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Abstract: Determining the author of a text is a difficult task. Here, we compare multiple Artificial
Intelligence techniques for classifying literary texts written by multiple authors by taking into account
a limited number of speech parts (prepositions, adverbs, and conjunctions). We also introduce a new
dataset composed of texts written in the Romanian language on which we have run the algorithms.
The compared methods are artificial neural networks, multi-expression programming, k-nearest
neighbour, support vector machines, and decision trees with C5.0. Numerical experiments show, first
of all, that the problem is difficult, but some algorithms are able to generate acceptable error rates on
the test set.
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1. Introduction

Automated authorship attribution (AA) is defined in [1] as the task of determining
authorship of an unknown text based on the textual characteristics of the text itself. Today
the AA is useful in a plethora of fields: from the educational and research domain to
detect plagiarism [2] to the justice domain to analyze evidence on forensic cases [3] and
cyberbullying [4], to the social media [5,6] to detect compromised accounts [7].

Most approaches in the area of artificial intelligence treat the AA problem by using
simple classifiers (e.g., linear SVM or decision tree) that have bag-of-words (character
n-grams) as features or other conventional feature sets [8,9]. Although deep neural learning
was already used for natural language processing (NLP), the adoption of such strategies for
authorship identification occurred later. In recent years, pre-trained language models (such
as BERT and GPT-2) have been used for finetuning and accuracy improvements [8,10,11].

The challenges in solving the AA problem can be grouped into three main groups [8]:

1. The lack of large-scale datasets;
2. The lack of methodological diversity;
3. The ad hoc nature of authorship.

The availability of large-scale datasets has improved in recent years as large datasets
have become widespread [12,13]. Other issues that relate to the datasets are the language
in which the texts are written, the domain, the topic, and the writing environment. Each of
these aspects has its own particularities. From the language perspective, the issue is that
most available datasets consist of texts written in English. There is PAN18 [9] for English,
French, Italian, Polish, and Spanish; or PAN19 [14] for English, French, Italian, and Spanish.
However, there are not very many datasets for other languages and this is crucial as there
are particularities that pertain to the language [15].
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The methodological diversity has also improved in recent years, as it is detailed in [8].
However, the ad hoc nature of authorship is a more difficult issue, as a set of features
that differentiates one author from the rest may not work for another author due to the
individuality aspect of different writing styles. Even for one author, the writing style can
evolve or change over a period of time, or it can differ depending on the context (e.g.,
the domain, the topic, or the writing environment). Thus, modeling the authorial writing
style has to be carefully considered and needs to be tailored to a specific set of authors [8].
Therefore, selecting a distinguishing set of features is a challenging task.

We propose a new dataset named ROST (ROmanian Stories and other Texts) as there
are few available datasets that contain texts written in Romanian [16]. The existing datasets
are small, on obscure domains, or translated from other languages. Our dataset consists of
400 texts written by 10 authors. We have elements that pertain to the intended heterogeneity
of the dataset such as:

• Different text types: stories, short stories, fairy tales, novels, articles, and sketches;
• Different number of texts per author: ranging from 27 to 60;
• Different sources: texts are collected from 4 different websites;
• Different text lengths: ranging from 91 to 39,195 words per text;
• Different periods: the time period in which the considered texts were written spans

over 3 centuries, which introduces diachronic developments;
• Different mediums: texts were written with the intention of being read from paper

medium (most of the considered authors) to online (two contemporary authors). This
aspect considerably changes the writing style, as shorter sentences and shorter words
are used online, and they also contain more adjectives and pronouns [17].

As our set is heterogeneous (as described above) from multiple perspectives, the
authorship attribution is even more difficult. We investigate this classification problem by
using five different techniques from the artificial intelligence area:

1. Artificial neural networks (ANN);
2. Multi-expression programming (MEP);
3. K-nearest neighbor (k-NN);
4. Support vector machine (SVM);
5. Decision trees (DT) with C5.0.

For each of these methods, we investigate different scenarios by varying the number
and the type of some features to determine the context in which they obtain the best results.
The aim of our investigations is twofold. On one side, the result of this investigation is to
determine which method performs best while working on the same data. On another side,
we try to find out the proper number and type of features that best classify the authors on
this specific dataset.

The paper is organized as follows:

• Section 2 describes the AA state of the art by using methods from artificial intelligence;
details the entire prerequisite process to be considered before applying the specific AI
algorithms (highlighting possible “stylometric features” to be considered); provides
a table with some available datasets; presents a number of AA methods already
proposed; describes the steps of the attribution process; presents an overview and a
comparison of AA state-of-the-art methods.

• Section 3 details the specific particularities (e.g., in terms of size, sources, time frames,
types of writing, and writing environments) of the database we are proposing and we
are going to use, and the building and scaling/pruning process of the feature set.

• Section 4 introduces the five methods we are going to use in our investigation.
• Section 5 presents the results and interprets them, making a comparison between the

five methods and the different sets of features used; measures the results by using
metrics that allow a comparison with the results of other state-of-the-art methods.

• Section 6 concludes with final remarks on the work and provides future possible
directions and investigations.
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2. Related Work

The AA detection can be modeled as a classification problem. The starting premise is
that each author has a stylistic and linguistic “fingerprint” in their work [18]. Therefore, in
the realm of AI, this means extracting a set of characteristics, which can be identified in a
large-enough writing sample [8].

2.1. Features

Stylometric features are the characteristics that define an author’s style. They can be
quantified, learned [19], and classified into five groups [20]:

1. Lexical (the text is viewed as a sequence of tokens grouped into sentences, with each
token corresponding to a word, number, or punctuation mark):

• Token-based (e.g., word length, sentence length, etc.);
• Vocabulary richness (i.e., attempts to quantify the vocabulary diversity of a text);
• Word frequencies (e.g., the traditional “bag-of-words” representation [21] in

which texts become vectors of word frequencies disregarding contextual infor-
mation, i.e., the word order);

• Word n-grams (i.e., sequences of n contiguous words also known as word collocations);
• Errors (i.e., intended to capture the idiosyncrasies of an author’s style) (requires

orthographic spell checker).

2. Character (the text is viewed as a sequence of characters):

• Character types (e.g., letters, digits, etc.) (requires character dictionary);
• Character n-grams (i.e., considers all sequences of n consecutive characters in

the texts; n can have a variable or fixed length);
• Compression methods (i.e., the use of a compression model acquired from one

text to compress another text; compression models are usually based on repeti-
tions of character sequences).

3. Syntactic (text-representation which considers syntactic information):

• Part-of-speech (POS) (requires POS tagger—a tool that assigns a tag of morpho-
syntactic information to each word-token based on contextual information);

• Chunks (i.e., phrases);
• Sentence and phrase structure (i.e., a parse tree of each sentence is produced);
• Rewrite rules frequencies (these rules express part of the syntactic analysis,

helping to determine the syntactic class of each word as the same word can have
different syntactic values based on different contexts);

• Errors (e.g., sentence fragments, run-on sentences, mismatched use of tenses)
(requires syntactic spell checker).

4. Semantic (text-representation which considers semantic information):

• Synonyms (requires thesaurus);
• Semantic dependencies.

5. Application-specific (the text is viewed from an application-specific perspective to
better represent the nuances of style in a given domain):

• Functional (requires specialized dictionaries);
• Structural (e.g., the use of greetings and farewells in messages, types of signatures,

use of indentation, and paragraph length);
• Content-specific (e.g., content-specific keywords);
• Language-specific.

The lexical and character features are simpler because they view the text as a sequence
of word-tokens or characters, not requiring any linguistic analysis, in contrast with the
syntactic and semantic characteristics, which do. The application-specific characteristics
are restricted to certain text domains or languages.
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A simple and successful feature selection, based on lexical characteristics, is made by
using the top of the N most frequent words from a corpus containing texts of the candidate
author. Determining the best value of N was the focus of numerous studies, starting
from 100 [22], and reaching 1000 [23], or even all words that appear at least twice in the
corpus [24]. It was observed, that depending on the value of N, different types of words
(in terms of content specificity) make up the majority. Therefore, when the size of N falls
within dozens, the most frequent words of a corpus are closed-class words (i.e., articles,
prepositions, etc.), while when N exceeds a few hundred words, open-class words (i.e.,
nouns, adjectives, verbs) are the majority [20].

Even though the word n-grams approach comes as a solution to keeping the contextual
information, i.e., the word order, which is lost in the word frequencies (or “bag-of-words”)
approach, the classification accuracy is not always better [25,26].

The main advantage of character feature selection is that they pertain to any natural
language and corpus. Furthermore, even the simplest in this category (i.e., character types)
proved to be useful to quantify the writing style [27].

The character n-grams have the advantages of capturing the nuances of style and
being tolerant to noise (e.g., grammatical errors or making strange use of punctuation), and
the disadvantage is that they capture redundant information [20].

The syntactic feature selection requires the use of Natural Language Processing (NLP)
tools to perform a syntactic analysis of texts, and they are language-dependent. Addition-
ally, being a method that requires complex text processing, noisy datasets may be produced
due to unavoidable errors made by the parser [20].

For semantic feature selection an even more detailed text analysis is required for
extracting stylometric features. Thus, the measures produced may be less accurate as more
noise may be introduced while processing the text. NLP tools are used here for sentence
splitting, POS tagging, text chunking, and partial parsing. However, complex tasks, such
as full syntactic parsing, semantic analysis, and pragmatic analysis, are hard to be achieved
for an unrestricted text [20].

A comprehensive survey of the state of the art in stylometry is conducted in [28].
The most common approach used in AA is to extract features that have a high dis-

criminatory potential [29]. There are multiple aspects that have to be considered in AA
for selecting the appropriate set of features. Some of them are the language, the literary
style (e.g., poetry, prose), the topic addressed by the text (e.g., sports, politics, storytelling),
the length of the text (e.g., novels, tweets), the number of text samples, and the number of
considered features. For instance, lexical and character features, although more simple, can
considerably increase the dimensionality of the feature set [20]. Therefore, feature selection
algorithms can be applied to reduce the dimensionality of such feature sets [30]. This also
helps the classification algorithm to avoid overfitting on the training data.

Another prerequisite for the training phase is deciding whether the training texts are
processed individually or cumulatively (per author). From this perspective, the following
two approaches can be distinguished [20]:

1. Instance-based approach (i.e., each training text is individually represented as a separate
instance in the training process to create a reliable attribution model);

2. Profile-based approach (i.e., a cumulative representation of an author’s style, also known
as the author’s profile, is extracted by concatenating all available training texts of one
author into one large file to flatten differences between texts).

Efstathios Stamatatos offers in [20] a comparison between the two aforementioned
approaches.

2.2. Datasets

In Table 1, we present a list of datasets used in AA investigations.
There is a large variation between the datasets. In terms of language, there are usually

datasets with texts that are written in one language, and there are a few that have texts written
in multiple languages. However, most of the available datasets contain texts written in English.
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The Size column is generally the number of texts and authors that have been used in
AA investigations. For example, PAN11 and PAN12 have thousands of texts and hundreds
of authors. However, in the referenced paper, only a few were used. The datasets vary in
the number of texts from hundreds to hundreds of thousands, and in terms of the number
of authors, from tens to tens of thousands.

Table 1. Datasets used for author attribution detection; Author(s) are names of individuals who
created the dataset (for a group consisting of more than two, only the name of the first person is
provided in the list, followed by “et al.”); Paper is the first paper that introduced that dataset or that is
recommended by its creator(s) to be used for citing the dataset; Language is the language in which
the texts in the database were written; Size is the dimension of the dataset; Features stands for the
types of features that can be or were used on that specific dataset (however, the information here
is only indicative and should not be taken literally); No. of features, is also more an indicative value
for possible feature set dimensions; Name or link provides the name by which that specific dataset is
known and, when available, links are provided.

Author(s) Paper Language Size Features No. of Features Name or Link

Sanda-Maria
Avram this paper Romanian 400 texts;

10 authors

conjunctions,
prepositions,
and adverbs

27 + 85 + 670 =
782 ROST

Shlomo
Argamon and
Patrick Juola

[31] English
42 literary texts

and novels;
14 authors

words,
characters,
n-grams

>3000

PAN11 https:
//pan.webis.de
/data.html#pan

12-attribution
[32]

Patrick Juola [33] English
42 literary texts

and novels;
14 authors

words,
characters,
n-grams

>3000

PAN12 https:
//pan.webis.de
/data.html#pan

12-attribution

Mike
Kestemont et al. [9]

English, French,
Italian, Polish,

Spanish.

2000 fanfiction
texts;

20 authors

char n-gram,
word n-gram,

stylistic, tokens
>500

PAN18 https:
//pan.webis.de
/data.html#pan
18-authorship-
attribution [34]

Mike
Kestemont et al. [35] English, French,

Italian, Spanish.

2997 cross-topic
fanfiction texts;

36 authors

char n-gram,
word n-gram,

tokens
>300

PAN19 https:
//pan.webis.de
/data.html#pan
19-authorship-
attribution [14]

Mike
Kestemont et al. [8] English

443,000
cross-topic

fanfiction texts;
278,000 authors

char n-gram,
word n-gram,

tokens
>300

PAN20 https:
//pan.webis.de
/data.html#pan
20-authorship-

verification [36]

Daniel Pavelec
et al. [37] Portuguese 600 articles;

20 authors
conjunctions
and adverbs 77 + 94 = 171 −

Paulo Varela
et al. [38] Portuguese 600 articles;

20 authors

conjunctions,
adverbs, verbs
and pronouns

77 + 94 + 50 +
91 = 312 −

Yanir Seroussi
et al. [39] English

1342 legal
documents;
3 authors

unigrams,
n-grams >2000 Judgment

Yanir Seroussi
et al. [40] English

79,550 movie
reviews;

62 authors

unigrams,
n-grams >200 IMDb62

https://www.kaggle.com/datasets/sandamariaavram/rost-romanian-stories-and-other-texts
https://pan.webis.de/data.html#pan12-attribution
https://pan.webis.de/data.html#pan12-attribution
https://pan.webis.de/data.html#pan12-attribution
https://pan.webis.de/data.html#pan12-attribution
https://pan.webis.de/data.html#pan12-attribution
https://pan.webis.de/data.html#pan12-attribution
https://pan.webis.de/data.html#pan12-attribution
https://pan.webis.de/data.html#pan12-attribution
https://pan.webis.de/data.html#pan18-authorship-attribution
https://pan.webis.de/data.html#pan18-authorship-attribution
https://pan.webis.de/data.html#pan18-authorship-attribution
https://pan.webis.de/data.html#pan18-authorship-attribution
https://pan.webis.de/data.html#pan18-authorship-attribution
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Table 1. Cont.

Author(s) Paper Language Size Features No. of Features Name or Link

Yanir Seroussi
et al. [41] English

204,809 posts,
66,816 reviews;

22,116 users

unigrams,
n-grams >1000 IMDB1M

Efstathios
Stamatatos [42] English

5000 newswire
documents;
50 authors

unigrams,
n-grams >500 CCAT50

Efstathios
Stamatatos [43] English

444 articles,
book reviews;

13 authors

words,
characters,

3-grams
>10,000 Guardian10

Efstathios
Stamatatos English

1000 CCTA
industry news;

10 authors

words,
characters,

3-grams
>500

C10 https:
//pan.webis.de
/data.html#c10

-attribution

Efstathios
Stamatatos English

5000 CCTA
industry news;

50 authors

words,
characters,
n-grams

>500

C50 https:
//pan.webis.de
/data.html#c50

-attribution

Jonathan Schler
et al. [44] English

over 600,000
posts; 19,000

bloggers
tokens, n-grams >200

Blogs50
https://www.
kaggle.com/d
atasets/rtatma
n/blog-authors

hip-corpus

Jade Goldstein
et al. [45] English 756 documents;

21 authors tokens, n-grams > 600 CMCC

Project
Gutenberg English 29,000 books;

4500 authors tokens, n-grams >60,000
Gutenberg

https://www.
gutenberg.org/

2.3. Strategies

According to [46], the entire process of text classification occurs in 6 stages:

1. Data acquisition (from one or multiple sources);
2. Data analysis and labeling;
3. Feature construction and weighting;
4. Feature selection and projection;
5. Training of a classification model;
6. Solution evaluation.

The classification process initiates with data acquisition, which is used to create the
dataset. There are two strategies for the analysis and labeling of the dataset [46]: labeling
groups of texts (also called multi-instance learning) [47], or assigning a label or labels to each
text part (by using supervised methods) [48]. To yield the appropriate data representation
required by the selected learning method, first, the features are selected and weighted [46]
according to the obtained labeled dataset. Then, the number of features is reduced by
selecting only the most important features and projected onto a lower dimensionality. There
are two different representations of textual data: vector space representation [49] where the
document is represented as a vector of feature weights, and graph representation [50] where
the document is modeled as a graph (e.g., nodes represent words, whereas edges represent
the relationships between the words). In the next stage, different learning approaches are
used to train a classification model. Training algorithms can be grouped into different
approaches [46]: supervised [48] (i.e., any machine learning process), semi-supervised [51]
(also known as self-training, co-training, learning from the labeled and unlabeled data, or

https://pan.webis.de/data.html#c10-attribution
https://pan.webis.de/data.html#c10-attribution
https://pan.webis.de/data.html#c10-attribution
https://pan.webis.de/data.html#c10-attribution
https://pan.webis.de/data.html#c50-attribution
https://pan.webis.de/data.html#c50-attribution
https://pan.webis.de/data.html#c50-attribution
https://pan.webis.de/data.html#c50-attribution
https://www.kaggle.com/datasets/rtatman/blog-authorship-corpus
https://www.kaggle.com/datasets/rtatman/blog-authorship-corpus
https://www.kaggle.com/datasets/rtatman/blog-authorship-corpus
https://www.kaggle.com/datasets/rtatman/blog-authorship-corpus
https://www.kaggle.com/datasets/rtatman/blog-authorship-corpus
https://www.gutenberg.org/
https://www.gutenberg.org/
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transductive learning), ensemble [52] (i.e., training multiple classifiers and considering them
as a “committee” of decision-makers), active [53] (i.e., the training algorithm has some role
in determining the data it will use for training), transfer [54] (i.e., the ability of a learning
mechanism to improve the performance for a current task after having learned a different
but related concept or skill from a previous task; also known as inductive transfer or transfer
of knowledge across domains), or multi-view learning [55] (also known as data fusion or data
integration from multiple feature sets, multiple feature spaces, or diversified feature spaces
that may have different distributions of features).

By providing probabilities or weights, the trained classifier is then able to decide a class
for each input vector. Finally, the classification process is evaluated. The performance of
the classifier can be measured based on different indicators [46]: precision, recall, accuracy,
F-score, specificity, area under the curve (AUC), and error rate. These all are related to
the actual classification task. However, other performance-oriented indicators can also be
considered, such as CPU time for training, CPU time for testing, and memory allocated to
the classification model [56].

Aside from the aforementioned challenges, there are also other sets of issues that are
currently being investigated. These are:

• Issues related to cross-domain, cross topic and/or cross-genre datasets;
• Issues related to the specificity of the used language;
• Issues regarding the style change of authors when the writing environment changes

from offline to online;
• The balanced or imbalanced nature of datasets.

Some examples which focus on these types of issues, alongside their solutions and/or
findings, are presented next.

Participants in the Identification Task at PAN-2018 [9], investigated two types of classi-
fications. The corpus consists of fan-fiction texts written in English, French, Italian, Polish,
and Spanish, and a set of questions and answers on several topics in English. First, they
addressed the cross-domain AA, finding that heterogeneous ensembles of simple classifiers
and compression models outperformed more sophisticated approaches based on deep
learning. Also, the set size is inversely correlated with attribution accuracy, especially for
cases when more than 10 authors are considered. Second, they investigated the detection of
style changes, where single-author and multi-author texts were distinguished. Techniques
ranging from machine learning ensembles to deep learning with a rich set of features have
been used to detect style changes, achieving the accuracy of up to nearly 90% over the
entire dataset and several reaching 100%.

The issue of cross-topic confusion is addressed in [57] for AA. This problem arises
when the training topic differs from the test topic. In such a scenario, the types of errors
caused by the topic can be distinguished from the errors caused by the detection of the
writing style. The findings show that classification is least likely to be affected by topic
variations when parts of speech are considered as features.

The analysis conducted in [58] aimed to determine which approach, such as topic or
style, is better for AA. The findings showed that online news, which have a wide variety
of topics, are better classified using content-based features, while texts with less topical
variation (e.g., legal judgments and movie reviews) benefit from using style-based features.

In [59] it is shown that syntax (e.g., sentence structure) helps AA on cross-genre texts,
while additional lexical information (e.g., parts of speech such as nouns, verbs, adjectives,
and adverbs) helps to classify cross-topic and single-domain texts. It is also shown that
syntax-only models may not be efficient.

Language-specific issues (e.g., the complexity and structure of sentences) are addressed
in [15] in relation to the Arabic language. Ensemble methods were used to improve the
effectiveness of the AA task.

The authors of [60] propose solutions to address the many issues in AA (e.g., cross-
domain, language specificity, writing environment) by introducing the concept of stacked
classifiers, which are built from words, characters, parts of speech n-grams, syntactic depen-
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dencies, word embeddings, and more. This solution proposes that these stacked classifiers
are dynamically included in the AA model according to the input.

Two different AA approaches called “writer-dependent” and “writer-independent”
were addressed in [37]. In the first approach, they used a Support Vector Machine (SVM) to
build a model for each author. The second approach combined a feature-based description
with the concept of dissimilarity to determine whether a text is written by a particular
author or not, thereby reducing the problem to a two-class problem. The tests were
performed on texts written in Portuguese. For the first approach, 77 conjunctions and 94
adverbs were used to determine the authorship and the best accuracy results on the test
set composed of 200 documents from 20 different authors were 83.2%. For the second
approach, the same set of documents and conjunctions was used, obtaining the best result
of 75.1% accuracy. In [38], along with conjunctions and adverbs, 50 verbs and 91 pronouns
were added to improve the results obtained previously, achieving a 4% improvement in
both “writer-dependent” and “writer-independent” approaches.

The challenges of variations in authors’ style when the writing environment changes from
traditional to online are addressed in [17]. These investigations consider changes in sentence
length, word usage, readability, and frequency use of some parts of speech. The findings show
that shorter sentences and words, as well as more adjectives and pronouns, are used online.

The authors of [61] proposed a feature extraction solution for AA. They investigated
trigrams, bags of words, and most frequent terms in both balanced and imbalanced samples
and showed with 79.68% accuracy that an author’s writing style can be identified by using
a single document.

2.4. Comparison

AA is a very important and currently intensively researched topic. However, the
multitude of approaches makes it very difficult to have a unified view of the state-of-the-art
results. In [10], authors highlight this challenge by noting significant differences in:

• Datasets

– In terms of size: small (CCAT50, CMCC, Guardian10), medium (IMDb62, Blogs50),
and large (PAN20, Gutenberg);

– In terms of content: cross-topic (×t), cross-genre (×g), unique authors;
– In terms of imbalance (imb): i.e., standard deviation of the number of documents

per author;
– In terms of topic confusion (as detailed in [57]).

• Performance metrics

– In terms of type: accuracy, F1, c@1, recall, precision, macro-accuracy, AUC, R@8,
and others;

– In terms of computation: even for the same performance metrics there were
different ways of computing them.

• Methods

– In terms of the feature extraction method,

* Feature-based: n-gram, summary statistics, co-occurrence graphs;
* Embedding-based: char embedding, word embedding, transformers
* Feature and embedding-based: BERT.

The work presented in [10] tries to address and “resolve” these differences, bringing
everything to a common denominator, even when that meant recreating some results. To
differentiate between different methods, authors of [10] grouped the results in 4 classes:

• Ngram: includes character n-grams, parts-of-speech and summary statistics as shown
in [57,62–64];

• PPM: uses Prediction by Partial Matching (PPM) compression model to build a
character-based model for each author, with works presented in [28,65];



Mathematics 2022, 10, 4589 9 of 35

• BERT: combines a BERT pre-trained language model with a dense layer for classifica-
tion, as in [66];

• pALM: the per-Author Language Model (pALM), also using BERT as described in [67].

The results of the state of the art as presented in [10] are shown in Table 2.

Table 2. State of the art macro-accuracy of authorship attribution models. Information collected
from [10] (Tables 1 and 3). Name is the name of the dataset; No. docs represents the number of
documents in that dataset; No. auth represents the number of authors; Content indicates whether the
documents are cross-topic (×t) or cross-genre (×g); W/D stands for words per document, representing
the average length of documents; imb represents the imbalance of the dataset measured by the standard
deviation of the number of documents per author.

Dataset Macro-Accuracy (%) for Investigation Type

Name No. Docs No. Auth Content W/D Imb Ngram PPM BERT pALM

CCAT50 5000 50 - 506 0 76.68 69.36 65.72 63.36
CMCC 756 21 ×t ×g 601 0 86.51 62.30 60.32 54.76

Guardian10 444 13 ×t ×g 1052 6.7 100 86.28 84.23 66.67
IMDb62 62,000 62 - 349 2.6 98.81 95.90 98.80 -
Blogs50 66,000 50 - 122 553 72.28 72.16 74.95 -
PAN20 443,000 278,000 ×t 3922 2.3 43.52 - 23.83 -

Gutenburg 29,000 4500 - 66,350 10.5 57.69 - 59.11 -

As can be seen in Table 2, the methods in the Ngram class generally work best. However,
BERT-class methods can perform better on large training sets that are not cross-topic and/or
cross-genre. The authors of [10] state that from their investigations it can be inferred that
Ngram-class methods are preferred for datasets that have less than 50,000 words per author,
while BERT-class methods should be preferred for datasets with over 100,000 words per author.

3. Proposed Dataset

The texts considered are Romanian stories, short stories, fairy tales, novels, articles,
and sketches.

There are 400 such texts of different lengths, ranging from 91 to 39,195 words. Table 3
presents the averages and standard deviations of the number of words, unique words, and
the ratio of words to unique words for each author. There are differences up to almost
7000 words between the average word counts (e.g., between Slavici and Oltean). For
unique words, the difference between averages goes up to more than 1300 unique words
(e.g., between Eminescu and Oltean). Even the ratio of total words to unique words is a
significant difference between the authors (e.g., between Slavici and Oltean).

Eminescu and Slavici, the two authors with the largest averages also have large
standard deviations for the number of words and the number of unique words. This means
that their texts range from very short to very long. Gârleanu and Oltean have the shortest
texts, as their average number of words and unique words and the corresponding standard
deviations are the smallest.

There is also a correlation between the three groups of values (pertaining to the words,
unique words, and the ratio between the two) that is to be expected as a larger or smaller
number of words would contain a similar proportion of unique words or the ratio of the
two, while the standard deviations of the ratio of total words to unique words tend to be
more similar. However, Slavici has a very high ratio, which means that there are texts in
which he repeats the same words more often, and in other texts, he does not. There is also
a difference between Slavici and Eminescu here because even if they have similar word
count average and unique word count average, their ratio differs. Eminescu has a similar
representation in terms of ratio and standard deviation with his lifelong friend Creangă,
which can mean that both may have similar tendencies in reusing words.
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Table 3. Diversity of the considered dataset in terms of the length of the texts (i.e., number of words).
Author is the author’s name (the last name is in bold); Average is the mean number of words per text
written by the corresponding author; StdDev is the standard deviation; Average-Unique is the mean
number of unique words; StdDev-Unique is the standard deviation on unique words; Average-Ratio is
the mean number of the ratio of total words to unique words; StdDev-Ratio is the standard deviation
of the ratio of total words to unique words.

Author Average StdDev Average-
Unique

StdDev-
Unique

Average-
Ratio

StdDev-
Ratio

Ion Creangă 3679.34 3633.42 1061.90 719.38 3.01 0.94
Barbu Ştefănescu Delavrancea 4166.39 3702.33 1421.34 948.41 2.66 0.58
Mihai Eminescu 5854.52 7858.89 1656.96 1716.08 2.92 0.87
Nicolae Filimon 2734.32 2589.72 1040.09 729.81 2.42 0.50
Emil Gârleanu 843.05 721.06 411.19 234.71 1.88 0.32
Petre Ispirescu 3302.80 1531.36 1017.73 340.37 3.10 0.49
Mihai Oltean 553.75 484.00 282.56 201.18 1.79 0.31
Emilia Plugaru 2253.88 2667.38 756.70 581.88 2.54 0.64
Liviu Rebreanu 2284.12 1971.88 889.70 550.92 2.36 0.44
Ioan Slavici 7531.54 8969.77 1520.42 1041.40 3.96 1.62

Table 4 shows the averages of the number of features that are contained in the texts
corresponding to each author. The pattern depicted here is similar to that in Table 3, which
is to be expected. However, standard deviations tend to be similar for all authors. These
standard deviations are considerable in size, being on average as follows:

• 4.16 on the set of 56 features (i.e., the list of prepositions),
• 23.88 on the set of 415 features (i.e., the list of prepositions and adverbs),
• 25.38 on the set of 432 features (i.e., the list of prepositions, adverbs, and conjunctions).

This means that the frequency of feature occurrence differs even in the texts written
by the same author.

Table 4. Diversity of the considered dataset in terms of the number of occurrences of the considered
features in the texts. Author is the author’s name (the last name is in bold); Average-P is the average
number of the occurrence of the considered prepositions in the texts corresponding to each author;
StdDev-P is the standard deviation for the occurrence of the prepositions; Average-PA is the average
number of the occurrence of the considered prepositions and adverbs; StdDev-PA is the standard
deviation of the number of the occurrence of the considered prepositions and adverbs; Average-PAC
is the average number of the occurrence of the considered prepositions, adverbs, and conjunctions;
StdDev-PAC is the standard deviation of the number of the occurrence of the considered prepositions,
adverbs, and conjunctions.

Author Average-P StdDev-P Average-PA StdDev-PA Average-PAC StdDev-PAC

Ion Creangă 19.90 4.94 79.21 30.11 88.34 31.86
Barbu Ştefănescu Delavrancea 19.14 3.67 73.43 27.79 81.82 29.81
Mihai Eminescu 21.85 7.18 80.04 34.11 90.04 36.22
Nicolae Filimon 18.26 3.52 61.94 18.12 70.50 19.25
Emil Gârleanu 14.65 3.01 48.12 16.11 53.21 17.19
Petre Ispirescu 19.93 3.14 79.60 17.32 89.63 18.52
Mihai Oltean 11.88 3.82 33.16 17.51 37.69 18.96
Emilia Plugaru 16.13 3.61 69.83 22.62 77.48 23.58
Liviu Rebreanu 17.25 4.07 73.88 25.65 82.62 27.37
Ioan Slavici 21.29 4.72 96.08 29.48 105.87 31.09

The considered texts are collected from 4 websites and are written by 10 different
authors, as shown in Table 5. The diversity of sources is relevant from a twofold perspective.
First, especially for old texts, it is difficult to find or determine which is the original version.
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Second, there may be differences between versions of the same text either because some
words are no longer used or have changed their meaning, or because fragments of the text
may be added or subtracted. For some authors, texts are sourced from multiple websites.

Table 5. List of authors (the author’s last name is in bold), the number of texts considered for each
author (total number is in bold), and their source (i.e., the website from which they were collected).

Author No. of Texts https://www.
povesti.org

https://povesti-
ro.weebly.com/

https:
//ro.wikisource.

org/wiki/

https://www.
povesti-pentru

-copii.com/

Ion Creangă 28 4 24
Barbu Ştefănescu Delavrancea 44 2 28 14
Mihai Eminescu 27 21 6
Nicolae Filimon 34 31 3
Emil Gârleanu 43 34 9
Petre Ispirescu 40 2 1 37
Mihai Oltean 32 32
Emilia Plugaru 40 40
Liviu Rebreanu 60 60
Ioan Slavici 52 3 39 10

TOTAL 400 32 41 193 134

The diversity of the texts is intentional because we wanted to emulate a more likely
scenario where all these characteristics might not be controlled. This is because, for future
texts to be tested on the trained models, the text length, the source, and the type of writing
cannot be controlled or imposed.

To highlight the differences between the time frames of the periods in which the authors
lived and wrote the considered texts, as well as the environment from which the texts were
intended to be read, we gathered the information presented in Table 6. It can be seen that the
considered texts were written in the time span of three centuries. This also brings an increased
diversity between texts, since within such a large time span there have been significant
developments in terms of language (e.g., diachronic developments), writing style relating to
the desired reading medium (e.g., paper or online), topics (e.g., general concerns and concerns
that relate to a particular time), and viewpoints (e.g., a particular worldview).

Table 6. List of authors, time spans of the periods in which the authors lived and wrote the considered
texts and the medium from which the readers read their texts. Author is the author’s name (the last
name is in bold); Life is the lifetime of the author; Publication is the publication interval of the texts
(note: the information presented here was not always easily accessible and some sources would
contradict in terms of specific years, however, this information should be considered more as an
indicative coordinate and should not be taken literally, the goal being that the literary texts be tempo-
rally framed in order to have a perspective on the period in which they were written/published);
Century is a coarser temporal framing of the periods in which the texts were written; Medium is the
environment from which most of the readers read the author’s texts.

# Author Life Publication Century Medium

0 Ion Creangă 1837–1889 1874–1898 19th paper
1 Barbu Ştefănescu Delavrancea 1858–1918 1884–1909 19th–20th paper
2 Mihai Eminescu 1850–1889 1872–1865 19th paper
3 Nicolae Filimon 1819–1865 1857–1863 19th paper
4 Emil Gârleanu 1878–1914 1907–1915 20th paper
5 Petre Ispirescu 1830–1887 1882–1883 19th paper
6 Mihai Oltean 1976– 2010–2022 21th paper and online
7 Emilia Plugaru 1951– 2010–2017 21th paper and online
8 Liviu Rebreanu 1885–1944 1908–1935 20th paper
9 Ioan Slavici 1848–1925 1872–1920 19th–20th paper

https://www.povesti.org
https://www.povesti.org
https://povesti-ro.weebly.com/
https://povesti-ro.weebly.com/
https://ro.wikisource.org/wiki/
https://ro.wikisource.org/wiki/
https://ro.wikisource.org/wiki/
 https://www.povesti-pentru-copii.com/
 https://www.povesti-pentru-copii.com/
 https://www.povesti-pentru-copii.com/
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The diversity of the texts also pertains to the type of writing, i.e., stories, short stories,
fairy tales, novels, articles, and sketches. Table 7 shows the distribution of these types of
writing among the texts belonging to the 10 authors. The difference in the type of writing
has an impact on the length of the texts (for example, a novel is considerably longer than
a short story), genre (for example, fairy tales have more allegorical worlds that can require
a specific style of writing), the topic (for example, an article may describe more mundane
topics, requiring a different type of discourse compared to the other types of writing).

Table 7. List of authors and types of writing of the considered texts. Author is the author’s name (the
last name is in bold); Article ∗ include, in addition to articles written for various newspapers and
magazines, other types of writing that did not fit into the other categories, but relate to this category,
such as prose, essays, and theatrical or musical chronicles. Total number of texts per type are in bold.

# Author Novel Story Short
Story Fairy Tale Article * Sketch

0 Ion Creangă 5 12 11
1 Barbu Ştefănescu Delavrancea 37 7
2 Mihai Eminescu 1 1 4 7 14
3 Nicolae Filimon 6 5 3 20
4 Emil Gârleanu 43
5 Petre Ispirescu 1 1 38
6 Mihai Oltean 32
7 Emilia Plugaru 40
8 Liviu Rebreanu 46 14
9 Ioan Slavici 14 38

TOTAL 12 113 171 55 35 14

Regarding the list of possible features, we selected as elements to identify the author of
a text inflexible parts of speech (IPoS) (i.e., those that do not change their form in the context of
communication): conjunctions, prepositions, interjections, and adverbs. Of these, we only
considered those that were single-word and we removed the words that may represent
other parts of speech, as some of them may have different functions depending on the
context, and we did not use any syntactic or semantic processing of the text to carry out
such an investigation.

We collected a list of 24 conjunctions that we checked on dexonline.ro (i.e., site that
contains explanatory dictionaries of the Romanian language) not to be any other part
of speech (not even among the inflexible ones). We also considered 3 short forms, thus
arriving at a list of 27 conjunctions. The process of selecting prepositions was similar to
that of selecting conjunctions, resulting in a list of 85 (including some short forms).

The lists of interjections and adverbs were taken from:

• https://ro.wiktionary.org/wiki/Categorie:Interjec%C8%9Bii_%C3%AEn_rom%C3%
A2n%C4%83, accessed on 20 October 2022

• https://ro.wiktionary.org/wiki/Categorie:Adverbe_%C3%AEn_rom%C3%A2n%C4%
83, accessed on 20 October 2022

To compile the lists of interjections and adverbs, we again considered only single-word
ones and we eliminated words that may represent other parts of speech (e.g., proper nouns,
nouns, adjectives, verbs), resulting in lists of 290 interjections and 670 adverbs.

The lists of the aforementioned IPoS also contain archaic forms in order to better
identify the author. This is an important aspect that has to be taken into consideration
(especially for our dataset which contains texts that were written over a time span of
3 centuries), as language is something that evolves and some words change as form and
sometimes even as meaning or the way they are used.

From the lists corresponding to the considered IPoS features, we use only those that
appear in the texts. Therefore, the actual lists of prepositions, adverbs, and conjunctions

https://dexonline.ro/
https://ro.wiktionary.org/wiki/Categorie:Interjec%C8%9Bii_%C3%AEn_rom%C3%A2n%C4%83
https://ro.wiktionary.org/wiki/Categorie:Interjec%C8%9Bii_%C3%AEn_rom%C3%A2n%C4%83
https://ro.wiktionary.org/wiki/Categorie:Adverbe_%C3%AEn_rom%C3%A2n%C4%83
https://ro.wiktionary.org/wiki/Categorie:Adverbe_%C3%AEn_rom%C3%A2n%C4%83
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may be shorter. Details of the texts and the lists of inflexible parts of speech used can be
found at reference [68].

4. Compared Methods

Below we present the methods we will use in our investigations.

4.1. Artificial Neural Networks

Artificial neural networks (ANN) is a machine learning method that applies the
principle function approximation through learning by example (or based on provided
training information) [69]. An ANN contains artificial neurons (or processing elements),
organized in layers and connected by weighted arcs. The learning process takes place by
adjusting the weights during the training process so that based on the input dataset the
output outcome is obtained. Initially, these weights are chosen randomly.

The artificial neural structure is feedforward and has at least three layers: input,
hidden (one or more), and output.

The experiments in this paper were performed using fast artificial neural network
(FANN) [70] library. The error is RMSE. For the test set, the number of incorrectly classified
items is also calculated.

4.2. Multi-Expression Programming

Multi-expression programming (MEP) is an evolutionary algorithm for generating
computer programs. It can be applied to symbolic regression, time-series, and classification
problems [71]. It is inspired by genetic programming [72] and uses three-address code [73]
for the representation of programs.

MEP experiments use the MEPX software [74].

4.3. K-Nearest Neighbors

K-nearest neighbors (k-NN) [75–77] is a simple classification method based on the
concept of instance-based learning [78]. It finds the k items, in the training set, that are
closest to the test item and assigns the latter to the class that is most prevalent among these
k items found.

The source code of k-NN used in this paper is written by us and is available at
https://github.com/sanda-avram/ROST-source-code, (accessed on 8 November 2022)
along other scripts and programs we wrote to perform the tests.

4.4. Support Vector Machine

A support vector machine (SVM) [79] is also a classification principle based on machine
learning with the maximization (support) of separating distance/margin (vector). As in
k-NN, SVM represents the items as points in a high-dimensional space and tries to separate
them using a hyperplane. The particularity of SVM lies in the way in which such a
hyperplane is selected, i.e., selecting the hyperplane that has the maximum distance to any
item.

LIBSVM [80,81] is the support vector machine library that we used in our experiments.
It supports classification, regression, and distribution estimation.

4.5. Decision Trees with C5.0

Classification can be completed by representing the acquired knowledge as decision
trees [82]. A decision tree is a directed graph in which all nodes (except the root) have
exactly one incoming edge. The root node has no incoming edge. All nodes that have
outgoing edges are called internal (or test) nodes. All other nodes are called leaves (or
decision) nodes. Such trees are built starting from the root by top–down inductive inference
based on the values of the items in the training set. So, within each internal node, the
instance space is divided into two or more sub-spaces based on the input attribute values.

https://github.com/sanda-avram/ROST-source-code
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An internal node may consider a single attribute. Each leaf is assigned to a class. Instances
are classified by running them through the tree starting from the root to the leaves.

See5 and C5.0 [83] are data mining tools that produce classifiers expressed as either
decision trees or rulesets, which we have used in our experiments.

5. Numerical Experiments

To prepare the dataset for the actual building of the classification model, the texts
in the dataset were shuffled and divided into training (50%), validation (25%), and test
(25%) sets, as detailed in Table 8. In cases where we only needed training and test sets, we
concatenated the validation set to the training set. We reiterated the process (i.e., shuffle and
split 50%–25%–25%) three times and, thus, obtained three different training–validation–test
shuffles from the considered dataset.

Table 8. List of authors (the author’s last name is in bold); the number of texts and their distribution
on the training, validation, and test sets. The total number of texts per author, per set, and grand total
are in bold.

# Author No. of Texts TrainSet Size ValidationSet Size TestSet Size

0 Ion Creangă 28 14 7 7
1 Barbu Ştefănescu Delavrancea 44 22 11 11
2 Mihai Eminescu 27 15 6 6
3 Nicolae Filimon 34 18 8 8
4 Emil Gârleanu 43 23 10 10
5 Petre Ispirescu 40 20 10 10
6 Mihai Oltean 32 16 8 8
7 Emilia Plugaru 40 20 10 10
8 Liviu Rebreanu 60 30 15 15
9 Ioan Slavici 52 26 13 13

TOTAL 400 204 98 98

Before building a numerical representation of the dataset as vectors of the frequency of
occurrence of the considered features, we made a preliminary analysis to determine which
of the inflexible parts of speech are more prevalent in our texts. Therefore, we counted
the number of occurrences of each of them based on the lists described in Section 3. The
findings are detailed in Table 9.

Table 9. The occurrence of inflexible parts of speech considered. IPoS stands for Inflexible part of speech;
No. of occurrence is the total number of occurrences of the considered IPoS in all texts; % from total
words represents the percentage corresponding to the No. of occurrence in terms of the total number of
words in all texts (i.e., 1,342,133); No. of files represents the number of texts in which at least one word
from the corresponding IPoS list appears; Avg. per file represents the No. of occurrence divided by the
total number of texts/files (i.e., 400); and No. of IPoS represents the list length (i.e., the number of
words) for each corresponding IPoS.

IPoS No. of Occurrence % from Total
Words No. of Files Avg. per File No. of IPoS

conjunctions 119,568 8.90 400 298.92 27
prepositions 176,733 13.16 400 441.83 85
interjections 6614 0.49 356 16.53 290

adverbs 127,811 9.52 400 319.52 670

Based on the data presented here, we decided not to consider interjections because
they do not appear in all files (i.e., 44 files do not contain any interjections), and in the
other files, their occurrence is much less compared to the rest of the IPoS considered. This
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investigation also allowed us to decide the order in which these IPoS will be considered in
our tests. Thus, the order of investigation is prepositions, adverbs, and conjunctions.

Therefore, we would first consider only prepositions, then add adverbs to this list,
and finally add conjunctions as well. The process of shuffling and splitting the texts into
training–validation–test sets (described at the beginning of the current section, i.e., Section 5)
was reiterated once more for each feature list considered. We, therefore, obtained different
dataset representations, which we will refer further as described in Table 10. The last
3 entries (i.e., ROST-PC-1, ROST-PC-2, and ROST-PC-3) were used in a single experiment.

Table 10. Names used in the rest of the paper refer to the different dataset representations and their
shuffles. Only the first 9 entries (with the Designation written in bold) were used for the entire set of
investigations.

# Designation Features to Represent the Dataset Shuffle

1 ROST-P-1 prepositions #1
2 ROST-P-2 prepositions #2
3 ROST-P-3 prepositions #3

4 ROST-PA-1 prepositions and adverbs #1
5 ROST-PA-2 prepositions and adverbs #2
6 ROST-PA-3 prepositions and adverbs #3

7 ROST-PAC-1 prepositions, adverbs and conjunctions #1
8 ROST-PAC-2 prepositions, adverbs and conjunctions #2
9 ROST-PAC-3 prepositions, adverbs and conjunctions #3

10 ROST-PC-1 prepositions and conjunctions #1
11 ROST-PC-2 prepositions and conjunctions #2
12 ROST-PC-3 prepositions and conjunctions #3

Correspondingly, we created different representations of the dataset as vectors of
the frequency of occurrence of the considered feature lists. All these representations (i.e.,
training-validation-test sets) can be found as text files at reference [68]. These files contain
feature-based numerical value representations for a different text on each line. On the last
column of these files, are numbers from 0 to 9 corresponding to the author, as specified in
the first columns of Tables 6–8.

5.1. Results

The parameter setting for all 5 methods are presented in Appendix A, while
Appendix B contains some prerequisite tests.

Most results are presented in a tabular format. The percentages contained in the
cells under the columns named Best, Avg, or Error may be highlighted using bold text or
gray background. In these cases, the percentages in bold represent the best individual
results (i.e., obtained by the respective method on any ROST-*-* in the dataset, out of the
9 representations mentioned above), while the gray-colored cells contain the best overall
results (i.e., compared to all methods on that specific ROST-X-n representation of the
dataset).

5.1.1. ANN

Results that showed that ANN is a good candidate to solve this kind of problem and
prerequisite tests that determined the best ANN configuration (i.e., number of neurons on
the hidden layer) for each dataset representation are detailed in Appendix B.1. The best
values obtained for test errors and the number of neurons on the hidden layer for which
these “bests” occurred are given in Table 11. These results show that the best test error rates
were mainly generated by ANNs that have a number of neurons between 27 and 49. The
best test error rate obtained with this method was 23.46% for ROST-PAC-3, while the best
average was 36.93% for ROST-PAC-2.
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Table 11. ANN results on the considered datasets. On each set, 30 runs are performed by ANNs
with the hidden layer containing from 5 to 50 neurons. The number of incorrectly classified data is
given as a percentage (the best results obtained by ANN on any ROST-*-* dataset representation are
in bold). Best stands for the best solution (out of 30 runs on each of the 46 ANNs), Avg stands for
Average (over 30 runs), StdDev stands for Standard Deviation, and No. of neurons stands for the number
of neurons in the hidden layer of the ANN that produced the best solution. The best result obtained
by ANN compared to all methods for a given ROST-X-n dataset representation is in a gray cell.

Dataset Best Avg StdDev No. of Neurons

ROST-P-1 61.22% 76.70% 6.30 46
ROST-P-2 60.20% 80.27% 10.58 36
ROST-P-3 57.14% 80.95% 10.30 28

ROST-PA-1 24.48% 45.03% 8.15 40
ROST-PA-2 24.48% 41.73% 5.78 45
ROST-PA-3 26.53% 47.82% 9.82 27

ROST-PAC-1 24.48% 38.16% 5.11 49
ROST-PAC-2 24.48% 36.93% 4.80 40
ROST-PAC-3 23.46% 37.21% 4.96 41

5.1.2. MEP

Results that showed that MEP can handle this type of problem are described in
Appendix B.2.

We are interested in the generalization ability of the method. For this purpose, we
performed full (30) runs on all datasets. The results, on the test sets, are given in Table 12.

Table 12. MEP results on the considered datasets. A total of 30 runs are performed. The number of
incorrectly classified data is given as a percentage (the best results obtained by MEP on any ROST-*-*
dataset representation are in bold). Best stands for the best solution (out of 30 runs), Avg stands for
Average (over 30 runs) and StdDev stands for Standard Deviation. The best result obtained by MEP
compared to all methods for a given ROST-X-n dataset representation is in a gray cell.

Dataset Best Avg StdDev

ROST-P-1 54.08% 61.32% 4.11
ROST-P-2 52.04% 62.51% 4.46
ROST-P-3 48.97% 58.84% 4.16

ROST-PA-1 29.59% 36.49% 4.52
ROST-PA-2 20.40% 27.95% 3.87
ROST-PA-3 29.59% 39.93% 4.53

ROST-PAC-1 27.55% 33.84% 2.86
ROST-PAC-2 26.53% 34.89% 4.58
ROST-PAC-3 23.46% 34.38% 4.54

With this method, we obtained an overall “best” on all ROST-*-*, which is 20.40%, and
also an overall “average” best with a value of 27.95%, both for ROST-PA-2.

One big problem is overfitting. The error on the training set is low (they are not given
here, but sometimes are below 10%). However, on the validation and test sets the errors
are much higher (2 or 3 times higher). This means that the model suffers from overfitting
and has poor generalization ability. This is a known problem in machine learning and is
usually corrected by providing more data (for instance more texts for an author).

5.1.3. k-NN

Preliminary tests and their results for determining the best value of k for each dataset
representation are presented in Appendix B.3.

The best k-NN results are given in Table 13 with the corresponding value of k for
which these “bests” were obtained. It can be seen that for all ROST-P-*, the values of k were
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higher (i.e., k ≥ 8) than those for ROST-PA-* or ROST-PAC-* (i.e., k ≤ 4). The best value
obtained by this method was 29.59% for ROST-PAC-2 and ROST-PAC-3.

Table 13. k-NN results on the considered datasets. In total, 30 runs are performed with k varying
with the run index. The number of incorrectly classified data is given as a percentage (the best results
obtained by k-MM on any ROST-*-* dataset representation are in bold). Best stands for the best
solution (out of the 30 runs), k stands for the value of k for which the best solution was obtained.

Dataset Best k

ROST-P-1 53.06% 8
ROST-P-2 54.08% 23
ROST-P-3 48.97% 11

ROST-PA-1 31.63% 1
ROST-PA-2 32.6% 1
ROST-PA-3 35.71% 1

ROST-PAC-1 33.67% 2
ROST-PAC-2 29.59% 1
ROST-PAC-3 29.59% 4

5.1.4. SVM

Prerequisite tests to determine the best kernel type and a good interval of values for
the parameter nu are described in Appendix B.4, along with their results.

We ran tests for each kernel type and with nu varying from 0.1 to 1, as we saw in
Figure A6 that for values less than 0.1, SVM is unlikely to produce the best results. The best
results obtained are shown in Table 14.

Table 14. SVM results on the considered datasets. The number of incorrectly classified data is given
as a percentage (the best results obtained by SVM on any ROST-*-* dataset representation are in bold).
Best stands for the best test error rate (out of 30 runs with nu ranging from 0.001 to 1), and nu stands
for the parameter specific to the selected type of SVM (i.e., nu-SVC). Results are given for each type
of kernel that was used by the SVM. The best result obtained by SVM compared to all methods for a
given ROST-X-n dataset representation is in a gray cell.

Linear Kernel Polynomial Kernel Radial Basis Kernel Sigmoid Kernel
Dataset Best nu Best nu Best nu Best nu

ROST-P-1 43.87% ≥0.6 65.30% 0.5 59.18% 0.4 58.16% 0.4
ROST-P-2 55.10% ≥0.6 70.40% 0.2, 0.4 67.34% 0.4 68.37% 0.2, 0.4
ROST-P-3 43.87% ≥0.6 65.30% 0.5 59.18% 0.4 58.16% 0.4

ROST-PA-1 31.63% 0.5 51.02% 0.5 44.89% 0.3 45.91% 0.3
ROST-PA-2 26.53% 0.5 55.10% ≥0.6 44.89% ≥0.6 44.89% ≥0.6
ROST-PA-3 28.57% 0.4 54.08% 0.2, 0.3 51.02% 0.2 51.02% 0.2

ROST-PAC-1 23.46% 0.2 54.08% 0.2 50.00% 0.5 50.00% 0.5
ROST-PAC-2 24.48% 0.5 51.02% ≥0.6 39.79% ≥0.6 39.79% ≥0.6
ROST-PAC-3 26.53% 0.5 51.02% 0.4 41.83% 0.5 42.85% 0.5

As can be seen, the best values were obtained for values of parameter nu between
0.2 and 0.6 (where sometimes 0.6 is the smallest value of the set {0.6, 0.7, . . . , 1} for which
the best test error was obtained). The best value obtained by this method was 23.46% for
ROST-PAC-1, using the linear kernel and nu parameter value 0.2.

5.1.5. Decision Trees with C5.0

Advanced pruning options for optimizing the decision trees with C5.0 model and
their results are presented in Appendix B.5. The best results were obtained by using −m
cases option, as detailed in Table 15.
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Table 15. Decision tree results on the considered datasets. The number of incorrectly classified
data is given as a percentage (the best results obtained by DT with C5.0 on any ROST-*-* dataset
representation are in bold). Error stands for the test error rate, Size stands for the size of the decision
tree required for that specific solution and cases stands for the threshold for which is decided to have
two more that two branches at a specific branching point (cases ∈ {1, 2, . . . , 30}). The best result
obtained by DT with C5.0 compared to all methods for a given ROST-X-n dataset representation is in
a gray cell.

Dataset Error Size Cases

ROST-P-1 51.0% 18 8
ROST-P-2 51.0% 46 3
ROST-P-3 57.1% 99 1

ROST-PA-1 31.6% 13 12
ROST-PA-2 26.5% 57 1
ROST-PA-3 29.6% 31 3

ROST-PAC-1 28.6% 39 2
ROST-PAC-2 24.5% 12 14
ROST-PAC-3 26.5% 13 14

The best result obtained by this method was 24.5% on ROST-PAC-2, with−m 14 option,
on a decision tree of size 12. When no options were used, the size of the decision trees was
considerably larger for ROST-P-* (i.e., ≥57) than those for ROST-PA-* and ROST-PAC-*
(i.e., ≤39).

5.2. Comparison and Discussion

The findings of our investigations allow for a twofold perspective. The first perspective
refers to the evaluation of the performance of the five investigated methods, as well as to
the observation of the ability of the considered feature sets to better represent the dataset
for successful classification. The other perspective is to place our results in the context of
other state-of-the-art investigations in the field of author attribution.

5.2.1. Comparing the Internally Investigated Methods

From all the results presented above, upon consulting the tables containing the best
test error rates, and especially the gray-colored cells (which contain the best results while
comparing the methods amongst themselves) we can highlight the following:

• ANN:

– Four best results for: ROST-PA-1, ROST-PA-3, ROST-PAC-2 and ROST-PAC-3 (see
Table 11);

– Best ANN 23.46% on ROST-PAC-3; best ANN average 36.93% on ROST-PAC-2;
– Worst best overall 61.22% on ROST-P-1.

• MEP:

– Two best results for ROST-PA-2 and ROST-PAC-3 (see Table 12);
– Best overall 20.40% on ROST-PA-2; best overall average 27.95% on ROST-PA-2;
– Worst best MEP 54.08% on ROST-P-1.

• k-NN:

– Zero best results (see Table 13);
– Best k-NN 29.59% on ROST-PAC-2 and ROST-PAC-3;
– Worst k-NN 54.08% on ROST-P-2.

• SVM:

– Four best results for: ROST-P-1, ROST-P-3, ROST-PAC-1 and ROST-PAC-2 (see
Table 14);

– Best SVM 23.44% on ROST-PAC-1;
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– Worst SVM 52.10% on ROST-P-2.

• Decision trees:

– Two best results for: ROST-P-2 and ROST-PAC-2 (see Table 15);
– Best DT 24.5% on ROST-PAC-2;
– Worst DT 57.10% on ROST-P-2.

Other notes from the results are:

• Best values for each method were obtained for ROST-PA-2 or ROST-PAC-*;
• The worst of these best results were obtained for ROST-P-1 or ROST-P-2;
• ANN and MEP suffer from overfitting. The training errors are significantly smaller

than the test errors. This problem can only be solved by adding more data to the
training set.

An overview of the best test results obtained by all five methods is given in Table 16.

Table 16. Top of methods on each shuffle of each dataset, based on the best results achieved by each
method. The gray-colored box represents the overall best (i.e., for all datasets and with all methods).

Dataset 1st Place 2nd Place 3rd Place 4th Place 5th Place

ROST-P-1 SVM DT k-NN MEP ANN
43.87% 51.0% 53.06% 54.08% 61.22%

ROST-P-2 DT MEP k-NN SVM ANN
51.0% 52.04% 54.08% 55.10% 60.20%

ROST-P-3 SVM k-NN,MEP DT,ANN
43.87% 48.97% 57.14%

ROST-PA-1 ANN MEP SVM,DT,k-NN
24.48% 29.59% 31.63%

ROST-PA-2 MEP ANN SVM,DT k-NN
20.40% 24.48% 26.53% 32.6%

ROST-PA-3 ANN SVM MEP,DT k-NN
26.53% 28.57% 29.59% 35.71%

ROST-PAC-1 SVM ANN MEP DT k-NN
23.46% 24.48% 27.55% 28.6% 33.67%

ROST-PAC-2 SVM,DT,ANN MEP k-NN
24.48% 26.53% 29.59%

ROST-PAC-3 MEP,ANN SVM,DT k-NN
23.46% 26.53% 29.59%

ANN ranks last for all ROST-P-* and ranks 1st and 2nd for ROST-PA-* and ROST-
PAC-*. MEP is either ranked 1st or ranked 2nd on all ROST-*-* with three exceptions, i.e.,
for ROST-P-1 and ROST-PAC-2 (at 4th place) and for ROST-PAC-1 (at 3rd place). k-NN
performs better (i.e., 3rd and 2nd places) on ROST-P-*, and ranks last for ROST-PA-* and
ROST-PAC-*. SVM is ranked 1st for ROST-P-* and ROST-PAC-* with two exceptions: for
ROST-P-2 (ranked 4th) and for ROST-PAC-3 (on 3rd place). For ROST-PA-* SVM is in
3rd and 2nd places. Decision trees (DT) with C5.0 is mainly on the 3rd and 4th places,
with three exceptions: for ROST-P-1 (on 2nd place), for ROST-P-2 (on 1st place), and for
ROST-PAC-2 (on 1st place).

An overview of the average test results obtained by all five methods is given in Table 17.
However, for ANN and MEP alone, we could generate different results with the same
parameters, based on different starting seed values, with which we ran 30 different runs.
For the other 3 methods, we used the best results obtained with a specific set of parameters
(as in Table 16).

Comparing all 5 methods based on averages, SVM and DT take the lead as the two
methods that share the 1st and 2nd places with two exceptions, i.e., for ROST-P-2 and
ROST-P3 for which SVM and DT, respectively, rank 3rd. k-NN usually ranks 3rd, with four
exceptions, when k-NN was ranked 2nd for ROST-P-2 and ROST-P-3, for ROST-PA-1 for
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which k-NN ranks 1st together with SVM and DT, and for ROST-PA-2 for which k-NN
ranks 4th. MEP is generally ranked 4th with one exception, i.e., for ROST-PA-2 for which it
ranks 3rd. ANN ranks last for all ROST-*-*.

For a better visual representation, we have plotted the results from Tables 16 and 17 in
Figure 1.

Table 17. Top of methods on average results on each shuffle of each dataset. For k-NN, SVM, and
DT we do not have 30 runs with the same parameters, so for these methods, the best values are
presented here. The gray-colored box represents the overall best average (i.e., on all datasets and
with all methods).

Dataset 1st Place 2nd Place 3rd Place 4th Place 5th Place

ROST-P-1 SVM DT k-NN MEP ANN
43.87% 51.0% 53.06% 61.32% 76.70%

ROST-P-2 DT k-NN SVM MEP ANN
51.0% 54.08% 55.10% 62.51% 80.27%

ROST-P-3 SVM k-NN DT MEP ANN
43.87% 48.97% 57.14% 58.84% 80.95%

ROST-PA-1 SVM,DT,k-NN MEP ANN
31.63% 36.49% 45.03%

ROST-PA-2 SVM,DT MEP k-NN ANN
26.53% 27.95% 32.6% 41.73%

ROST-PA-3 SVM DT k-NN MEP ANN
28.57% 29.59% 35.71% 39.93% 47.82%

ROST-PAC-1 SVM DT k-NN MEP ANN
23.46% 28.6% 33.67% 33.84% 38.16%

ROST-PAC-2 SVM,DT k-NN MEP ANN
24.48% 29.59% 34.89% 36.93%

ROST-PAC-3 SVM,DT k-NN MEP ANN
26.53% 29.59% 34.38 37.21%

(a)

(b)
Figure 1. Top of methods on each shuffle of each dataset. Lower values are better. (a) Top of best
results obtained by all methods (b) Top of average results, when applicable (i.e., over 30 runs for
ANN and MEP).



Mathematics 2022, 10, 4589 21 of 35

We performed statistical tests to determine whether the results obtained by MEP and
ANN are significantly different with a 95% confidence level. The tests were two-sample,
equal variance, and two-tailed T-tests. The results are shown in Table 18.

Table 18. p-values obtained when comparing MEP and ANN results over 30 runs. No. of neurons used
by ANN on the hidden layer represents the best-performing ANN structure on the specific ROST-*-*.

Dataset p-Value (ANN vs. MEP
Results)

No. of Neurons Used by
ANN on the Hidden Layer

ROST-P-1 1.98 × 10−15 46
ROST-P-2 4.23 × 10−11 36
ROST-P-3 3.86 × 10−15 28

ROST-PA-1 1.14 × 10−5 40
ROST-PA-2 6.57 × 10−15 45
ROST-PA-3 3.07 × 10−4 27

ROST-PAC-1 2.47 × 10−4 49
ROST-PAC-2 1.07 × 10−1 40
ROST-PAC-3 2.80 × 10−2 41

The p-values obtained show that the MEP and ANN test results are statistically sig-
nificantly different for almost all ROST-*-* (i.e., p < 0.05) with one exception, i.e., for
ROST-PAC-2 for which the differences are not statistically significant (i.e., p = 0.107).

Next, we wanted to see which feature set, out of the three we used, was the best
for successful author attribution. Therefore, we plotted all best and best average results
obtained with all methods (as presented in Tables 16 and 17) on all ROST-*-* and aggregated
on the three datasets corresponding to the distinct feature lists, in Figure 2.

(a)

(b)
Figure 2. Results on the best solutions obtained on the considered datasets. The percentage of
incorrectly classified data is plotted. Best stands for the best solution, Avg stands for Average and the
Standard Deviation is represented by error bars. (a) Best, Average and Standard Deviation are computed
on the values from Table 16; (b) Best, Average, and Standard Deviation are computed on the values
given in Table 17.
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Based on the results represented in Figure 2a (i.e., which considered only the best
results, as detailed in Table 16) we can conclude that we obtained the best results on ROST-
PA-* (i.e., corresponding to the 415 feature set, which contains prepositions and adverbs).
However, using the average results, as shown in Figure 2b and detailed in Table 17 we infer
that the best performance is obtained on ROST-PAC-* (i.e., corresponding to the 432-feature
set, containing prepositions, adverbs, and conjunctions).

Another aspect worth mentioning based on the graphs presented in Figure 2 is related
to the standard deviation (represented as error bars) between the results obtained by all
methods considered on all considered datasets. Standard deviations are the smallest in
Figure 2a, especially for ROST-PA-* and even more so for ROST-PAC-*. This means that the
methods perform similarly on those datasets. For ROST-P-* and in Figure 2b, the standard
deviations are larger, which means that there are bigger differences between the methods.

5.2.2. Comparisons with Solutions Presented in Related Work

To better evaluate our results and to better understand the discriminating power of
the best performing method (i.e., MEP on ROST-PA-2), we also calculate the macro-accuracy
(or macro-average accuracy). This metric allows us to compare our results with the results
obtained by other methods on other datasets, as detailed in Table 2. For this, we considered
the test for which we obtained our best result with MEP, with a test error rate of 20.40%.
This means that 20 out of 98 tests were misclassified.

To perform all the necessary calculations, we used the Accuracy evaluation tool available
at [84], build based on the paper [85]. By inputting the vector of targets (i.e., authors/classes
that were the actual authors (i.e., correct classifications) of the test texts) and the vector of
outputs (i.e., authors/classes identified by the algorithm as the authors of the test texts), we
were first given a Confusion value of 0.2 and the Confusion Matrix, depicted in Table 19.

Table 19. Confusion Matrix (on the right side). Column headers and row headers (i.e., numbers from 0
to 9 that are written in bold) are the codes 1 given to our authors, as specified on the left side.

Code Author 0 1 2 3 4 5 6 7 8 9
0 Ion Creangă 0 6 0 0 0 0 0 0 0 0 1
1 Barbu Ştefănescu Delavrancea 1 0 4 0 3 1 0 1 0 0 2
2 Mihai Eminescu 2 0 0 6 0 0 0 0 0 0 0
3 Nicolae Filimon 3 0 1 1 6 0 0 0 0 0 0
4 Emil Gârleanu 4 1 1 0 0 6 0 0 0 1 1
5 Petre Ispirescu 5 0 0 0 0 0 10 0 0 0 0
6 Mihai Oltean 6 0 0 0 0 0 0 8 0 0 0
7 Emilia Plugaru 7 0 1 0 0 1 0 0 8 0 0
8 Liviu Rebreanu 8 0 1 0 0 0 0 1 0 12 1
9 Ioan Slavici 9 0 0 0 0 0 0 0 0 1 12

1 The authors’ codes are the same as those specified in the first columns of Tables 6–8.

This matrix is a representation that highlights for each class/author the true positives
(i.e., the number of cases in which an author was correctly identified as the author of the
text), the true negatives (i.e., the number of cases where an author was correctly identified
as not being the author of the text), the false positives (i.e., the number of cases in which
an author was incorrectly identified as being the author of the text), the false negatives (i.e.,
the number of cases where an author was incorrectly identified as not being the author
of the text). For binary classification, these four categories are easy to identify. However,
in a multiclass classification, the true positives are contained in the main diagonal cells
corresponding to each author, but the other three categories are distributed according to
the actual authorship attribution made by the algorithm.

For each class/author, various metrics are calculated based on the confusion matrix.
They are:

• Precision—the number of correctly attributed authors divided by the number of in-
stances when the algorithm identified the attribution as correct;
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• Recall (Sensitivity)—the number of correctly attributed authors divided by the number
of test texts belonging to that author;

• F-score—a combination of the Precision and Recall (Sensitivity).

Based on these individual values, the Accuracy Evaluation Results are calculated. The
overall results are shown in Table 20.

Table 20. Accuracy evaluation Results. The macro-accuracy and corresponding macro-error are in
bold.

Metric Value (%)

Average Accuracy 88.8401
Error 11.1599

Precision (Micro) 79.9398
Recall (Micro) 97.251
F-score (Micro) 87.7498

Precision (Macro) 79.9398
Recall (Macro) 96.8525
F-score (Macro) 87.5871

Metrics marked with (Micro) are calculated by aggregating the contributions of all
classes into the average metric. Thus, in a multiclass context, micro averages are preferred
when there might be a class imbalance, as this method favors bigger classes. Metrics
marked with (Macro) treat each class equally by averaging the individual metrics for each
class.

Based on these results, we can state that the macro-accuracy obtained by MEP is
88.84%. We have 400 documents, and 10 authors in our dataset. The content of our texts is
cross-genre (i.e., stories, short stories, fairy tales, novels, articles, and sketches) and cross-topic
(as in different texts, different topics are covered). We also calculated an average number
of words per document, which is 3355, and the imbalance (considered in [10] to be the
standard deviation of the number of documents per author), which in our case is 10.45. Our
type of investigation can be considered to be part of the Ngram class (this class and other
investigation-type classes are presented in Section 2.4). Next, we recreated Table 2 (depicted
in Section 2.4) while reordering the datasets based on their macro-accuracy results obtained
by Ngram class methods in reverse order, and we have appropriately placed details of our
own dataset and the macro-accuracy we achieved with MEP as shown above. This top is
depicted in Table 21.

Table 21. State of the art macro-accuracy of authorship attribution models. Information collected
from [10] (Tables 1 and 3). Name is the name of the dataset; No.docs represents the number of
documents in that dataset; No. auth represents the number of authors; Content indicates whether the
documents are cross-topic (×t) or cross-genre (×g); W/D stands for words per documents, being the
average length of documents; imb represents the imbalance of the dataset as measured by the standard
deviation of the number of documents per author.

Dataset Investigation Type

Name No. Docs No. Auth Content W/D Imb Ngram PPM BERT pALM

Guardian10 444 13 ×t ×g 1052 6.7 100 86.28 84.23 66.67
IMDb62 62,000 62 − 349 2.6 98.81 95.90 98.80 −

ROST 400 10 ×t ×g 3355 10.45 88.84 − − −

CMCC 756 21 ×t ×g 601 0 86.51 62.30 60.32 54.76
CCAT50 5000 50 − 506 0 76.68 69.36 65.72 63.36
Blogs50 66,000 50 − 122 553 72.28 72.16 74.95 −
PAN20 443,000 278,000 ×t 3922 2.3 43.52 − 23.83 −

Gutenburg 28,000 4500 − 66,350 10.5 57.69 − 59.11 −
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We would like to underline the large imbalance of our dataset compared with the first
two datasets, the fact that we had fewer documents, and the fact that the average number
of words in our texts, although higher, has a large standard deviation, as already shown
in Table 3. Furthermore, as already presented in Section 3, our dataset is by design very
heterogeneous from multiple perspectives which are not only in terms of content and size,
but also the differences that pertain to the time periods of authors, the medium they wrote
for (paper or online media), and the sources of the texts. Although all these aspects do not
restrict the new test texts to certain characteristics (to be easily classified by the trained
model), they make the classification problem even harder.

6. Conclusions and Further Work

In this paper, we introduced a new dataset of Romanian texts by different authors.
This dataset is heterogeneous from multiple perspectives, such as the length of the texts,
the sources from which they were collected, the time period in which the authors lived
and wrote these texts, the intended reading medium (i.e., paper or online), and the type
of writing (i.e., stories, short stories, fairy tales, novels, literary articles, and sketches).
By choosing these very diverse texts we wanted to make sure that the new texts do not
have to be restricted by these constraints. As features, we wanted to use the inflexible
parts of speech (i.e., those that do not change their form in the context of communication):
conjunctions, prepositions, interjections, and adverbs. After a closer investigation of their
relevance to our dataset, we decided to use only prepositions, adverbs, and conjunctions,
in that specific order, thus having three different feature lists of (1) 56 prepositions; (2) 415
prepositions and adverbs; and (3) 432 prepositions, adverbs, and conjunctions. Using these
features, we constructed a numerical representation of our texts as vectors containing the
frequencies of occurrence of the features in the considered texts, thus obtaining 3 distinct
representations of our initial dataset. We divided the texts into training–validation–test sets
of 50%–25%–25% ratios, while randomly shuffling them three times in order to have three
randomly selected arrangements of texts in each set of training, validation, and testing.

To build our classifiers, we used five artificial intelligence techniques, namely artificial
neural networks (ANN), multi-expression programming (MEP), k-nearest neighbor (k-NN),
support vector machine (SVM), and decision trees (DT) with C5.0. We used the trained
classifiers for authorship attribution on the texts selected for the test set. The best result
we obtained was with MEP. By using this method, we obtained an overall “best” on all
shuffles and all methods, which is of a 20.40% error rate.

Based on the results, we tried to determine which of the three distinct feature lists
lead to the best performance. This inquiry was twofold. First, we considered the best
results obtained by all methods. From this perspective, we achieved the best performance
when using ROST-PA-* (i.e., the dataset with 415 features, which contains prepositions
and adverbs). Second, we considered the average results over 30 different runs for ANN
and MEP. These results indicate that the best performance was achieved when using
ROST-PAC-* (i.e., the dataset with 432 features, which contains prepositions, adverbs, and
conjunctions).

We also calculated the macro-accuracy for the best MEP result to compare it with other
state-of-the-art methods on other datasets.

Given all the trained models that we obtained, the first future work is using ensemble
decision. Additionally, determining whether multiple classifiers made the same error (i.e.,
attributing one text to the same incorrect author instead of the correct one) may mean that
two authors have a similar style. This investigation can also go in the direction of detecting
style similarities or grouping authors into style classes based on such similarities.

Extending our area of research is also how we would like to continue our investigations.
We will not only fine-tune the current methods but also expand to the use of recurrent
neural networks (RNN) and convolutional neural networks (CNN).
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Regarding fine-tuning, we have already started an investigation using the top N most
frequently used words in our corpus. Even though we have some preliminary results, this
investigation is still a work in progress.

Using deep learning to fine-tune ANN is another direction we would like to tackle.
We would also like to address overfitting and find solutions to mitigate this problem.

Linguistic analysis could help us as a complementary tool for detecting peculiarities
that pertain to a specific author. For that, we will consider using long short-term memory
(LSTM) architectures and pre-trained BERT models that are already available for Romanian.
However, considering that a large section of our texts was written one or two centuries ago,
we might need to further train BERT to be able to use it in our texts. That was one reason
that we used inflexible parts of speech, as the impact of the diachronic developments of the
language was greatly reduced.

We would also investigate the profile-based approach, where texts are treated cumula-
tively (per author) to build a profile, which is a representation of the author’s style. Up to
this point we have treated the training texts individually, an approach called instance-based.

In terms of moving towards other types of neural networks, we would like to achieve
the initial idea from which this entire area of research was born, namely finding a “finger-
print” of an author. We already have some incipient ideas on how these instruments may
help us in our endeavor, but these new directions are still in the very early stages for us.

Improving upon the dataset is also high on our priority list. We are considering adding
new texts and new authors.
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FANN Fast Artificial Neural Network
MEPX Multi Expression Programming software
LIBSVM Support Vector Machine library
C5.0 system for classifiers in the form of decision trees and rulesets
PoS Part of Speech
IPoS Inflexible Part of Speech
ROST ROmanian Stories and other Texts
ROST-P-1 ROST dataset using prepositions as features, shuffle 1
ROST-P-2 ROST dataset using prepositions as features, shuffle 2
ROST-P-3 ROST dataset using prepositions as features, shuffle 3
ROST-P-* ROST-P-1 and ROST-P-2 and ROST-P-3
ROST-PA-1 ROST dataset using prepositions and adverbs as features, shuffle 1
ROST-PA-2 ROST dataset using prepositions and adverbs as features, shuffle 2
ROST-PA-3 ROST dataset using prepositions and adverbs as features, shuffle 3
ROST-PA-* ROST-PA-1 and ROST-PA-2 and ROST-PA-3
ROST-PAC-1 ROST dataset using prepositions, adverbs, and conjunctions as features, shuffle 1
ROST-PAC-2 ROST dataset using prepositions, adverbs, and conjunctions as features, shuffle 2
ROST-PAC-3 ROST dataset using prepositions, adverbs, and conjunctions as features, shuffle 3
ROST-PAC-* ROST-PAC-1 and ROST-PAC-2 and ROST-PAC-3
ROST-PC-1 ROST dataset using prepositions and conjunctions as features, shuffle 1
ROST-PC-2 ROST dataset using prepositions and conjunctions as features, shuffle 2
ROST-PC-3 ROST dataset using prepositions and conjunctions as features, shuffle 3
ROST-*-* ROST-P-* and ROST-PA-* and ROST-PAC-*
NLP Natural Language Processing
BERT Bidirectional Encoder Representations from Transformers
GPT Generative Pre-trained Transformer
PPM Prediction by Partial Matching
pALM per-Author Language Model
AUC Area Under the Curve
×t cross-topic
×g cross-genre
CCTA Consumer Credit Trade Association

Appendix A. Parameter Settings

ANN parameters are presented in Table A1. We decided to use a fairly simple ANN
architecture, using only 3 layers as we saw from the literature (e.g., [9]) that simple classifiers
outperformed more sophisticated approaches based on deep learning in the case of cross-
domain authorship attribution. We varied the number of neurons on the hidden layer to
find a suitable ANN architecture for building our classification model.

Table A1. ANN parameters.

Parameter Value

Activation function SIGMOID
Maximum number of training epochs 500
Number of layers 3 (1 input, 1 hidden, and 1 output)
Number of neurons on hidden layer from 5 to 50
Number of inputs 56, 415, 432 (corresponding to the considered sets)
Number of outputs 10 (corresponding to authors)
Error on training and validation RMSE
Error on test percent of incorrectly classified items
Desired error on validation 0.001

MEP parameters are detailed in Table A2. These parameters were obtained mostly
through experimentation. We thought that small errors on the training set would also lead
to small errors on the test set. However, we were wrong: the main problem we encountered
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was overfitting and poor generalization ability of the model. Thus, other sets of parameters
can also generate similar results on the test set even if the training error will be higher.

Table A2. MEP parameters.

Parameter Value

Subpopulation size 300
Number of subpopulations 25
Subpopulations architecture ring
Migration rate 1 (per generation)
Chromosome length 200
Crossover probability 0.9
Mutation probability 0.01
Tournament size 2
Functions probability 0.4
Variables probability 0.5
Constants probability 0.1
Number of generations 1000
Mathematical functions +,−,*, /, a<0?b:c, a<b?c:d
Number of constants 5
Constants initial interval randomly generated over [0, 1]
Constants can evolve? YES
Constants can evolve outside the initial interval? YES
Constants delta 1

The k-NN considers only training and test data. Thus, we have training sets of
302 items, while the test contains 98 items. During the tests, we varied the value of k from 1
to 30. This is because we observed (as is depicted in Figure A1) that with higher values we
would not obtain better results, as the results tend to deteriorate as the value of k increases.
However, this depends on the number of features, as the results become bad faster for a
consistent number (>100) of features, as for ROST-PC-*, compared to the evolution of the
results for ROST-P-*, where the results do not deteriorate so fast by increasing the value of
k in the case of a smaller number (<100) of features. To calculate the distance between the
test value and the ones in the training set, we used Euclidean distance.

Figure A1. Evolution of error in k-NN for k values from 1 to 100.

Support vector machines also consider only training and test data. Therefore, the
training sets consist of 302 items, while the test sets contain 98 items. We experimented
with the type of kernel and nu parameters, selecting values that varied through all possible
kernel types and values from 0.001 to 1 for nu. For the type of kernel, the best results were
obtained for linear. For nu we had different values that gave better results depending on
the dataset. However, even though we tried with values starting from 0.001, the best results
were obtained for nu ≥ 0.2. We also changed the seed for the random function with no
effect on the results. The SVM parameters are given in Table A3.
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Table A3. SVM parameters.

Parameter Value

Type of SVM nu-SVC
Type of kernel function linear
Degree in kernel function 3
Gamma in kernel function 1/num_ f eatures
Coef0 in kernel function 0
nu from 0.1 to 1
Cache memory size in MB 100
Tolerance of termination criterion (epsilon) 0.001
Shrinking heuristics, 0 or 1 1
Whether to train an SVC model for probability estimates, 0 or 1 0

As with k-NN and SVM, the decision trees with the C5.0 algorithm also use only
training and test data. Thus, there are 302 items in the training sets and 98 items in the
tests. All considered features/attributes, which in our case are: prepositions, adverbs,
and conjunctions, are set for the Decision Trees with C5.0 as “continuous” because they
are numerical float values between 0 and 1 representing the frequency of occurrence in
terms of the total number of words in the file in which they occur. For authors, we set
explicit-defined discrete values from 0 to 9 for the 10 authors (as specified in the first
columns of Tables 6–8). To improve our results, we experimented with advanced pruning
options. These parameters along with others we used for decision trees with C5.0 are
shown in Table A4. Apart from these parameters we also used the option −I seed, to set
the random seed, with seed ∈ {1, 2, . . . , 9, 10, 20, . . . , 100}, without any effect on the results.

Table A4. Parameters for decision trees with C5.0.

Parameter Value

No. of attributes 57, 416, 433 (corresponding to the considered
sets plus one more attribute for the author )

Global tree pruning w and w/o (option −g)
Pruning confidence option −c CF, with CF ∈ {10, 20, . . . , 100}
Minimum 2 branches for ≥ cases option −m cases, with cases ∈ {1, 2, . . . , 30}

Appendix B. Prerequisite Tests and Results

Appendix B.1. ANN

As a prerequisite, we are interested in seeing how ANN evolves while training on the
data. The ANN error evolution on a training set is shown in Figure A2.

Figure A2. ANN error evolution on a training set.



Mathematics 2022, 10, 4589 29 of 35

It can be seen here that within 20 epochs, the training error drops below 0.1, while
within 60 epochs, it reaches 0. Thus, ANN can be used to solve this kind of problem.

Next, we want to find a good value for the number of neurons on the hidden layer. In
total, 30 runs were performed with the number of neurons (on the hidden layer) varying
from 5 to 50.

The results for the 9 ROST-*-* are presented in Figure A3.

Figure A3. ANN results on the considered datasets. On each set, 30 runs are performed by ANNs
with the hidden layer containing from 5 to 50 neurons. The percentage of incorrectly classified data is
plotted. Best stands for the best solution (out of 30 runs), Avg stands for Average (over 30 runs), and
the Standard Deviation is represented by error bars.

These graphics show that, using only 56 features (i.e., ROST-P-*) tests errors were very
high, while with an increased number of features: i.e., 415 (i.e., ROST-PA-*) and 432 (i.e.,
ROST-PAC-*), respectively, test errors are significantly reduced. Moreover, it appears that
the test error values tend to stabilize between 40 and 50 neurons on the hidden layer.

Appendix B.2. MEP

We are interested to see if MEP is able to discover a classifier and then to see how well
it performs on new (test) data. The evolution of MEP error on a training set is shown in
Figure A4. One can see that the error rapidly drops from over 65% to 15%. This means that
MEP can handle this type of problem.



Mathematics 2022, 10, 4589 30 of 35

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 0  200  400  600  800  1000

 e
rro

r

generation

Training	error

Figure A4. MEP error evolution on a training set.

Appendix B.3. K-NN

With k-NN we ran tests with k varying from 1 to 30. The results for all 9 ROST-*-* are
plotted in Figure A5. It can be seen that the results for the 3 ROST-P-* have worst values
than the values obtained for ROST-PA-* or ROST-PAC-*.

Figure A5. K-NN results on the considered datasets. In total, 30 runs are performed with k varying
with the run index. The percentage of incorrectly classified data is plotted.

Appendix B.4. SVM

Initially, we tried to obtain the best kernel type for our tests, and as we have already
read in the literature (e.g., in [37]) it seems that the linear type is the best for these types
of problems (i.e., the classification for authorship attribution). We obtained significantly
better results for this type as well. With this kernel type, we tried the find the best value for
the nu parameter. Therefore, we run tests on all our ROST-*-* with nu values between 0.001
to 1. The results are shown in Figure A6.

Figure A6. SVM results on the considered datasets. In total, 30 runs are performed with nu varying
from 0.001 to 1. The percentage of incorrectly classified data is plotted.
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Appendix B.5. DT

To optimize this method, we tried the advanced pruning options. For this we tried
3 options:

• −g, which disables the global tree pruning mechanism that prunes parts (of an initially
large tree) that are predicted to have high error rates.

• −c CF, changes the estimation of error rates. This affects the “severity of pruning”.
CF stands for confidence level and is a percentage. We chose values from 10 to 100 for
the CF parameter.

• −m cases, which influences the construction of the decision tree by having at least
2 branches at each branch point for which there are more than cases training items.
The default value for cases is 2. We have selected values from 1 to 30 for the cases
parameter.

The results obtained using decision trees with C5.0 are detailed in Table A5.

Table A5. Decision tree results on the considered datasets. The number of incorrectly classified data is
given as a percentage. Result sets are grouped into columns of Error, Size, and sometimes a parameter.
The first set of Error, Size columns represent the results obtained with no options. −g stands for global
tree pruning is disabled, −c CF stands for setting the confidence level via the CF parameter, and −m
cases stands for controlling how the decision tree is built by using the cases parameter. Error stands for
the test error rate, Size stands for the size of the decision tree required for that specific solution, CF
stands for “confidence level” (CF ∈ {10, 20, . . . , 100}), and cases stands for the threshold for which is
decided to have two more that two branches at a specific branching point (cases ∈ {1, 2, . . . , 30}).

−g −c CF −m Cases
Dataset Error Size Error Size Error Size CF Error Size Cases

ROST-P-1 58.2% 60 58.2% 60 58.2% 60 ≥10 51.0% 18 8
ROST-P-2 53.1% 57 54.1% 61 53.1% 57 ≥10 51.0% 46 3
ROST-P-3 69.4% 64 69.4% 64 69.4% 56 =10 57.1% 99 1

ROST-PA-1 35.7% 39 35.7% 42 35.7% 39 ≥10 31.6% 13 12
ROST-PA-2 28.6% 38 27.6% 42 27.6% 43 >20 26.5% 57 1
ROST-PA-3 30.6% 38 30.6% 40 30.6% 38 ≥10 29.6% 31 3

ROST-PAC-1 28.6% 39 28.6% 41 28.6% 39 ≥10 28.6% 39 2
ROST-PAC-2 25.5% 37 25.5% 39 25.5% 37 ≥10 24.5% 12 14
ROST-PAC-3 32.7% 38 33.7% 41 32.7% 38 ≥10 26.5% 13 14

Using the −g option, it can be seen that most of the trees have become larger (as
expected since global tree pruning was disabled by this option). Changes in the results are
marked in the table with the values in the boxes. However, most results remained the same,
two worsened (i.e., for ROST-P-2 from 53.1% to 54.1% and for ROST-PAC-3 from 32.7% to
33.7%), while only one result improved (i.e., for ROST-PA-2 from 28.6% to 27.6%).

When using the−c CF option, almost all results were similar to those obtained without
using any option. The exceptions (marked with boxes), i.e., for ROST-PA-2 better results
(i.e., 27.7% vs. 28.6% and the same as using the −g option) were obtained by using a larger
tree (i.e., 43 compared to 38; in this case larger than using the −g option, which had a tree
size of 42). In the case of ROST-P-3, only the tree size was optimized from 64 to 56 for
CF = 10. For CF > 20, both the error and the tree size remained the same as without using
any option, while for CF = 20, the tree size was slightly reduced (i.e., 63 from 64), but the
error was higher (i.e., 70.4% from 69.4%).

Using the−m cases option, we obtained improvements, as shown in Table A5. All error
rates were improved, while the improvement in the tree size, although in some cases was
significant (i.e., from 60 to 18, from 39 to 13, from 37 to 12, or from 38 to 14), in other cases the
tree size increased or remained large (i.e., for ROST-P-3 from 64 to 99, for ROST-PA-2 from
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38 to 58, and for ROST-PAC-1 it remained the same as when no option was used). For these
three ROST-*-* mentioned above for which the tree size increased or remained large, the
value of the cases parameter was very low (i.e., 1 or 2). For ROST-P-2 and ROST-PA-3, there
is cases = 3 and the tree size did not change that much (i.e., from 38 to 31) and remained the
same, respectively. For ROST-P-1, ROST-PA-1, ROST-PAC-2, and ROST-PA-3, cases ≥ 8, and
the three decision trees have greatly reduced in size to values ≤ 18.

To show the evolution of the error rates for the three datasets considered, we plotted
the results of the decision trees obtained using C5.0 with the −m option, with cases varying
from 1 to 30. The results are shown in Figure A7.

Figure A7. DT results on the considered datasets. In total, 30 runs are performed with the cases
parameter (introduced by the−m option) varying from 1 to 30. The percentage of incorrectly classified
data is plotted.
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