Proof of Lemma 3. On account of Lemma 2, the zeros of Bq(t) are denoted by t0, t1, . . . , tq.
Therefore, we can express Bq(t) in terms of its roots as follows

Bq(t) = (t− t0)(t− t1) . . . (t− tq).

It should emphasize that the leading coefficient of the original MV function is always
one in accordance to their definition (5). Now, we use the change of variable (9) to arrive at

B?
q(τ) =

[
4
L
(τ − τb)− t0

][
4
L
(τ − τb)− t1

]
. . .
[

4
L
(τ − τb)− tq

]
.

By equating the former equation to zero we find that the roots are τζ = τb + (L/4)tζ

for ζ = 1, 2, . . . , q. Thus, the proof is complete.

References
1. Argüello, G. Marine Pollution, Shipping Waste and International Law; Routledge: London, UK, 2019.
2. Dabrowska, J.; Sobota, M.; Swiader, M.; Borowski, P.; Moryl, A.; Stodolak, R.; Kucharczak, E.; Zieba, Z.; Kazak, J.K. Marine

waste-sources, fate, risks, challenges and research needs. Int. J. Environ. Res. Public Health 2021, 18, 433. [CrossRef] [PubMed]
3. Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Plastic waste inputs from

land into the ocean. Science 2015, 347, 768–771. [CrossRef] [PubMed]

http://doi.org/10.3390/ijerph18020433
http://www.ncbi.nlm.nih.gov/pubmed/33430467
http://dx.doi.org/10.1126/science.1260352
http://www.ncbi.nlm.nih.gov/pubmed/25678662


Mathematics 2022, 10, 4601 25 of 26

4. Murray, F.; Cowie, P.R. Plastic contamination in the decapod crustacean Nephrops norvegicus (Linnaeus, 1758). Mar. Pollut. Bull.
2011, 62, 1207–1217. [CrossRef] [PubMed]

5. Ynet. The United Nations Environment Program Reports that 85 Percent of Ocean Debris is Plastic. 2021. Available online:
https://t.ynet.cn/baijia/31615238.html (accessed on 20 November 2022).

6. Almroth, B.C.; Eggert, H. Marine plastic pollution: Sources, impacts, and policy issues. Rev. Environ. Econ. Policy 2019, 13, 317–326.
[CrossRef]

7. Marks, D.; Miller, M.A.; Vassanadumrongdee, S. The geopolitical economy of Thailand’s marine plastic pollution crisis. Asia Pac.
Viewp. 2020, 61, 266–282. [CrossRef]

8. Sulis, G.; Sayood, S.; Gandra, S. Antimicrobial resistance in low-and middle-income countries: Current status and future directions.
Expert Rev.-Anti-Infect. Ther. 2022, 20, 147–160. [CrossRef]

9. Wu, H.H. A study on transnational regulatory governance for marine plastic debris: Trends, challenges, and prospect. Mar. Policy
2020, 136, 103988. [CrossRef]

10. Zhang, C.; Guo, L.; Luo, Q.; Wang, Y.; Wu, G. Research on marine plastic garbage governance in Northwest Pacific Region from
the perspective of cooperative game. J. Clean. Prod. 2022, 354, 131636. [CrossRef]

11. Louzoun, Y.; Xue, C.; Lesinski, G.B.; Friedman, A. A mathematical model for pancreatic cancer growth and treatments. J. Theor.
Biol. 2014, 351, 74–82. [CrossRef]

12. Khajanchi, S. The impact of immunotherapy on a glioma immune interaction model. Chaos Solit. Fract. 2021, 152, 111346.
[CrossRef]

13. Lazebnik, T.; Aaroni, N.; Bunimovich-Mendrazitsky, S. PDE based geometry model for BCG immunotherapy of bladder cancer.
Biosystems 2020, 200, 104319. [CrossRef]

14. Gude, V. Modeling a decision support system for COVID-19 using systems dynamics and fuzzy inference. Health Inform. J. 2022,
28, 14604582221120344. [CrossRef] [PubMed]

15. Shtilerman, E.; Thompson, C.J.; Stone, L.; Bode, M.; Burgman, M. A novel method for estimating the number of species within a
region. Proc. Royal Soc. B Biol. Sci. 2014, 281, 20133009. [CrossRef] [PubMed]

16. Shaikh, A.; Nisar, K.S.; Jadhav, V.; Elagan, S.K.; Zakarya, M. Dynamical behaviour of HIV/AIDS model using fractional derivative
with Mittag-Leffler kernel. Alex. Eng. J. 2022, 61, 2601–2610. [CrossRef]

17. Yüzbası, S.; Izadi, M. Bessel-quasilinearization technique to solve the fractional-order HIV-1 infection of CD4+ T-cells considering
the impact of antiviral drug treatment. Appl. Math. Comput. 2022, 431, 127319. [CrossRef]

18. Iqbal, Z.; Ahmed, N.; Baleanu, D.; Adel, W.; Rafiq, M.; Rehman, M.A.; Alshomrani, A.S. Positivity and boundedness preserving
numerical algorithm for the solution of fractional nonlinear epidemic model of HIV/AIDS transmission. Chaos Solit. Fract. 2020,
134, 109706. [CrossRef]

19. Elsonbaty, A.M.R.; Sabir, Z.; Ramaswamy, R.; Adel, W. Dynamical analysis of a novel discrete fractional SITRS model for
COVID-19. Fractals 2021, 29, 2140035. [CrossRef]

20. Baleanu, D.; Abadi, M.H.; Jajarmi, A.; Vahid, K.Z.; Nieto, J.J. A new comparative study on the general fractional model of
COVID-19 with isolation and quarantine effects. Alex. Eng. J. 2022, 61, 4779–4791. [CrossRef]

21. Aguiar, M.; Anam, V.; Blyuss, K.B.; Estadilla, C.D.; Guerrero, B.V.; Knopoff, D.; Kooi, B.W.; Srivastav, A.K.; Steindorf, V.;
Stollenwerk, N. Mathematical models for dengue fever epidemiology: A 10-year systematic review. Phys. Life Rev. 2022, 40, 65–92.
[CrossRef]

22. Izadi, M.; Yüzbası, S.; Adel, W. Accurate and efficient matrix techniques for solving the fractional Lotka–Volterra population
model. Phys. A 2022, 600, 127558. [CrossRef]

23. AL-Nuwairan, M.; Sabir, Z.; Raja, M.A.Z.; Aldhafeeri, A. An advance artificial neural network scheme to examine the waste
plastic management in the ocean. AIP Adv. 2022, 12, 045211. [CrossRef]

24. Fathy, M.; El-Gamel, M.; El-Azab, M.S. Legendre–Galerkin method for the linear Fredholm integro-differential equations. Appl.
Math. Comput. 2014, 243, 789–800. [CrossRef]

25. Atta, A.G.; Youssri, Y.H. Advanced shifted first-kind Chebyshev collocation approach for solving the nonlinear time-fractional
partial integro-differential equation with a weakly singular kernel. Comput. Appl. Math. 2022, 41, 381. [CrossRef]

26. Adel, W.; Sabir, Z. Solving a new design of nonlinear second-order Lane–Emden pantograph delay differential model via Bernoulli
collocation method. Eur. Phys. J. Plus. 2020, 135, 427. [CrossRef]

27. Izadi, M.; Yüzbası, S.; Ansari, K.J. Application of Vieta-Lucas series to solve a class of multi-pantograph delay differential
equations with singularity. Symmetry 2021, 13, 2370. [CrossRef]

28. Swamy, M.N.S. Properties of the polynomials defined by Morgan-Voyce. Fibonacci Quart. 1966, 4, 73–81.
29. Özel, M.; Tarakci, M.; Sezer, M. Morgan-Voyce polynomial approach for ordinary linear delay integro-differential equations with

variable delays and variable bounds. Hacettepe J. Math. Stat. 2021, 50, 1434–1447.
30. Tarakci, M.; Özel, M.; Sezer, M. Solution of nonlinear ordinary differential equations with quadratic and cubic terms by Morgan-

Voyce matrix-collocation method. Turk J. Math. 2020, 44, 906–918. [CrossRef]
31. Swamy, M.N.S. Further properties of Morgan-Voyce polynomials. Fibonacci Quart. 1968, 6, 167–175.
32. Stewart, G.W. Afternotes on Numerical Analysis. SIAM 1996, 49, 157.
33. Mason, J.; Handscomb, D. Chebyshev Polynomials; Chapman and Hall: New York, NY, USA; CRC: Boca Raton, FL, USA, 2003.
34. Izadi, M. An approximation technique for first Painlevé equation. TWMS J. App. Eng. Math. 2021, 11, 739–750.

http://dx.doi.org/10.1016/j.marpolbul.2011.03.032
http://www.ncbi.nlm.nih.gov/pubmed/21497854
https://t.ynet.cn/baijia/31615238.html 
http://dx.doi.org/10.1093/reep/rez012
http://dx.doi.org/10.1111/apv.12255
http://dx.doi.org/10.1080/14787210.2021.1951705
http://dx.doi.org/10.1016/j.marpol.2020.103988
http://dx.doi.org/10.1016/j.jclepro.2022.131636
http://dx.doi.org/10.1016/j.jtbi.2014.02.028
http://dx.doi.org/10.1016/j.chaos.2021.111346
http://dx.doi.org/10.1016/j.biosystems.2020.104319
http://dx.doi.org/10.1177/14604582221120344
http://www.ncbi.nlm.nih.gov/pubmed/36005452
http://dx.doi.org/10.1098/rspb.2013.3009
http://www.ncbi.nlm.nih.gov/pubmed/24500169
http://dx.doi.org/10.1016/j.aej.2021.08.030
http://dx.doi.org/10.1016/j.amc.2022.127319
http://dx.doi.org/10.1016/j.chaos.2020.109706
http://dx.doi.org/10.1142/S0218348X21400351
http://dx.doi.org/10.1016/j.aej.2021.10.030
http://dx.doi.org/10.1016/j.plrev.2022.02.001
http://dx.doi.org/10.1016/j.physa.2022.127558
http://dx.doi.org/10.1063/5.0085737
http://dx.doi.org/10.1016/j.amc.2014.06.057
http://dx.doi.org/10.1007/s40314-022-02096-7
http://dx.doi.org/10.1140/epjp/s13360-020-00449-x
http://dx.doi.org/10.3390/sym13122370
http://dx.doi.org/10.3906/mat-1908-102


Mathematics 2022, 10, 4601 26 of 26

35. Izadi, M.; Yüzbası, S.; Noeiaghdam, S. Approximating solutions of non-linear Troesch’s problem via an efficient quasi-linearization
Bessel approach. Mathematics 2021, 9, 1841. [CrossRef]

36. Izadi, M.; Srivastava, H.M. Generalized Bessel quasilinearlization technique applied to Bratu and Lane-Emden type equations of
arbitrary order. Fractal Fract. 2021, 5, 179. [CrossRef]

37. Van den Driessche, P.; Watmough, J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of
disease transmission. Math. Biosci. 2002, 180, 29–48. [CrossRef] [PubMed]

38. Ortega, J.M. Matrix Theory: A Second Course; Springer: New York, NY, USA, 2013.

http://dx.doi.org/10.3390/math9161841
http://dx.doi.org/10.3390/fractalfract5040179
http://dx.doi.org/10.1016/S0025-5564(02)00108-6
http://www.ncbi.nlm.nih.gov/pubmed/12387915

	Introduction
	The Shifted Morgan-Voyce Functions and Their Convergence Results
	The Main Ingredients of Morgan-Voyce Functions: A Shifted Version 
	Convergent and Error Analysis

	The SMV Matrix Approach
	Converting the Initial Conditions into Matrix Form
	Error Estimation via REFs

	The Methodology of QLM-SMV
	Numerical Experimental Results
	Conclusions
	Appendix A
	Appendix A.1
	Appendix A.2

	Appendix B
	References

