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Abstract: This is a work about football. In it, we depart from two well-known approaches to forecast
the outcome of a football match (or even a full tournament) and take advantage of their strengths to
develop a new method of prediction. We illustrate the Élö–Runyan rating system and the Poisson
technique in the English Premier League and we analyze their accuracies with respect to the actual
results. We obtained an accuracy of 84.37% for the former, and 79.99% for the latter in this first
exercise. Then, we present a criticism of these methods and use it to complement the aforementioned
procedures, and hence, introduce the so-called Élö–Runyan–Poisson–Pearson method, which consists
of adopting the distribution that best fits the historical distribution of goals to simulate the score of
each match. Finally, we obtain a Monte Carlo-based forecast of the result. We test our mechanism to
backcast the World Cup of Russia 2018, obtaining an accuracy of 87.09%; and forecast the results of
the World Cup of Qatar 2022.

Keywords: Élö–Runyan rating system; Poisson forecasting method; inverse transform method;
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1. Introduction

This work presents a new methodology by which to forecast the final score of a football
match and thus predict the result of a full tournament. It builds on the theory presented in,
for instance, Ref. [1], Chapter 1 in [2], and Ref. [3].

We propose a variation of the methods presented in the aforementioned references
in the sense that, instead of simulating the number of goals scored and received by each
team as a Poisson random variable, we adopt the distribution that best fits the historic
distribution of goals according to a basic test of hypotheses (as in [4]). Moreover, we use a
Bayesian approach by plugging Élö’s probabilities instead of the a priori assumption that
the number of goals for a given crew against another is a uniform average between their
goals for and against, respectively.

We illustrate the classic Élö–Runyan method to backcast the final standings of the
clubs of several seasons in a national football league, and then we exemplify Poisson’s
approach in the final season of that same football league. Finally, we apply the enhanced
method we found to a World Cup by making the assumption that the analyses remain
valid despite the fact that in the latter case, there are nations instead of clubs. Based on the
results previously published in [1], we strongly believe that the knowledge and approaches
we found can be used for forecasting other leagues.

Now we summarize the hypotheses behind the model we designed.

Assumption 1. (i) The goals scored and received by a given team are modelled by stationary
continuous-time counting processes whose distributions can be obtained with historical data.
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(ii) The number of goals scored by team A against team B depends on the offensive strength of team
A, and on the defensive weakness of team B.

(iii) The Élö–Runyan index (see (1) below) can be used to measure the performance of a given team
against another one.

1.1. State of the Art and Contribution

The recent literature on forecasting different sports results is vast, and includes, among
others, [5–10]. Our analyses are based on two cornerstones. The first is Élö’s rating system
(see [11] for a quick introduction to the topic) to obtain the probability that a team bests
another in a given match. The other is the Poisson simulation of the number of goals scored
by two opposing parties, which was thoroughly presented in [12] and can be traced back
to [13].

Our work can be located in the gap between references such as [1,14,15]. Indeed,
we estimate the probability that a team defeats another one with a Bayesian nonlinear
model—Élö’s method—and we apply it by using the Markov chain Monte Carlo iterative
simulation technique to attempt to forecast the future result of a full tournament.

We illustrate the Élö–Runyan method in England’s national league, obtaining an
accuracy of 84.37%. Then, we backcast another season of the same league with an accuracy
of 79.99%. Later, we test the fortified method we devised in the World Cup of Russia in
2018, obtaining an accuracy of 87.09%. Finally, we applied our algorithms to try to predict
the outcome of the World Cup of Qatar 2022.

1.2. Computational Resources

To develop our work, we required a sufficiently large database to be able to analyze
and compute the necessary estimates for the corresponding matches, seasons, and teams.
Our datasets were obtained from football-data and refined with Flash score. In the former,
one can find information from over 25 years from various leagues and international compe-
titions from around the world, whereas we used the latter, to sort the matches in the proper
chronological order. We used Minitab 21.1.0 and R-4.2.2 for Windows to analyze the
datasets and implement our algorithms. All the codes and databases can be found in
https://github.com/DonDisparates/qatar2022.git (accessed on 13 November 2022).

1.3. Organization of the Research

The rest of the paper is divided as follows. In the next section, we present a preliminary
description of the English Premier League, which we will use as a working example. In
Section 3 we present the essentials of Élö’s method, and we illustrate its use by means
of a backcast of the English Premier League with information from seasons 2005/2006–
2020/2021. In Section 4, we introduce Poisson’s model and replicate the results of the same
league for season 2021/2022. Next, in Section 5, we combine the former techniques, show
the method’s usage with information from the four years that preceded Russia’s World
Cup, and we and conclude with a forecast of the result of the World Cup Qatar 2022. We
present our conclusions in Section 6.

2. The English Premier League: Preliminary Description

The Premier League is considered the best football tournament and the most econom-
ically attractive in the world. It accounts for nine of the 20 most valuable teams for the
year 2021 according to Forbes magazine, something that attracts sponsors and television
networks (cf. [16]).

Indeed, during the 2018–2019 season, the league paid between $119 and $186 million
to each club in the First Division. On the other hand, when relegated, the league gives these
teams 55% of the revenue share in the first year, 45% in their second, and 20% for the third.
Relegation is also punished by the fans, so much so that, troupes like Middlesbrough FC,
Hull City, and Sunderland lost 17%, 25%, and 33% of the tickets in the season following
relegation, respectively. In addition, the sponsors also have a relegation clause, which

https://www.football-data.co.uk/
https://www.flashscore.com.mx/
https://github.com/DonDisparates/qatar2022.git
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implies a budget reduction if the faction falls to the Second Division. Finally, a Premier
League squad is worth around $445 million and in the Second Division, the average is $49
million (see [17]).

The English league was established in 1888 and was made up of 12 founding teams.
It was known as The Football League. Later, in 1892, it absorbed its rival, the Football
Alliance, and it was divided into two divisions; the two best aggregations of the Football
Alliance, along with all the members of the Football League were part of the First Division.
The rest of the Alliance clubs formed the Second Division. A Third Division was created in
1920, and in 1958 the Fourth was born. In 1992, the league changed its name to what we
know today as the Premier League. Its main objective was precisely to maximize monetary
income, especially through television rights (see [18]).

For this part of the project, we built a database with information of all the matches
played in the English domestic league from seasons 2005/2006 to 2020/2021. That is 16 com-
plete seasons, 40 different teams—including the five squads that managed to proclaim
themselves champions of the competition (Chelsea, Leicester, Liverpool, Manchester City,
Manchester United)—and a grand total of 6,080 matches played in the Premier League.
For each game, 105 different variables were registered, where the majority are the odds of
different bookmakers. Afterward, we cleaned the database and kept only the following
information.

• Season: This identifies the official name of the tournament when the teams met.
• Matchday: This corresponds to one of the 38 matchdays that are played throughout

the calendar of the season.
• Date: The day and month in which the match was played.
• Host: This bit of information corresponds to the team that plays in its own stadium.
• Guest: This stands for the name of the team that plays a game away from home.
• Goals for host/guest: This corresponds to the goals that are scored by the local/visiting

team in each match.
• Points home/guest: This is the number of points obtained by the local/visiting team

according to the outcome of the match.
• Goals for host/guest: This corresponds to the goals that are scored by the home/away

team in each match.
• Goal difference (GD) host/guest: A difference will be established for the home/away team.

Figure 1 illustrates the information we used for the first matchday in season 2005/2006.

Figure 1. Example of data presentation.

Remark 1. At first sight, it might seem unnecessary to keep track of the goal difference between
the teams. However, Table 1 shows that the correlation of this variable and the position in the final
leader board is very high: 92.6%.

Table 1 displays the results for season 2005/2006, and Figure 2 shows the corresponding
regression curve.
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Table 1. Analysis of variance.

Source DF Adj. Sum Sq. Adj. Mean Sq. F Value p-Value

Regression GD 1 6118.31 6118.31 238.25 0.000
Error 18 462.24 25.68

Lack of adj. 16 385.74 24.11 0.63 0.765
Pure error 2 76.50 38.25

Total 19 6580.55

Figure 2. Regression curve between the obtained points and the goal difference at the ending of
season 2005/2006.

In order to measure the reliability of the model we present in Section 3 below, we
compare our classification with the actual results of each tournament. To this end, we
divide the leader board into five groups and say that our model is successful if a given
team finishes the competition in the correct group. The groups we consider are as follows.

• Champion: This singleton is the first group.
• UCL: The second group corresponds to the squads that manage to play the European

clubs tournament widely known as the Union of European Football Associations
(UEFA) Champions League. This group includes the four best-positioned teams after
playing the 38 rounds of the aforementioned championship. That is, the champion
and the following three clubs on the leader board.

• UEL: The teams that finish the season in fifth and sixth places in the leader board get
to play in a second European tournament known as the UEFA European League.

• Middle table: This is the largest group. It includes those teams from the seventh to the
17th positions in the final leader board.

• Relegation: This last group refers to the teams that lose the category at the end of
each season.

Figure 3 illustrates the information we used for seasons 2005/2006-2011/2012, whereas
Figure 4 depicts the time series of the points needed to belong to the first four groups.
The comparison between the first column of Figure 3 with Figure 2 emphasizes the relevance
of the goal difference with respect to the final standings at the end of the season.
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Figure 3. Leader boards of the first seven seasons in our study.

Figure 4. Evolution of the number of points needed to belong to each of the first four groups.

Remark 2. (i) The required number of points to obtain the championship registers a slight down-
ward trend during the first 11 seasons. Actually, in the eleventh, the team that turned on
top—Leicester City—bested an initial odd of 5000 to one (cf. [19]). However, between the
2016/2017 and 2019/2020 seasons, the champion attained a historical record of points.

(ii) The score needed to be part of the UEFA Champions League group has shown a fluctuating
behavior, with a downward trend in recent years.

(iii) The score needed to avoid relegation has remained almost constant during almost all seasons,
except for some tournaments in which the points obtained were very low.

(iv) The group belonging to the UEL has kept an ascending trend with the passing of the first years,
to later vary in a notorious way; as happened with the UCL. This highlights how competitive
the league is, and how much performance can change from one tournament to the next.
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3. The Rating of Football Squads

There exist three main scoring systems in football. The Fédération Internationale de
Football Association (FIFA) Ranking evaluates national teams with data from the last four
years, updated monthly. The three main points that it used to take into account by 2015
were the number of matches won, the average number of points won in matches in the last
twelve months, and the average number of points won in matches prior to the last twelve
months. The method was questioned due to the frequent inconsistencies between the
position and the results between two opposing factions, as well as the disparities arbitrarily
granted by the federation to each corresponding confederation. Unlike the FIFA ranking,
the Soccer Power Index measures the performance of each player individually, which will
depend on the party he faces. This results in simultaneous equations that will be solved
by means of initial conditions and an iterative calculation supported by computational
systems. It returns a classified squads from general, offensive, and defensive points of view.
Its main problems are the high cost of obtaining the information, along with the fact that
the data is not public.

Analogous to the FIFA ranking, the Élö rating system assigns a score to each team,
so that it is possible to compare two squads when they match up against each other.
The Élö formula is named after the scientist and chessplayer Árpád Élö, who devised a
rating algorithm for chessplayers in 1970. This method assumes that along their career, a
player’s performance will be normally distributed around an average level. This means
that deviations around this level do occur. Applied to a single game, performance is an
abstraction that cannot be measured objectively; it depends on the judgment, decisions,
and actions of the player in the course of the game. However, it is possible to derive a
measurable object concept, the performance ranking, over a sufficiently large number of
matches, such as a tournament. This is because the performance of a player in various
games does consist of the combination of the average ranking of the competition and the
score obtained. The method proved to be so effective, that in 1978, it was implemented by
the Fédération Internationale des Échecs (see [3]).

There is a wide variety of methods based on Élö’s effort to forecast the result of
a football match (see [11,20] and Élö-Runyan’s classification of all the National squads
with a membership to the FIFA). The Élö–Runyan index of a team (t) at time n can be
computed with the regression curve of its current performance E(t)

n with respect to its past
performance, and that of the squad it faces, say (−t),

E(t)
n = E(t)

n−1 + K · G

W −
(

1 + 10
E(−t)

n−1 −E(t)n−1
400

)−1, (1)

where K is an arbitrary weighting constant whose value depends on the character of the
match, and is given by

K :=


60 for World Cup finals;

50 for continental championship finals and major intercontinental tournaments;
40 for major tournaments and continental or World Cup qualifiers;

30 for all other tournaments;
20 for friendly matches.

In addition, G is an adjustment parameter given by

G :=


1 if the teams tie or there is a difference of one goal,

1.5 if there is a two-goal difference
11+d

8 for a d-goal difference, with d = 3, 4, . . .

http://eloratings.net/
http://eloratings.net/
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Finally, the symbol W equals 1 for a win, 0.5 for a draw, and 0 for a loss. Squads with
higher Élö–Runyan rating have a higher probability of winning a game than a troupe with
a lower Élö–Runyan rating. The probability that team (t) defeats team (−t) is

p :=

(
1 + 10

E(−t)
n−1 −E(t)n−1

400

)−1

. (2)

As a consequence, the probability that team (−t) defeats team (t) is given by

1− p =

(
1 + 10

E(t)n−1−E(−t)
n−1

400

)−1

.

After each game, the Élö–Runyan ratings of the squads (1) are updated according to
Algorithm 1.

Algorithm 1: Élö–Runyan rating method.

Data: Élö–Runyan ratings E(t)
n−1 and E(−t)

n−1 up to time n− 1 for teams (t) and (−t),
respectively; constant K for Élö-Runyan model; goal difference d in the
direct match between cadres (t) and (−t).

Result: Updated Élö–Runyan ratings for both teams.
1 if d = 0 then
2 G ← 1, W ← 0.5;

3 update E(t)
n and E(−t)

n according to (1);
4 else if d = 1 then
5 G ← 1;
6 if d > 0 then
7 W ← 1 and update E(t)

n according to (1);

8 W ← 0 and update E(−t)
n according to (1);

9 else
10 W ← 0 and update E(t)

n according to (1);

11 W ← 1 and update E(−t)
n according to (1);

12 else if d = 2 then
13 G ← 1.5;
14 if d > 0 then
15 W ← 1 and update E(t)

n according to (1);

16 W ← 0 and update E(−t)
n according to (1);

17 else
18 W ← 0 and update E(t)

n according to (1);

19 W ← 1 and update E(−t)
n according to (1);

20 else
21 G ← 11+d

8 ;
22 if d > 0 then
23 W ← 1 and update E(t)

n according to (1);

24 W ← 0 and update E(−t)
n according to (1);

25 else
26 W ← 0 and update E(t)

n according to (1);

27 W ← 1 and update E(−t)
n according to (1);

28 return E(t)
n and E(−t)

n
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If a team with a higher Élö–Runyan rating wins, only a few points are transferred from
the lower-rated cadre. However, if a lower-rated squad wins, then transferred points from
a higher-rated player are far greater.

The English Premier League: Élö–Runyan Analysis

We consider the information we retrieved from seasons 2005/2006–2020/2021. We
assign all teams a base score of 1500 Élö points (which is an average score and is widely
used and accepted for football squads) and use (1) with K = 30 to the classifications
displayed in Figures 5 and 6.

Figure 5. Final standings obtained by means of (1) for seasons 2005/2006–2012/2013.

Figure 6. Final standings obtained by means of (1) for seasons 2013/2014–2020/2021.

Figure 7 is the Élö–Runyan analog of Figure 4. A quick comparison yields the
following.

• The score needed to be champion has a negative trend in the last two seasons.
• The Élö–Runyan score required to maintain the category has is much more fluctuating

than the actual classification (which represented a much more constant score).
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Figure 7. Evolution of the number of points needed to belong to each of the first four groups according
to Algorithm 1.

Table 2 is a confusion matrix to compare our results with the ones presented in
Section 2. The rows represent the instances in an actual class, while the column stand for
the instances in a predicted class.

Table 2. This confusion matrix shows the accuracy of our back-cast.

Champion UCL UEL Middle Table Relegation

Champion 13 3 0 0 0
UCL 3 39 5 1 0
UEL 0 5 18 9 0

Middle table 0 1 9 159 7
Relegation 0 0 0 7 41

Divide the trace of the matrix by the sum of all its entries to obtain a quotient of 84.37%,
an acceptable value.

Tables 3 and 4 show the different percentages of hits we attained for each season
with respect to the real database. The last row stands for the weighted average of hits in
each season.

Table 3. Comparison of hits of Algorithm 1 with respect to the actual results of of seasons 2005/2006–
2012/2013.

GROUP 2005/2006 2006/2007 2007/2008 2008/2009 2009/2010 2010/2011 2011/2012 2012/2013

Champion 0% 100% 0% 100% 0% 100% 100% 100%
UCL 100% 100% 100% 100% 75% 75% 75% 75%
UEL 50% 100% 50% 50% 0% 0% 50% 0%
Midtable 81.82% 90.91% 90.91% 72.73% 90.91% 90.91% 90.91% 90.91%
Relegation 66.67% 66.67% 100% 33.33% 100% 100% 100% 100%

TOTAL 75.00% 90.00% 85.00% 70.00% 76.25% 81.25% 86.25% 81.25%
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Table 4. Comparison of hits of Algorithm 1 with respect to the actual results of seasons 2013/2014–
2020/2021.

GROUP 2013/2014 2014/2015 2015/2016 2016/2017 2017/2018 2018/2019 2019/2020 2020/2021

Champion 100% 100% 100% 100% 100% 100% 100% 100%
UCL 100% 100% 75% 100% 100% 75% 100% 100%
UEL 100% 100% 50% 100% 100% 50% 50% 50%
Midtable 100% 90.91% 81.82% 100% 100% 90.91% 90.91% 90.91%
Relegation 100% 66.67% 66.67% 100% 100% 66.67% 100% 100%

TOTAL 100.00% 90.00% 76.25% 100.00% 100.00% 81.25% 90.00% 90.00%

Remark 3. (i) There are several seasons that had a 100% success rate, but the 2017/2018 season
stands out because the difference between first and second place was 19 points, whereas the
difference between the UEL group and the average table was of nine points.

(ii) The group with the most successes is the UCL, with a success rate of approximately 91%,
and this is due to the advantage that these teams usually have over the rest; mainly in
monetary terms.

(iii) The relegation group has a fairly high success rate. The main reason for this is that most of the
relegated teams have only been in the first division for one year; that is, they have only played
the season they are relegated, because the demand to play in the Premier League and in the
second division is quite big.

(iv) The UEL group has the lowest level of success; however, this percentage is reasonable because it
only has two places, which are usually much more disputed.

(v) It should be noted that there are two groups in which there is an overlap, where the champion
and the first classified in the UCL group coincide, so the Champions League group is made up
of four teams and not three.

(vi) Lastly, the champion and midtable groups have confidence levels of 81.25% and 90.34%,
respectively. Both percentages are reasonable because there are few seasons in which the
champion is defined in the last days. On the other hand, in the middle table group (without
counting the teams that are fighting for relegation or for some European competition), they
are in the “quiet” zone of the table, which helps to present a high level of reliability.

4. The Rise of Actual Champions

We devote this section to explaining the essentials of Poisson’s method to forecast
the result of a football match. We base our presentation in [1,21] and Chapter 1 in [2] and
use the information we retrieved on the Premier League for the purpose of illustration.
The core of the technique is simple: let N(t) be the random variable that represents the
number of goals scored by squad (t) during a football match against team (−t). Naturally,
this random variable depends on the strength of the scoring party and the weakness of
its rival.

The main assumption of this model is that N(t) follows a Poisson distribution with pa-
rameter

λ̊(t) + λ̃(−t)

2
, (3)

where λ̊(t) is the mean of the goals scored per match by team (t), and λ̃(−t) is the mean
of the goals received by squad (−t). As is thoroughly covered in [1], this assumption is
justified by the convergence in distribution of the Binomial distribution to Poisson’s law
when the number of experiments increases ad infinitum as the probability of goal per
experiment becomes smaller.

To reflect the effect of playing as hosts and guests, we define the random variables N(t)
h

and N(t)
g , respectively, and thus, for N(t)

h , the intensities λ̊(t) and λ̃(−t) referred to by (3) are
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replaced by λ̊
(t)
h and λ̃

(−t)
g and represent the mean of the goals per match scored by team

(t) when they play as hosts and the mean of the goals per match received by squad (−t)
when they play as guests. Analogously, for N(t)

g , the intensities λ̊(t) and λ̃(−t) referred to by

(3) are replaced by λ̊
(t)
g and λ̃

(−t)
h and represent the mean of the goals per match scored by

the troupe (t) when they play as guests and the mean of the goals per match received by
the crew (−t) when they play as hosts.

Next, it suffices to generate a realization of the random variables N(t)
h and N(−t)

g to
simulate the result of the pairing (t) versus (−t). To this end, it is possible to use the
cumulative product algorithm presented in, for instance, Section 4.2 in [22] and Algorithm 1
in [1].

The procedure we just described enables us to simulate one result of the direct match
between (t) and (−t). However, one simulation is by no means sufficient to forecast the
result. We can use the weak law of large numbers (see Chapters 7.4 and 7.5 in [23], Chapter 8
in [24], Chapter 8.4 in [25], Chapter 8 in [26,27] and Teorema VI.1 in [1]) to simulate the
result of the match between these teams a large number of times. Next, we compute the
proportion of times that each outcome is observed. The weak law of large numbers allows
us to interpret these numbers as the probabilities that (t) wins, (−t) wins, and the match
ends up tied. This technique is widely known as the Monte Carlo simulation technique
(see, for instance, Exercise 5.6 in [28]). If we multiply the former two of these probabilities
by three, the latter by one, and add the result to the points earned by each of the squads,
we will obtain an expected distribution of the points disputed in that match.

The final step is to simulate each match in the competition by means of this procedure
to produce the final standings of the tournament.

The English Premier League: Poisson Analysis

Table 5 displays the resulting leader board of the 2021/2022 season of the English
Premier League when we use the procedure we just described with the information from
that season. In this simulation, we used 10,000 iterations of the tournament.

Table 5. Leader board comparison.

Position Real Points Poisson Points Accuracy

Champion 1 Manchester City 93 Manchester City 76.59 100%

2 Liverpool 92 Liverpool 75.46
3 Chelsea 74 Chelsea 67.47UCL
4 Tottenham 71 Tottenham 62.50

100%

5 Arsenal 69 Arsenal 57.06UEL 6 Manchester United 58 West Ham 55.46 50%

7 West Ham 56 Leicester City 53.87
8 Leicester City 52 Crystal Palace 53.85
9 Brighton 51 Manchester United 52.58

10 Wolverhampton 51 Aston Villa 51.64
11 Newcastle 49 Brighton 51.49
12 Crystal Palace 48 Wolverhampton 51.20
13 Brentford 46 Brentford 49.91
14 Aston Villa 45 Newcastle 46.28
15 Southhampton 40 Burnley 45.28

middle table

16 Everton 39 Everton 44.96

81.81%

17 Leeds 38 Southhampton 44.80

18 Burnley 35 Leeds 40.31
19 Watford 23 Watford 38.01Relegation
20 Norwich City 22 Norwich City 32.11

66.67%
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The weighted average percentage rate of accuracy in this exercise rises to 79.99%. This
is not a bad result, however, as we have previously stated, the model we use heavily relies
on the assumption that the distribution of scored and received goals follows Poisson’s law.
This means that the intensity described by (3) remains constant throughout the match. This
condition is not uniformly met, and is reflected in the discrepancies between the simulated
number of points, and the actual number of points obtained by each team.

A plausible alternative is to keep the assumption that the distribution of goals is
Poisson’s with mean Λ, and suppose further that such Λ is a random variable itself with a
suitable distribution, for instance, a Type III-Pearson’s distribution (i.e., a Gamma random
variable). This approach is very standard for actuarial practitioners modeling the number of
claims in insurance (see, for instance, Example 12.3.1 in [29] and [30] pp. 30–33). We borrow
the next result from Chapter 3 in [30] and include it here for the sake of self-completeness
of our presentation.

Theorem 1. Let [NΛ] follow Poisson’s law with mean Λ, and Λ be a random variable with a
Γ(α, β)-distribution, where α > 0 is a shape parameter; and β > 0, a rate parameter. That is, Λ has
a density function given by

fΛ(λ) =
βα

Γ(α)
λα−1e−βλ,

for λ > 0, where Γ(α) :=
∫ ∞

0 tα−1e−tdt. Then,

P(N = n) =
Γ(n + α)

n!Γ(α)

(
β

1 + β

)α( 1
1 + β

)n
, (4)

for n = 0, 1, 2, . . .

The random variable N referred to by (4) in the above result follows the so-called
negative binomial distribution with mean and variance given by

m =
α

β
, (5)

s2 =
α

β

(
1 +

1
β

)
, (6)

respectively. Note, in particular, that the variance is larger than the mean. This property
holds in general for all mixtures of Poisson random variables. We will profit from it in the
next section.

Proof of Theorem 1. The theorem of total probability yields

P(N = n) =
∫ ∞

0
P(N = nΛ = λ) fΛ(λ)dλ

=
∫ ∞

0

λn

n!
e−λ βα

Γ(α)
λα−1e−βλdλ

=
βα

Γ(α)n!

∫ ∞

0
λn+α−1e−λ(1+β)dλ.

Writing z := λ(1 + β) (y dz = (1 + β)dλ), we have

P(N = n) =
βα

n!Γ(α)

∫ ∞

0

(
z

1 + β

)n+α−1
e−z 1

1 + β
dz

=
βα

n!Γ(α)

(
1

1 + β

)n+α ∫ ∞

0
zn+α−1e−zdz

=
βα

n!Γ(α)

(
1

1 + β

)n+α

Γ(n + α).
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Rearranging this expression yields (4). This completes the proof.

In the next section, we will combine the schemas we have presented so far. However,
we will test how well the Poisson random variable fits the number of goals scored and
received by the opponents, and we will replace it when a test of hypothesis rejects it with the
negative binomial (resp. binomial) distribution when the variance is larger (resp. smaller)
than the mean. This approach will allow us to consider random changes in the intensities
of the performance of the squads.

5. Test of the Élö–Runyan–Poisson–Pearson Model

The methods we presented in Sections 3 and 4 can confidently be used for classifying
football factions. Actually, the Élö–Runyan method has been extensively used for forecast-
ing the outcome of any particular match between crews in the same league, whereas the
Poisson method has been used to forecast the score of matches between teams that do not
necessarily face each other with regularity. In this section, we propose a modification of
the Poisson method so as to try to forecast the result of the upcoming World Cup in Qatar
2022. To this end, we develop the methodology in the following subsection, test it in the
results of the last World Cup, and finalize by giving a forecast of Qatar’s outcome in the
last subsection.

5.1. The Élö–Runyan–Poisson–Pearson Model

To begin with, it is mandatory to rely on a sufficiently large database with the results
of each team. The idea is to keep track of the number of goals scored and received by the
squads as hosts and guests for a reasonable period. Then, we compare the mean to the
variance and run a goodness-of-fit test to decide what random variable should be used to
simulate each random variable.

Next, it is necessary to estimate the parameters of the chosen distribution. Then, for
each match, we proceed to generate the number of goals M(t)

h scored by team (t) when
playing as hosts against team (−t) by means of the following tuned version of (3),

M(t)
h =

⌊
p
(

N̊(t)
h + Ñ(−t)

g

)⌋
, (7)

where N̊(t)
h stands for the number of goals scored by team (t) as hosts (regardless of the

performance of the team (−t)), Ñ(−t)
g represents the number of goals received by team

(−t) when playing as guests (regardless of the performance of the team (t)), and p is the
Élö–Runyan probability that the squad (t) bests squad (−t) according to (2).

Analogously, we generate the number of goals M(−t)
g scored by team (−t) when

playing as guests against team (t),

M(−t)
g =

⌊
(1− p)

(
N̊(−t)

g + Ñ(t)
h

)⌋
, (8)

where N̊(−t)
g stands for the number of goals scored by team (−t) as guests (regardless of

the performance of the team (t)) and Ñ(t)
h represents the number of goals received by team

(t) when playing as hosts (regardless of the performance of the team (t)). Iterating (7) and
(8) and using the weak law of large numbers yields a forecast of the match between teams
(t) and (−t).

It should be noted as well that a fundamental difference between (7) and (8) and (3)
is the fact that there are no a priori equal weighting factors for each of the parameters
of the random variables to be generated. Indeed, in (3), it is just as likely to score a goal
due to the party’s own strength than to the other’s squad weakness. In spite of this,
in (7) and (8), we substitute the original 1/2 factors by the Élö–Runyan probabilities given
by (2). This measure enables us to account for the strength of the team which has a better
Élö–Runyan rating.
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We set the null hypothesis that the distribution of the goals is Poisson, and distinguish
three cases.

(i) In the case that we fail to reject this hypothesis, we take advantage of the fact that the
Poisson mass function can be recursively written as

P(N = n + 1) =
λ

n + 1
P(N = n), (9)

for λ > 0, and n = 0, 1, . . . , with the initial condition P(N = 0) = e−λ, and mirror
this fact by means of Algorithm 2 (which we borrowed from Chapter 4.2 in [22]) to
simulate the number of goals.

(ii) If we reject the null hypothesis that the distribution of goals is Poisson, and the
variance of the goals is lower than the mean, we use a binomial distribution with
mean x̄. In this case, we refer to Section II in [1] to interpret x̄

90 as the probability that
a goal is scored at any of the 90 min in a match and take 90 as the total number of
trials a team will have to do it. We profit from the fact that the binomial mass with
parameters 90 and x̄

90 can be recursively written as

P(N = n + 1) =
90− n
n + 1

x̄
90− x̄

P(N = n), (10)

for n = 0, 1, . . . , 90, with initial condition P(N = 0) =
(
1− x̄

90
)90, and use Algorithm 3

(which we take from Chapter 4.3 in [22]) to simulate binomial random variables.

Algorithm 2: Generation of a Poisson realization.
Data: Goal average per match of a team λ > 0
Result: A simulated number of goals for the team

1 Generate a random number U;
2 n← 0;
3 p← exp(−λ);
4 F ← p;
5 while U ≥ F do
6 p← λ

p
n+1 ;

7 F ← F + p;
8 n← n + 1;

9 return n;

Algorithm 3: Generation of a binomial realization.
Data: Goal average per match of a team x̄ > 0
Result: A simulated number of goals for the team

1 Generate a random number U;
2 n← 0;
3 c← x̄

90−x̄ ;

4 p←
(
1− x̄

90
)90;

5 F ← p;
6 while U ≥ F do
7 p← c 90−n

n+1 p;
8 F ← F + p;
9 n← n + 1;

10 return n;
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(iii) If we reject the null hypothesis that the distribution of goals is Poisson, and the
variance is larger than the mean, we take advantage of the fact that the negative
binomial random variable can be recursively written as

P(N = n + 1) =
n + α

(n + 1)(1 + β)
P(N = n), (11)

for n = 0, 1, . . . with the initial condition P(N = 0) =
(

β
1+β

)α
, use the method of

moments (see, e.g., Chapter VII.2.1 in [31]) and (5) and (6) to obtain the estimates of
the parameters

α̂ =
x̄2

s2 − x̄
, (12)

β̂ =
x̄

s2 − x̂
, (13)

and mirror these facts by means of Algorithm 4 to simulate negative binomial ran-
dom variables.

Algorithm 4: Generation of a negative binomial realization.
Data: Goal average per match of a team x̄ > 0, goal variance per match of a team

s2

Result: A simulated number of goals for the team
1 Generate a random number U;
2 n← 0;

3 α̂← x̄2

s2−x̄ ;
4 β̂← x̄

s2−x̂ ;

5 p←
(

β̂

1+β̂

)α̂
;

6 F ← p;
7 while U ≥ F do
8 p← n+α̂

(n+1)(1+β̂)
p;

9 F ← F + p;
10 n← n + 1;

11 return n;

The general Élö–Runyan–Poisson–Pearson model to forecast the score in a direct match
between two football teams is as in Algorithm 5.

We complete this subsection with a few comments on Algorithm 5.

Remark 4. (a) A plausible interpretation of (3) is that the number of goals scored by a team is
due to the offensive power of the the team itself, and to the defensive weakness of its rival.
Algorithm 5 emphasizes this assumption by acknowledging the performance of a team by
updating the Élö–Runyan ratings after it has simulated a match. We develop the potential of
this feature later in Algorithms 6 and 7 below.

(b) The random variables (7) and (8) are floor functions of convex linear combinations of discrete-
type random variables. This ensures that we maintain the simulated values in the realm of
integral numbers for both squads.

(c) Because it is very difficult for the actual data to give a mean equal to its variance, we consider
the use of the goodness-of-fit test in all three cases. This allows these two statistics to be
statistically equivalent.

(d) For the case where the variance is lower than the mean, we follow the approach devised in [1]
and Chapter 1 in [2] and chose 90 and x̄/90 as the parameters of the corresponding binomial
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random variable. Another possibility would be to estimate the parameters by means of
another method.

Algorithm 5: The Élö–Runyan–Poisson–Pearson model.

Data: Élö–Runyan ratings E(t)
n−1 and E(−t)

n−1 up to time n− 1 for teams (t) and (−t),
respectively; constant K for Élö–Runyan model; historical data of the goals scored{

B̊(t)
h (m) : m = 1, . . . , n− 1

}
,
{

B̊(−t)
g (m) : m = 1, . . . , n− 1

}
and received{

B̃(t)
h (m) : m = 1, . . . , n− 1

}
,
{

B̃(−t)
g (m) : m = 1, . . . , n− 1

}
by teams (t)

and (−t), respectively.
Result: A simulated score for the match between the host squad (t), and the guest squad

(−t); updated Élö–Runyan ratings for both teams.
1 Plug E(t)

n−1 and E(−t)
n−1 in (2) to compute p;

2 for B = B̊(t)
h , B̊(−t)

g , B̃(t)
h , B̃(−t)

g do
3 H0 ← {B comes from a Poisson distribution};
4 Run a test of hypothesis onH0;
5 ifH0 is not rejected then
6 nB ←Algorithm 2;
7 else
8 if x̄B > s2

B then
9 nB ←Algorithm 3;

10 else
11 nB ←Algorithm 4;

12 N̊(t)
h ← n

B̊(t)
h

, Ñ(−t)
g ← n

B̃(−t)
g

and plug p, N̊(t)
h and Ñ(−t)

g in (7) to compute M(t)
h ;

13 N̊(−t)
g ← n

B̊(−t)
g

, Ñ(t)
h ← n

B̃(t)
h

and plug p, N̊(−t)
g and Ñ(t)

h in (8) to compute M(−t)
g ;

14 d← M(t)
h −M(−t)

g ;

15 Update E(t)
n and E(−t)

n according to Algorithm 1;

16 return M(t)
h , M(−t)

g , E(t)
n and E(−t)

n ;

(e) The estimates (12) and (13) correspond to the standard when it comes to using negative binomial
random variables in the insurance context. However, this is not the only alternative. It is
also possible to use the method of maximum likelihood to this end. In this case, we obtain the
system of equations

β

1 + β
− Tα

Tα + ∑T
i=1 yi

= 0,

T ln

(
Tα

Tα + ∑T
i=1 yi

)
− T

(∫ ∞
0 tα−1e−α ln tdt

Γ(α)
− 1

)

+
T

∑
i=1

(∫ ∞
0 tα+yi−1e−α−yi ln tdt

Γ(α + yi)
− 1

)
= 0,

where y1, y2, . . . , yT is the sample of goals in each match. These expressions are solvable for α
and β via (for example) Newton–Raphson’s method.

(f) Algorithms 2–4 profit from the widely known recursion formulas (9)–(11) and their correspond-
ing initial conditions. However, it turns out that this is possible only if the mass function of
N is such that there exist constants a and b such that

P(N = n) =
(

a +
b
n

)
P(N = n− 1) for n = 1, 2, . . .
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Surprisingly enough, there are no other random variables that meet this condition (see Theorem
17.3 in [32]). This fact explains our decision to stick to these particular random variables.

5.2. Russia 2018

Every four years, the representatives of all six confederations that compose FIFA
gather in the most important tournament for any sport on the face of the Earth: the FIFA
World Cup. The participating confederations are

• the Asian Football Confederation (AFC);
• the UEFA;
• the Confédération Africaine de Football (CAF);
• the Confederation of North, Central American and Caribbean Association Football

(CONACAF);
• the Confederação Sul-Americana de Futebol (CONMEBOL); and
• the Oceania Football Confederation.

The current format of the FIFA World Cup comprises two phases. In the first round,
the 32 invited teams are divided into eight groups and in each group, they play three
matches among themselves in a round robin mode. Afterward, the best two factions of
each sector move on to a knockout round of four matches.

We display the names and the Élö–Runyan rating (computed with Algorithm 1) of
the teams that played in the Russia 2018 World Cup according to the confederation to
which each belongs. We obtained the Élö–Runyan ratings by analyzing the information
of all the matches of the teams listed above in the period from 14 July 2014, until 13 June
2018 (that is, right after Brazil’s World Cup, and the beginning of Russia’s World Cup).
We applied Algorithm 1 with a uniform K = 20 for all the matches to amount for the fact
that, during COVID-19 pandemic, access to some of the strongest teams around the world
became restricted and was limited. The initial Élö–Runyan rating we used for all the teams
was 1500.

• UEFA: Belgium (1633.222), Croatia (1724.443), Denmark (1564.427), England (1604.612),
France (1742.171), Germany (1426.583), Iceland (1550.110), Poland (1456.364), Portugal
(1516.734), Russia (1577.244), Serbia (1485.873), Spain (1543.799), Sweden (1557.115),
and Switzerland (1581.902).

• CONMEBOL: Argentina (1558.131), Brazil (1635.239), Colombia (1626.491), Peru
(1521.952), and Uruguay (1646.054).

• CONCACAF: Costa Rica (1422.986), Mexico (1485.310), and Panama (1412.645).
• CAF: Egypt (1377.147), Morocco (1374.678), Nigeria (1384.316), Senegal (1377.673), and

Tunisia (1371.521).
• AFC: Australia (1447.447), Iran (1458.788), Japan (1513.472), Saudi Arabia (1453.555),

and South Korea (1443.991).

We devote this subsection to replicating the Russian edition of the World Cup so as to
measure the accuracy of the method we proposed in Section 5.1. It is worth mentioning
that, despite the fact that, in practice, there is only one host team (the organizer), we have
decided to keep the host–guest format because it amounts to the performance of the squads
during the tournament.

The model we use for the first phase of the tournament is essentially the same one
we have used to produce Table 5. However, we applied Algorithm 5 (with K = 60, for
this reflects the fact that we intend to simulate a World Cup) with the corresponding rates
listed above to forecast one outcome of the first match, and then we used the Monte Carlo
simulation technique to compute averages of the Élö–Runyan ratings of teams (t) and
(−t) and

• the proportion of times that (t) wins,
• the proportion of times that (−t) wins, and
• the proportion of times when the match ends up tied.
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Then, we multiply the former two of these probabilities by three, the latter by one,
and add the result to the points earned by each of the squads. This procedure yields an
expected distribution of the points disputed in each match. Algorithm 6 summarizes this.
The start date of the World Cup is assumed to be n.

As for the knockout round, we ran all T = 10,000 simulations of each match and chose
the team with the largest probability of winning as the one who stayed in the competition.

Tables 6–13 display the initial arrangement of the teams in the tournament, along with
the mean and variance of the goals they scored and received in the intercup period in all
the matches they played. We made the decision on the random variable used for simulating
the goals scored and received running a goodness-of-fit test with the null hypothesis that
the distribution was Poisson. Should we fail to reject this null hypothesis, we would
choose a Poisson random variable (see Algorithm 2). Otherwise, we selected a binomial
random variable (see Algorithm 3) if the mean was greater than the variance; and a negative
binomial distribution with parameters (12) and (13) (see Algorithm 4) in the remaining case.

Algorithm 6: Results of the first phase for a Word Cup group.

Data: Number of simulations T, Élö–Runyan ratings E(i)
n−1, for teams i = 1, 2, 3, 4

up to time n− 1; historical data of the goals scored{
B̊(i)

h (m) : m = 1, . . . , n− 1
}

,
{

B̊(i)
g (m) : m = 1, . . . , n− 1

}
and received{

B̃(i)
h (m) : m = 1, . . . , n− 1

}
,
{

B̃(i)
g (m) : m = 1, . . . , n− 1

}
by teams

i = 1, 2, 3, 4.
Result: Two teams that are expected to survive the first phase

1 for i = 1, . . . , 4 do
2 E(i) ← E(i)

n−1, Points(i) ← 0, e(i) ← 0;

3 for match j = 1, . . . , 6 do
4 I (γ) ← 0, I (`) ← 0, tie← 0;
5 for k = 1, . . . , T do
6 Execute Algorithm 5 with Élö–Runyan ratings E(i), for teams i = `, γ;

K = 60; and historical data of the goals scored{
B̊(i)

h (m) : m = 1, . . . , n− 1
}

,
{

B̊(i)
g (m) : m = 1, . . . , n− 1

}
, and received{

B̃(i)
h (m) : m = 1, . . . , n− 1

}
,
{

B̃(i)
g (m) : m = 1, . . . , n− 1

}
by teams

i = `, γ;

7 e(`) ← e(`) + E(`)
n , e(γ) ← e(γ) + E(γ)

n ;

8 if M(γ)
h > M(`)

g then
9 I (γ) ← I (γ) + 1;

10 else if M(γ)
h < M(`)

g then
11 I (`) ← I (`) + 1;
12 else
13 tie← tie + 1;

14 I (i) ← I (i)/T, E(i) ← e(i)/T for i = `, γ, and tie← tie/T;

15 Points(i) = Points(i) + 3I (i) + tie for i = `, γ;

16 return the two teams (`) and (γ) such that Points(`) and Points(γ) are the highest
among Points(i) for i = 1, 2, 3, 4.;

We initialized Algorithm 6 with the Élö–Runyan ratings we listed above and set
T = 10,000 to obtain the results of this phase. The results are as in Table 14. To measure
the accuracy of our simulations, we have opted for a format which is analogous to that of
Table 5.
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Table 6. Group A in Russia 2018.

Team

Mean
Goals
for as
Host

Var.
Goals
for as
Host

Law

Mean
Goals
against
as Host

Var.
Goals
against
as Host

Law

Mean
Goals
for as
Guest

Var.
Goals
for as
Guest

Law

Mean
Goals
against
as
Guest

Var.
Goals
against
as
Guest

Law

Saudi Arabia 1.88 2.10 Poi 0.85 0.98 Poi 1.70 4.81 Poi 1.70 1.91 Poi
Egypt 1.30 0.99 Poi 0.43 0.33 Poi 0.76 0.53 Poi 1.24 0.77 Poi
Russia 1.52 2.01 Poi 1.32 1.34 Poi 2.00 3.79 Poi 0.80 0.38 Poi
Uruguay 2.33 1.89 Poi 0.78 1.28 Poi 1.09 0.71 Poi 1.00 0.96 Poi

The knockout stage of the FIFA World Cup is the second and final stage of the compe-
tition, following the 48 matches of the group stage. It is subdivided into four substages:
round of 16, quarterfinals, semifinals, and a final match. The teams that survive the first
phase line up according to Figure 8 and start the second phase.

Table 7. Group B in Russia 2018.

Team

Mean
Goals
for as
Host

Var.
Goals
for as
Host

Law

Mean
Goals
against
as Host

var.
Goals
against
as Host

Law

Mean
Goals
for as
Guest

var.
Goals
for as
Guest

Law

Mean
Goals
against
as
Guest

var.
Goals
against
as
Guest

Law

Spain 3.00 3.47 Poi 0.27 0.20 Poi 1.67 3.82 Poi 0.87 0.78 Poi
Portugal 1.91 2.81 Poi 0.68 0.70 Poi 1.79 2.06 Poi 0.63 0.86 Poi
Iran 2.12 1.75 Poi 0.53 0.72 Poi 1.41 2.01 Poi 0.41 0.60 NB
Morocco 2.19 2.44 Poi 0.48 0.25 Poi 0.62 0.85 Poi 0.46 0.25 Poi

Table 8. Group C in Russia 2018.

Team

Mean
Goals
for as
Host

Var.
Goals
for as
Host

Law

Mean
Goals
against
as Host

Var.
Gals
against
as Host

Law

Mean
Goals
for as
Guest

Var.
Goals
for as
Guest

Law

Mean
Goals
against
as
Guest

Var.
Goals
against
as
Guest

Law

France 2.26 1.74 Poi 0.97 1.13 Poi 1.44 1.36 Poi 0.83 0.58 Poi
Denmark 1.70 2.04 Poi 0.74 0.54 Poi 1.25 2.11 Poi 1.20 0.75 Poi
Australia 2.65 3.03 Poi 0.90 1.19 Poi 1.23 1.18 Poi 1.15 0.98 Poi
Peru 1.74 1.06 Poi 0.78 0.95 Poi 1.21 1.38 Poi 1.18 1.08 Poi

Table 9. Group D in Russia 2018.

Team

Mean
Goals
for as
Host

Var.
Goals
for as
Host

Law

Mean
Goals
against
as Host

Var.
Gals
against
as Host

Law

Mean
Goals
for as
Guest

Var.
Goals
for as
Guest

Law

Mean
Goals
against
as
Guest

Var.
Goals
against
as
Guest

Law

Croatia 2.72 5.31 Poi 0.39 0.24 Poi 1.17 1.81 Poi 1.17 1.72 Poi
Argentina 2.07 3.44 Poi 0.66 0.85 Poi 1.89 4.09 Poi 1.11 2.30 NB
Nigeria 1.58 1.66 Poi 0.83 0.72 Poi 1.11 1.36 Poi 0.84 0.98 Poi
Iceland 1.78 0.95 Poi 1.00 1.11 Poi 1.61 1.56 Poi 1.39 1.62 Poi
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Table 10. Group E in Russia 2018.

Team

Mean
Goals
for as
Host

Var.
Goals
for as
Host

Law

Mean
Goals
against
as Host

Var.
Gals
against
as Host

Law

Mean
Goals
for as
Guest

Var.
Goals
for as
Guest

Law

Mean
Goals
against
as
Guest

Var.
Goals
against
as
Guest

Law

Brazil 1.77 1.54 Poi 0.45 0.34 Poi 2.36 2.55 Poi 0.48 0.41 Poi
Costa Rica 1.48 1.43 Poi 0.56 0.47 Poi 1.10 1.42 Poi 1.57 1.65 Poi
Serbia 1.83 1.69 Poi 1.22 0.84 Poi 1.22 0.84 Poi 1.11 1.32 Poi
Switzerland 1.15 3.71 Poi 1.05 0.71 Poi 0.95 1.20 Poi 2.21 0.79 Poi

Table 11. Group F in Russia 2018.

Team

Mean
Goals
for as
Host

Var.
Goals
for as
Host

Law

Mean
Goals
against
as Host

Var.
Gals
against
as Host

Law

Mean
Goals
for as
Guest

Var.
Goals
for as
Guest

Law

Mean
Goals
against
as
Guest

Var.
Goals
against
as
Guest

Law

Germany 2.28 2.51 Poi 0.94 1.06 Poi 2.06 5.27 Poi 0.94 0.72 Poi
South Korea 1.24 1.25 Poi 0.91 0.97 Poi 1.04 1.12 Poi 1.40 2.23 NB
Sweden 1.26 3.19 Poi 0.85 0.79 Poi 1.05 1.27 Poi 1.68 0.77 Poi
Mexico 1.60 1.47 Poi 0.69 1.52 Poi 1.57 1.24 Poi 1.48 1.52 Poi

Table 12. Group G in Russia 2018.

Team

Mean
Goals
for as
Host

Var.
Goals
for as
Host

Law

Mean
Goals
against
as Host

Var.
Gals
against
as Host

Law

Mean
Goals
for as
Guest

Var.
Goals
for as
Guest

Law

Mean
Goals
against
as
Guest

Var.
Goals
against
as
Guest

Law

Belgium 3.33 5.67 Poi 0.67 0.67 Poi 2.47 2.65 Poi 1.07 1.53 Poi
Panama 1.38 1.01 Poi 0.73 0.50 Poi 1.00 1.63 Poi 1.44 2.10 Poi
Tunisia 1.75 0.75 Poi 1.00 0.70 Poi 1.56 2.36 Poi 0.83 0.58 Poi
England 2.19 1.15 Poi 0.50 0.50 Poi 1.80 2.83 Poi 0.53 0.65 Poi

Table 13. Group H in Russia 2018.

Team

Mean
Goals
for as
Host

Var.
Goals
for as
Host

Law

Mean
Goals
against
as Host

Var.
Gals
against
as Host

Law

Mean
Goals
for as
Guest

Var.
Goals
for as
Guest

Law

Mean
Goals
against
as
Guest

Var.
Goals
against
as
Guest

Law

Senegal 1.95 1.68 Poi 0.50 0.52 Poi 1.36 0.69 Bin 0.95 1.23 Poi
Japan 2.33 3.17 Poi 1.06 1.33 Poi 1.60 2.24 Poi 0.67 0.49 Poi
Poland 2.40 3.28 Poi 0.96 0.68 Poi 2.31 4.37 Poi 1.15 1.51 Poi
Colombia 1.35 1.23 Poi 0.85 0.73 Poi 1.42 2.24 Poi 0.85 0.98 Poi

To simulate each match in this phase, we produced Algorithm 7, which is a variant
of Algorithm 6. Note that the main difference between the former respective to the latter
is that it does not assume the presence of four teams, and therefore, does not make the
allocation of points from lines 1–2 and 15. Most of all, it does not allow more than one
troupe in the next phase. Also, observe that Algorithm 7 breaks ties up via a coin flip (see
lines 14–18). Hence mirroring the popular voice that says: “Penalty shoot-outs are basically
crap shoots”.
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Table 14. Group winners comparison.

Position Real Points Algorithm 6 Estimated Points Accuracy

1 Uruguay 9 Uruguay 6.4842Group A 2 Russia 6 Russia 5.1548 100%

1 Spain 5 Spain 5.6867Group B 2 Portugal 5 Portugal 4.8296 100%

1 France 5 France 7.3876Group C 2 Denmark 5 Denmark 4.0612 100%

1 Croatia 9 Croatia 6.3811Group D 2 Argentina 4 Argentina 4.6111 100%

1 Brazil 7 Brazil 7.0674Group E 2 Switzerland 5 Switzerland 4.1768 100%

1 Sweden 6 Sweden 4.7170Group F 2 Mexico 6 Mexico 4.3551 100%

1 Belgium 9 Belgium 7.3368Group G 2 England 6 England 6.1921 100%

1 Colombia 6 Colombia 6.0252Group H 2 Japan 4 Japan 4.7146 100%

Algorithm 7: Result of a second-phase match in a World Cup group.

Data: Number of simulations T, Élö–Runyan ratings E(i), for teams i = 1, 2;
historical data of the goals scored

{
B̊(i)

h (m) : m = 1, . . . , n− 1
}

,{
B̊(i)

g (m) : m = 1, . . . , n− 1
}

and received
{

B̃(i)
h (m) : m = 1, . . . , n− 1

}
,{

B̃(i)
g (m) : m = 1, . . . , n− 1

}
by teams i = 1, 2.

Result: The team that is expected to survive a match of the second phase
1 I (1) ← 0, I (2) ← 0, e(1) ← 0, e(2) ← 0;
2 for k = 1, . . . , T do
3 Execute Algorithm 5 with Élö–Runyan ratings E(i), for teams i = 1, 2; K = 60;

and historical data of the goals scored
{

B̊(i)
h (m) : m = 1, . . . , n− 1

}
,{

B̊(i)
g (m) : m = 1, . . . , n− 1

}
, and received

{
B̃(i)

h (m) : m = 1, . . . , n− 1
}

,{
B̃(i)

g (m) : m = 1, . . . , n− 1
}

by teams i = 1, 2;

4 e(1) ← e(1) + E(1)
n , e(2) ← e(2) + E(2)

n ;

5 if M(1)
h > M(2)

g then
6 I (1) ← I (1) + 1;

7 else if M(1)
h < M(2)

g then
8 I (2) ← I (`) + 1;

9 if I (1) > I (2) then
10 return team (1) and e(1)/T;
11 else if I (1) < I (2) then
12 return team (2) and e(2)/T;
13 else
14 Generate a random number U;
15 if U ≤ 1/2 then
16 return team (1) and e(1)/T;

17 else
18 return team (2) and e(2)/T;
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Figure 8. Schematic of the final phase.

Remark 5. One might argue that, in spite of the fact that Algorithms 6 and 7 rely on the update
of the Élö–Runyan ratings (by calling Algorithm 5), they do not update the data of the scored and
received goals so as to verify the distribution of these random variables in the next iterations of
Algorithm 5. However, we assume that, because Algorithm 5 is producing simulations according to
the original distributions of such random variables, they do not change as the tournament evolves.
That is, they are realizations of a stationary stochastic process.

Applying Algorithm 7 with T = 10,000, the Élö–Runyan ratings for both squads and
the historical data of the goals scored and received by each pair of teams, we predict
the outcomes of the second phase in Russia 2018 World Cup. The Tables 15–18 establish
the comparison.

According to the results displayed in Tables 14–18, Algorithms 6 and 7 have a com-
bined accuracy of 87.09%.

Table 15. Quarterfinalists.

Real Algorithm 7 Accuracy

Uruguay Uruguay

75%

France France
Brazil Brazil
Belgium Belgium
Russia Spain
Croatia Croatia
Sweden Sweden
England Colombia

Table 16. Semifinalists.

Real Algorithm 7 Accuracy

France France

50%Belgium Brazil
Croatia Croatia
England Colombia
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Table 17. Finalists.

Real Algorithm 7 Accuracy

France France 100%Croatia Croatia

Table 18. Champion.

Real Algorithm 7 Accuracy

France France 100%

5.3. Qatar 2022

We display the names and Élö–Runyan ratings of the 32 countries participating in the
World Cup of Qatar 2022 according to their confederation of origin.

• UEFA: Belgium (1662), Croatia (1571), Denmark (1659), England (1649), France (1659),
Germany (1615), Netherlands (1711), Poland (1559), Serbia (1619), Spain (1645),
Switzerland (1592), Portugal (1633), and Wales (1504).

• AFC: Australia (1574), Iran (1621), Japan (1693), Qatar (1552), Saudi Arabia (1558), and
South Korea (1652).

• CAF: Cameroon (1552), Ghana (1512), Morocco (1675), Senegal (1636), and Tunisia (1584).
• CONCACAF: Canada (1613), Costa Rica (1545), Mexico (1573), and the United States

of America (1638).
• CONMEBOL: Argentina (1732), Brazil (1760), Ecuador (1552), and Uruguay (1574).

Tables 19–26 display the initial arrangement of the teams in the tournament, along with
the mean and variance of the goals they scored and received in the intercup period. This
distribution became public on 1 April 2022 at the FIFA Congress 2022, celebrated in the city
of Doha, Qatar. These tables also display the random variable used for simulating the goals
scored and received by comparing the mean to the variance and running a goodness-of-fit
test with the null hypothesis that the distribution was Poisson. It is remarkable that most
of the random variables were modeled with Poisson distributions; some of them, with a
negative binomial random variable, while only two were modeled after a binomial random
variable (see Table 23).

Table 19. Group A in Qatar 2022.

Team

Mean
Goals
for as
Host

Var.
Goals
for as
Host

Law

Mean
Goals
against
as Host

Var.
Gals
against
as Host

Law

Mean
Goals
for as
Guest

Var.
Goals
for as
Guest

Law

Mean
Goals
against
as
Guest

Var.
Goals
against
as
Guest

Law

Ecuador 1.81 1.87 Poi 1.81 1.85 Poi 0.90 1.75 Poi 1.24 1.49 Poi
Senegal 1.68 0.94 Poi 0.48 0.41 Poi 1.38 0.48 Poi 0.75 0.91 Poi
Qatar 1.82 2.35 Poi 1.13 1.29 Poi 1.47 2.52 Poi 1.10 1.89 Poi
Netherlands 2.00 2.46 Poi 1.00 0.77 Poi 1.15 2.75 Poi 2.10 1.00 Poi
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Table 20. Group B in Qatar 2022.

Team

Mean
Goals
for as
Host

Var.
Goals
for as
Host

Law

Mean
Goals
against
as Host

Var.
Gals
against
as Host

Law

Mean
Goals
for as
Guest

Var.
Goals
for as
Guest

Law

Mean
Goals
against
as
Guest

Var.
Goals
against
as
Guest

Law

England 1.65 3.00 Poi 1.41 4.12 Poi 1.02 4.14 NB 0.31 0.46 Poi
Iran 1.73 7.24 NB 1.20 3.96 Poi 0.97 3.83 Poi 0.27 0.34 Poi
USA 1.84 3.29 Poi 0.80 1.65 Poi 0.49 1.49 Poi 0.35 0.43 Poi
Wales 1.22 1.34 Poi 1.02 1.28 Poi 0.57 1.20 Poi 0.52 0.90 Poi

Table 21. Group C in Qatar 2022.

Team

Mean
Goals
for as
Host

Var.
Goals
for as
Host

Law

Mean
Goals
against
as Host

Var.
Gals
against
as Host

Law

Mean
Goals
for as
Guest

Var.
Goals
for as
Guest

Law

Mean
Goals
against
as
Guest

Var.
Goals
against
as
Guest

Law

Poland 1.71 2.14 Poi 1.10 0.86 Poi 1.57 2.33 Poi 1.43 2.07 Poi
Mexico 1.61 1.79 NB 0.71 0.92 Poi 0.92 0.99 Poi 1.35 1.69 Poi
Saudi Arabia 1.61 1.79 Poi 0.71 0.92 Poi 0.92 0.99 Poi 1.35 1.69 Poi
Argentina 1.88 1.92 Poi 0.59 0.74 Poi 1.92 1.99 Poi 0.96 2.04 Poi

Table 22. Group D in Qatar 2022.

Team

Mean
Goals
for as
Host

Var.
Goals
for as
Host

Law

Mean
Goals
against
as Host

Var.
Gals
against
as Host

Law

Mean
Goals
for as
Guest

Var.
Goals
for as
Guest

Law

Mean
Goals
against
as
Guest

Var.
Goals
against
as
Guest

Law

Australia 2.23 3.10 Poi 0.38 0.39 Poi 0.74 2.99 Poi 2.11 0.49 Poi
France 2.50 3.61 Poi 0.82 0.72 Poi 1.48 1.30 Poi 0.81 0.63 Poi
Denmark 2.35 3.92 Poi 0.38 0.39 Poi 2.08 2.16 Poi 1.08 1.49 Poi
Tunisia 1.70 2.14 Poi 0.57 0.45 Poi 1.00 1.52 Poi 0.90 1.23 Poi

Table 23. Group E in Qatar 2022.

Team

Mean
Goals
for as
Host

Var.
Goals
for as
Host

Law

Mean
Goals
against
as Host

Var.
Gals
against
as Host

Law

Mean
Goals
for as
Guest

Var.
Goals
for as
Guest

Law

Mean
Goals
against
as
Guest

Var.
Goals
against
as
Guest

Law

Spain 2.68 4.01 Poi 0.52 0.63 Poi 1.80 1.76 Poi 0.96 0.68 Bin
Costa Rica 1.14 0.90 Poi 0.67 0.32 Bin 0.83 0.67 Poi 1.45 0.94 Poi
Germany 2.90 5.47 Poi 1.14 1.08 Poi 1.84 1.71 Poi 1.26 2.19 Poi
Japan 2.13 4.38 Poi 0.84 1.34 NB 2.40 10.24 Poi 0.33 0.36 Poi
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Table 24. Group F in Qatar 2022.

Team

Mean
Goals
for as
Host

Var.
Goals
for as
Host

Law

Mean
Goals
against
as Host

Var.
Gals
against
as Host

Law

Mean
Goals
for as
Guest

Var.
Goals
for as
Guest

Law

Mean
Goals
against
as
Guest

Var.
Goals
against
as
Guest

Law

Morocco 1.83 1.63 Poi 0.51 0.65 Poi 1.84 2.24 Poi 0.68 0.95 NB
Croatia 1.81 0.85 Poi 1.23 1.25 Poi 1.45 2.75 Poi 1.40 2.44 Poi
Belgium 3.13 4.69 Poi 0.88 1.03 Poi 2.04 1.78 Poi 1.00 1.48 Poi
Canada 3.42 2.98 Poi 0.42 0.35 Poi 2.28 7.46 NB 0.92 0.43 Poi

Table 25. Group G in Qatar 2022.

Team

Mean
Goals
for as
Host

Var.
Goals
for as
Host

Law

Mean
Goals
against
as Host

Var.
Gals
against
as Host

Law

Mean
Goals
for as
Guest

Var.
Goals
for as
Guest

Law

Mean
Goals
against
as
Guest

Var.
Goals
against
as
Guest

Law

Cameroon 1.30 1.69 Poi 0.43 0.33 Poi 0.96 1.12 Poi 1.00 1.48 Poi
Brazil 2.17 2.64 Poi 0.39 0.35 Poi 2.17 2.23 Poi 0.35 0.31 Poi
Switzerland 2.20 3.36 Poi 0.68 0.62 Poi 1.50 2.25 Poi 1.55 1.16 Poi
Serbia 2.43 2.24 Poi 1.19 0.82 Poi 1.28 1.08 Poi 1.00 2.20 Poi

Table 26. Group H in Qatar 2022.

Team

Mean
Goals
for as
Host

Var.
Goals
for as
Host

Law

Mean
Goals
against
as Host

Var.
Gals
against
as Host

Law

Mean
Goals
for as
Guest

Var.
Goals
for as
Guest

Law

Mean
Goals
against
as
Guest

Var.
Goals
against
as
Guest

Law

South Korea 1.88 2.41 Poi 0.64 1.08 Poi 1.87 2.92 Poi 0.67 1.02 NB
Uruguay 1.68 2.64 Poi 0.53 0.57 Poi 1.41 1.01 Poi 1.19 1.82 Poi
Portugal 2.32 3.56 Poi 0.44 0.32 Poi 2.05 2.13 Poi 1.00 1.09 Poi
Ghana 1.29 1.06 Poi 0.64 0.80 Poi 0.63 0.24 Poi 0.84 1.21 Poi

5.3.1. First Phase

We applied our simulation Algorithm 6 with T = 10,000 times and obtained the leader
boards displayed in Figure 9.
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Figure 9. Final standings for the first phase.

5.3.2. Second Phase

We iteratively applied Algorithm 7 with T = 10,000, the Élö–Runyan ratings for both
squads and the stationary trajectories of the goals scored and received by each pair of teams,
Figure 10 forecasts the outcomes of the second phase in Qatar 2022 World Cup starting
from the Round of 16. The percentages below the name of the teams are the predicted
proportion of times that each team beats its rival.

We forecast that Brazil will end up rising as world champions, because its Élö–Runyan
rating will be of 1840.616153, against Belgium’s 1741.27328. However, we should keep in
mind that mathematics will not play football, men will.
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Figure 10. The arrangement mirrors that of Figure 8.

6. Aftermatch

This work represents a follow-up of a lot of references dealing with the Élö–Runyan
rating system for football, and of Poisson’s method to forecast a football match (see [1]). We
illustrated each of these methods in the English Premier League in Sections 3 and 4, respec-
tively. We have also presented Algorithm 5, a technique that extends Poisson methodology
to forecast the result of a football match under the assumption that the historical data of
the goals scored and received by a cadre are stationary (see Assumption 1 and Remark 5).

Our main contribution is the incorporation of the Élö–Runyan rating system to Pois-
son’s method to account for the strength of a team in an ongoing tournament while empha-
sizing the assumption that the goals scored by a team is due to both the offensive power
of the the team itself and the defensive weakness of its rival. Another novelty included
in Algorithm 5 is the inclusion of a goodness-of-fit test to decide if the Poisson random
variable is a suitable option to simulate the goals scored and received by each opponent,
or not. In the latter case we compare the mean to the variance of the historic data, and
use a binomial or a negative binomial for the simulations. Because the mass functions
of these random are likely to be written in a recursive way, they represent the standard
used by actuaries modelling claims frequency in, for instance, car insurance. Moreover, we
have taken a chance to apply Algorithm 5 to the upcoming World Cup Qatar 2022 before it
officially starts (see Algorithms 6 and 7).

A plausible extension of this work is to loosen the assumption that, should the Poisson
distribution fail to fit the historic data, then it is necessary to choose between the binomial
or negative binomial random variables for the simulations. In this case, it would be possible
to fit a mixture of Poisson random variables (when the variance is larger than the mean), or
even an empirical distribution. Another area of opportunity lies in the use of stationary
random processes (see Assumption 1(i)), for one could withdraw this hypothesis and reflect
it in our algorithms.
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