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Abstract: The performance of a gearbox is sensitive to failures, especially in the long‑term high speed
and heavy load field. However, the multi‑fault diagnosis in gearboxes is a challenging problem be‑
cause of the complex andnon‑stationarymeasured signal. To obtain fault informationmore fully and
improve the accuracy of gearbox fault diagnosis, this paper proposes a feature extraction method,
hierarchical refined composite multiscale fluctuation dispersion entropy (HRCMFDE) to extract the
fault features of rolling bearing and the gear vibration signals at different layers and scales. On this
basis, a novel fault diagnosis scheme for the gearbox based on HRCMFDE, ReliefF and grey wolf
optimizer regularized extreme learning machine is proposed. Firstly, HRCMFDE is employed to
extract the original features, the multi‑frequency time information can be evaluated simultaneously,
and the fault feature information can be extracted more fully. After that, ReliefF is used to screen
the sensitive features from the high‑dimensional fault features. Finally, the sensitive features are
inputted into the optimized regularized extreme learning machine to identify the fault states of the
gearbox. Through three different types of gearbox experiments, the experimental results confirm
that the proposed method has better diagnostic performance and generalization, which can effec‑
tively and accurately identify the different fault categories of the gearbox and outperforms other
contrastive methods.

Keywords: hierarchical refined composite multiscale fluctuation dispersion entropy (HRCMFDE);
fault diagnosis; gearbox; regularized extreme learning machine; ReliefF; grey wolf

MSC: 68T10

1. Introduction
As a critical part of the transmit power and motion in mechanical equipment, the

gearbox has been widely used in many modern industrial fields such as aerospace, wind
power generation, ship, rail transit and construction machinery. However, due to heavy
loads and hostile working environments, it is easy to malfunction in the actual working
process. These failures will lead to inevitable dynamic behavior and even significant acci‑
dents. To avoid losses caused by gearbox failures, accurate and automatic fault detection
is of great value to ensure the safe and stable operation of mechanical equipment [1].

The research on gearbox fault diagnosis is mainly based on expert systems [2], an‑
alytical models [3] and data‑driven methods [4]. The expert system‑based method has
substantial limitations and primarily relies on the experience of experts for diagnosis. The
analytical model‑based methods need to establish accurate and systematic mathematical
models according to a specific mechanical structure, which is not always possible for com‑
plex mechanical systems [5]. The data‑driven method analyzes an equipment’s operating
state through sensor data, which has received much attention in fault diagnosis. When
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the gearbox fails, the failed point repeatedly collides with other parts in contact. It will
cause nonlinear, non‑stationary and multi‑frequency complex signals. Therefore, how to
extract the fault feature information that can represent the running state from this signal
has become the key [6]. Researchers have proposed various state‑of‑the‑art signal anal‑
ysis methods and applied them to extract gearbox fault features, such as wavelet packet
transform (WPT) [7], squared envelope spectrum (SES) [8], empirical mode decomposi‑
tion (EMD) [9], variational modal decomposition (VMD) [10], machine learning [11] and
entropy theories [12].

As a statistical measure, entropy can quantify complexity and detect the dynamic
changes of signals through the nonlinear behavior of time series. It has become a hot re‑
search topic and study in many necessary fields, such as image processing [13], mechani‑
cal fault diagnosis [14], urban systems [15] and biomedical signals [16]. Due to its advan‑
tages in nonlinear vibration signals feature extraction, there aremany entropy‑basedmeth‑
ods, such as sample entropy [17], fuzzy entropy [18] and permutation entropy [19]. These
entropy‑basedmethods or improvedmethods have been successfully applied in the field of
mechanical equipment fault diagnosis. Feng [20] combines with the sample entropy, and
the fault diagnosis of planetary gear under non‑stationary operational conditions is real‑
ized. Wei [21] proposes an improved fuzzy entropy method for feature extraction of rotat‑
ingmachinery and verifies the effectiveness of the method through experiments. Kuai [22]
decomposes the original signal into six intrinsic mode functions and defines the permuta‑
tion entropies of each intrinsic mode function component as the input for the gearbox fault
diagnosis. However, sample entropy has addressed the shortcoming, but the boundary of
different categories is fuzzy in practical application. Fuzzy entropy can effectively solve
this problem and improve the stability of the calculation results. Permutation entropy only
compares the amplitude of time series in the calculation process and ignores the amplitude
difference between the same pattern.

To tackle these problems, a method called frequency‑based dispersion entropy (FDE)
is introduced byAzami [23]. Through the comparative analysis of various kinds of classical
signals, FDE has apparent advantages in terms of stability, calculation cost
and noise‑robustness.

Nevertheless, FDE only measures the randomness and dynamic uncertainty of time
series on a single scale. To address the defect, multiscale fluctuation dispersion entropy
(MFDE) [24], refined composite multiscale dispersion entropy (RCMDE) [25] and refined
composite multiscale fluctuation dispersion entropy (RCMFDE) [26] have been proposed
to measure the complexity of time series on multiple scales. However, MFDE, RCMDE
and RCMFDE do not comprehensively consider the multiscale feature information of time
series at different layers and frequency bands. These also ignore the feature information of
different coarse‑graining sequences at the same scale during the coarse‑graining process,
which results in the loss of helpful information and increases entropy estimation deviation.
Meanwhile, Yan [27] introduces hierarchical dispersion entropy, and Wang [28] proposes
hierarchical fluctuation dispersion entropy. HFDE and HDE can simultaneously extract
high‑frequency and low‑frequency features of the signal. Nonetheless, in the face of com‑
plex signals, HFDE and HDE are unstable and have severe feature information loss. To
address these shortcomings, this paper combines the advantages of the above methods.
Further, it proposes hierarchical refined composite multiscale fluctuation dispersion en‑
tropy (HRCMFDE) to extract fault features of the gearbox vibration signals.

The HRCMFDE mothed extracts the gearbox features information from the time do‑
main signals. The obtained high‑dimensional feature vectors contain redundant informa‑
tion, which will drown the sensitive information [29]. In this paper, ReliefF is adopted to
screen sensitive information [30], eliminate the correlation among the features and avoid
redundancy. In the pattern recognition stage, a regularized extreme learning machine
(RELM) [31] is introduced as a classifier. The performance of RELM depends on two pa‑
rameters, namely, the regularization factor and the number of hidden neurons. To avoid
choosing parameter combinations by experience, the greywolf optimizer (GWO) [32] adap‑
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tively determines the best parameter combinations of RELM. Therefore, GWO‑RELM is
also proposed to give full play to the best performance of RELM.

According to the layout of the gearbox, gear trains can be classified into four cate‑
gories [33]: simple gear train, compound gear train, reverted gear train and planetary gear
train. One example is given in Figure 1 for each type of gear train. The types (b), (c) and
(d) can be formed by the combination of (a). To verify the applicability and generalization
of this method in the field of gearbox fault diagnosis, experimental research on gearboxes
with more complex structures (b), (c) and (d) is carried out.
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The main contributions of this paper can be summarized as follows:
(1) A novel HRCMFDE method is employed to calculate the entropy value of the gear‑

box original vibration signals distributed overmultiscale andmulti‑level fault feature
extraction;

(2) A novel fault diagnosis scheme for gearbox fault diagnosis is proposed based on
HRCMFDE, ReliefF and GWO‑RELM;

(3) Experiment studies of the gearbox with single and compound failures are carried out.
The results validate that the proposed method has a better detection ability than the
existing four entropy‑based approaches.
The rest of this paper is organized as follows. Section 2 presents the mathematical

modelling and parameter selection of the HRCMFDE algorithm. Section 3 provides the
steps of the proposedmethod in detail and includes the principle of GWO‑RELM. Section 4
is the experimental verification. A series of gearbox experiments verify the superiority and
generalization of the proposed method. Section 5 draws the conclusions.

2. HRCMFDE
RCMFDEdo not comprehensively consider themultiscale feature information of time

series at different layers and frequency bands, which inevitably leads to the loss of poten‑
tial effective information. The paper puts forward hierarchical refined composite multi‑
scale fluctuation dispersion entropy (HRCMFDE). By referring to the process of hierarchi‑
cal analysis, the multi‑frequency information of time can be evaluated simultaneously by
constructing operators of different frequency bands, and the feature information can be
extracted more fully.

2.1. Fluctuation Dispersion Entropy (FDE)
For random series X = x1, x2, · · · , xN , its features are calculated as follows:
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(1) Obtaining the time series Z = z1, z2, · · · , zN by mapping each element in
X = x1, x2, · · · , xN to different classes from 1 to c based on Equations (1) and (2),

yi =
1

σ
√

2π

∫ x(t)

−∞
e
−(t−µ)2

2σ2 dt (1)

zi = R(cyi + 0.5) (2)

where σ and µ denote the standard deviation and mean of xi, R represents the round‑
ing function and c stands for class, respectively;

(2) Defining the vector Z based on embedding dimension m and time delay λ by
Equation (3).

Zm.λ.c
k = {zk, zk+λ, · · · , z(k+(m−1)λ) }(k = [1, 2, · · · , N − (m − 1)λ]) (3)

The new series Zm.λ.c
k =

{
zk,1, zk,2, · · · , zk,m−1

}
is gained on the basis of

Zm.λ.c
k = {zk, zk+λ, · · · , z(k+(m−1)λ) }, where zk,m−1 = zk+(m−1)λ − zk−1+(m−1)λ + c,

zk,1 = v0, zk,2 = v1, · · · , zk,m−1 = vm−2. Consequently, the number of possible fluctu‑
ation dispersion modes is equal to (2c − 1)m−1. The probability of each mode can be
calculated by:

p(πv0v1···vm−2) =
Number{j |j ≤ N − (m − 1)λ, Zm.λ.c

k has typeπv0v1···vm−2 }
N − (m − 1)λ

; (4)

(3) The FDE of series X can be computed as follows:

FED(X, m, c, λ) = −
(2c−1)m−1

∑
π=1

p
(
πv0v1···vm−2

)
ln p

(
πv0v1···vm−2

)
. (5)

2.2. Refined Composite Multiscale Fluctuation Dispersion Entropy (RCMFDE)
The traditional coarse‑graining multiscale method intercepts non‑overlapping frag‑

ments, and the relationship between adjacent elements of each fragment is not fully con‑
sidered. With the increase of the scale factor, the stability of the calculated results becomes
worse. Therefore, the refined composite multiscale method is introduced, which is sum‑
marized as follows:
(1) The original signal X = {x1, x2, · · · , xN} is continuously divided into a small se‑

quence of length τ by the initial point in order [1, τ] and then taking the average of
each small sequence. These means are arranged sequentially to obtain τ scale coarse‑
graining time series. The qth coarse‑graining time series xτ

q = {x(τ)q,1 , x(τ)q,2 , · · · } in the
τ scale is as follows:

x(τ)q,j =
1
τ

q+τ j−1

∑
b=q+τ(j−1)

xb, 1 ≤ j < ⌊N/τ ⌋ >, 1 ≤ q ≤ τ; (6)

(2) Then, for each scale factor, calculate the probability of each fluctuation dispersion
mode occurring in the qth coarse‑graining time series xτ

q . The average of the disper‑
sion pattern π of the coarse‑graining time series in the τ scale is as follows:

p
(
πv0v1···vm−2

)
=

1
τ ∑τ

1 p(τ)q ; (7)

(3) The RCMFDE of series X can be computed as follows:

RCMFED(X, m, c, λ, τ) = −
(2c−1)m−1

∑
π=1

p
(
πv0v1···vm−2

)
ln p

(
πv0v1···vm−2

)
. (8)
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2.3. Hierarchical Refined Composite Multiscale Fluctuation Dispersion Entropy (HRCMFDE)
RCMFDE ignores the feature information of different coarse‑graining sequences at

the same scale, which results in the loss of useful information and the increase of entropy
estimation deviation. Therefore, hierarchical refined composite multiscale fluctuation dis‑
persion entropy is proposed to extract the fault feature of vibration signals at different
hierarchical layers and scales. The detailed flow of the HRCMFDE is required below.

(1) For random series X = x1, x2, · · · , xN of length N, constructing the operators Q0(x)
and Q1(x) are as follows:Q0(x) = xi+xi+1

2

Q1(x) = xi−xi+1
2

i = 1, 2, · · · , N − 1 (9)

where Q0(x) and Q1(x) contain the low‑frequency information and high‑frequency
information of X = x1, x2, · · · , xN , respectively;

(2) Then, the matrix form of the operator Qk
t (t = 0 or 1) at the hierarchical layer k is

written as follows:

Qk
t =



1
2 0 · · · 0︸ ︷︷ ︸

2k−1−1

(−1)t

2 0 · · · 0 0 0

0 1
2 0 · · · 0︸ ︷︷ ︸

2k−1−1

(−1)t

2 · · · 0 0 0

...
...

...
... · · ·

...
...

...
0 0 0 0 · · · 1

2 0 · · · 0︸ ︷︷ ︸
2k−1−1

(−1)t

2


(N−2k+1)×(N−2k−1+1)

; (10)

(3) Moreover, for a given vector [v1, v2, · · · , vk] of length k, the variable e can be calculated
as follows:

e =
k

∑
m=1

2k−mvm (11)

where vm ∈ {0, 1}(m = 1, 2, · · · , k) is the operator Q0 or Q1 at the m‑th layer, ac‑
cording to Equation (10), a unique vector correspondence exists for any given non‑
negative integer e;

(4) The hierarchical components of the series X are represented as follows:

Xk,e = Qk
vk · Qk−1

vk−1 · · · · · Q1
v1 · X (12)

where Xk,e represents the hierarchical components at the node e of the k‑th layer of
series X. When k = 3, the hierarchical decomposition process is depicted in Figure 2,
where X3,1 represents the hierarchical component at node 1 of the 3‑rd layer, the cor‑
responding unique vector is [0, 0, 1]. X1,0 and X1,1 represent the high‑frequency and
low‑frequency components in the first layer, respectively;

(5) The RCMFDE value corresponding to the hierarchical node component Xk,e under
the scale factor τ is calculated as the HRCMFDE value under the scale factor, which
can be expressed as follows:

HRCMFED(X, k, m, c, λ, τ) = RCMFED(Xk,e, m, c, λ, τ) (13)

It can be seen from the above principle description that the HRCMFDE algorithm is
optimized based on FDE and RCMFDE successively. The concepts of refined multiscale
and hierarchical analysis are introduced, respectively, which can effectively extract infor‑
mation at different hierarchical layers and scales of the original signals. This method has
better stability and performance. The flow of the HRCHFDE method is shown in Figure 3.
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2.4. Parameters Selection
Six main parameters in HRCMFDE need to be set manually: the series length N, the

hierarchical layer k, the embedding dimensionm, the class c, the time delay λ and the scale
factor τ. Selecting proper parameters can process the original signals more effectively,
which extracts the fault information more accurately:
(1) In these parameters, if the scale factor τ is too large, redundant information will be

easily generated. However, if τ is too small, obtaining helpful fault feature informa‑
tion from the original signals is challenging. If the hierarchical layer k is too small, it
incompletely extracts high‑frequency and low‑frequency information of the signals.
Nevertheless, the computational efficiency will be affected if it is too large. To extract
valuable features, the literature results [34] set τ = 8, k = 3, which canmeet the require‑
ment of gearbox fault diagnosis. Hence, using the HRCMFDE method, 64 features
can be extracted from each group of signal samples, and the corresponding feature
vector under the sample is constructed;

(2) For the time delay λ and the series lengthN, the literature [35] indicates that the time
delay λ and the series length N have less impact on the feature extraction result;

(3) For the embedding dimension m and class c, the influence of different parameter val‑
ues is analyzed using the distance measure. Assuming that the gearbox parts have n
different health states, and each state hasM samples of sample lengthN, the distance
measure (average Euclidean distance) would be introduced as follows:

AED(x, y) =
1
n

M

∑
i=1

√√√√k·τmax

∑
j=1

(
HRCMFDEx,i(j)− HRCMFDEy,i(j)

)2 (14)
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ValueAED =
n

∑
x=1y=1

n

∑
x ̸=y

AED(x, y) (15)

where x and y denote the AED values of the x‑th and the y‑th states, ValueAED is the
AED value corresponding to the parameter (m, c), respectively.
Then, repeating the calculation for different parameter combinations,m is determined

according to the criterion N/τmax > (2c− 1)m−1 and, according to the literature results [36],
set c ∈ [4, 8]. The (m, c) combination corresponding to the maximum ValueAED value is
the best (m, c) combination.

3. The Proposed Gearbox Intelligent Fault Diagnosis Method
According to the proposed feature extraction method, there is still redundant infor‑

mation in the feature vectors, affecting the recognition accuracy and increasing the calcula‑
tion cost. Therefore, this section mainly introduces a feature dimension reduction method
which removes redundant high‑dimensional information and realizes the screening of sen‑
sitive features. At the same time, an improved classificationmethod is introduced to realize
the final fault diagnosis.

3.1. Grey Wolf Optimizer
Grey wolf optimizer (GWO) is one of the most popular metaheuristic algorithms in

the recent decade, which Australian scholar Mirjalili proposes. The introduction of this
algorithm is detailed in the literature and will not be described in this paper [37].

The algorithm program of GWO can be described in Algorithm 1.

Algorithm 1: GWO

(1) Initialize the grey wolf population Xi(i = 1, 2, . . . , n);
(2) Initialize α, A and C;
(3) Calculate the objective values for each search agent
 Xα = the best search agent
 Xβ = the second‑best search agent
 Xδ = the third‑best search agent;
(4) for t = 1: max number of iterations
   for each search agent
   Update the position of the current search agent by Equations (21)–(26)
   end for
   Update α, A and C
   Calculate the fitness of all search agents
   Update Xα, Xβ, and Xδ

 end for
(5) Return Xα.

The steps of the GWO are as follows:
During hunting, the encircling behavior of grey wolves can be defined as:

→
D = |

→
C ·

→
XP(t)−

→
XP(t) | (16)

→
X(t + 1) =

→
XP(t)−

→
A ·

→
D (17)

where t is the current iteration,
→
A and

→
C are coefficient vectors,

→
XP is the position vector

of the prey and
→
X indicates the position vector of a grey wolf. The vectors

→
A and

→
C are

calculated as follows: →
A = 2

→
a ·→r1 −

→
a (18)

→
a = 2 − 2

(
1

e − 1
×

(
e

t
m − 1

))
(19)
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→
C = 2 · →r2 (20)

where r1, r2 are random vectors in [0,1], t is the number of the current iteration and m is
the maximum number of iterations.

The mathematical model of individual grey wolf tracking prey is described in
Equations (21) and (22). 

→
Dα =

∣∣∣∣→C1 ·
→
Xα −

→
X
∣∣∣∣

→
Dβ =

∣∣∣∣→C2 ·
→
Xβ −

→
X
∣∣∣∣

→
Dδ =

∣∣∣∣→C3 ·
→
Xδ −

→
X
∣∣∣∣

(21)



→
X1 =

→
Xα − A1·

→
Dα

→
X2 =

→
Xβ − A2·

→
Dβ

→
X3 =

→
Xδ − A3·

→
Dδ

(22)

A proportional weight based on the modulus of the guide position vector is intro‑
duced. By adjusting the weights, the global and local search ability of the algorithm is
dynamically balanced, and the convergence of the algorithm is accelerated. The calcula‑
tion formulas are as follows:

ν1 =
|
→
X1 |

|
→
X1 |+ |

→
X2 |+ |

→
X3 |

(23)

ν2 =
|
→
X2 |

|
→
X1 |+ |

→
X2 |+ |

→
X3 |

(24)

ν3 =
|
→
X3 |

|
→
X1 |+ |

→
X2 |+ |

→
X3 |

(25)

→
X(t + 1) =

v1·
→
X1 + v2·

→
X2 + v3·

→
X3

3
(26)

Equation (21) defines the step length and direction of grey wolf individuals to α, β
and δ, Equations (21) and (22) define the final position of Xα.

3.2. Regularized Extreme Learning Machine
The regularized extreme learning machine is used as a classification algorithm, and

low dimensional feature vectors of test samples are inputted to realize the fault diagnosis
of the gearbox. RELM introduces the concept of regularization based on the extreme learn‑
ing machine (ELM), which is an improved method based on ELM. ELM is a fast‑training
algorithm for SLFN proposed by Huang [38]. SLFN has been widely used in many fields
with its better learning ability, and the structure is shown in Figure 4.

Assuming a training dataset {(xi, ti)}, where xi ∈ Rn, ti ∈ Rm and i = 1, 2, · · · , N.
The activation function is g(x) and the number of hidden nodes is k. The training steps of
the ELM algorithm are as follows:
(1) Randomly set input weights wj and hidden layer biases bj:(

wj, bj
)
, j = 1, 2, . . . k; (27)

(2) The output of SLFN can be formulated as follows:

Oj =
k

∑
j=1

β j · g(wj · xi + bj), j = 1, 2, . . . , N (28)
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where β j is the set of values of connection weights between the hidden layer and
the output layer. The output Equations for the input samples can be represented as
Hβ = T, where:

β = [βT
1 . . . βT

k ]k×m (29)

T = [yT
1 . . . yT

N ]N×m (30)

H(w1, w2, . . . , wk, b1, b2, . . . , bk, x1, x2, . . . , xN)

=

 g(w1 · x1 + b1) · · · g(wk · x1 + bk)
...

...
...

g(w1 · xN + b1) · · · g(wk · xN + bk)


N×k

;
(31)
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(3) Obtaining the output weights matrix β by solving the least multiplication solution of
the following Equation:

β̃ = min
β

∥Hβ − T∥ = H+T (32)

where HT is Moore‑Penrose generalized inverse matrix;
(4) Building the model of regularized extreme learning machine by the

following Equation:
β̃ = (θ I + HT H )−1HTT (33)

where HT is the Transposed matrix, θ is the regularization factor and I is the identity
matrix, using the non‑singular matrix

(
HT H

)−1HT to replace the matrix HT . RELM
can avoid overfitting and enhance the generalization ability of the model, improving
the accuracy of the actual prediction. All in all, RELM has a more stable performance
than ELM.
The algorithm program of RELM can be described in Algorithm 2.

3.3. Hybrid GWO‑RELM
The training of RELM requires randomly setting the number of hidden neurons and

constantly adjusting the number n of hidden neurons to search for a better value. If the
value of n is too large it will increase the possibility of overfitting and take too much
time. On the contrary, achieving the best accuracy and stability is difficult. Moreover,
the value of θ depends on the input sample and needs to be set according to the results of
many experiments.

To overcome the problems mentioned above and improve the efficiency of RELM, a
hybridmeans that combinesGWOwith RELM is required. The goal of theGWOalgorithm
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is to optimize the parameters to find the best set of n and θ by avoiding over‑fitting and
improving generalization ability.

Algorithm 2: RELM

Input: a training set {(xi, ti)|xi ∈ Rn, ti ∈ Rm, i = 1, 2, . . . , N}
the hidden node output function: g(x) // Sigmoidal Function; Radial Basis Function;
Triangular Basis Function et al.
number of hidden node numbers: k
label vector: Sk ∈ RC, C is the number of classes
Output: β̃

(1) Randomly assign the weights wj and biases bj,
(

wj ∈ [−1, 1], bj ∈ [−1, 1]
)
;

(2) Calculate the hidden layer output matrix H;
(3) Calculate the output weight β̃;
(4) Return β̃.

The fitness function is the essential design problem to be solved in the GWO‑RELM
application. In the research of this paper, the selection of the commonly used fitness func‑
tions is the minimization of the root mean squared error (RMSE) given in Equation (34).

F(n, θ)min =

√√√√ N

∑
i=1

(Ti − Pi)
2
/

N (34)

where N is the number of training samples, Ti is the actual value and Pi is the predicted
value. The steps of the GWO‑RELM are shown as follows:
(1) Building fitness function for optimization parameters n and θ;
(2) Setting the initial parameters and taking [n,θ ] as the grey wolf position to generate

the initial population;
(3) Calculating the fitness of individual grey wolves in the population;
(4) Repeating several iterations and constantly updating the optimal fitness value;
(5) Outputting the best parameters and the corresponding accuracy.

The flow charts of GWO‑RELM are shown in Figure 5.

3.4. ReliefF
The high‑dimensional feature vectors extracted by the HRCMFDEmethod are rich in

fault feature information and redundant information. If all the feature information is used
for fault diagnosis, the accuracy and efficiency of the diagnosis will be affected. Therefore,
according to the importance and sensitivity of each feature, it is essential to reduce the di‑
mension of high‑dimensional feature vectors and obtain sensitive low‑dimensional feature
vectors. This paper uses the ReliefF method for feature dimension reduction; the detailed
description of ReliefF is in reference [39].

A sample Ri is randomly selected from the training set for the high‑dimensional fea‑
ture. Then, k nearest neighbour samples are chosen from the samples with the same label,
and select k nearest neighbour samples from the different labels. Finally, using
Equation (35), update the corresponding weight of the feature constantly, and the calcu‑
lation is carried out m times until all the samples are successively calculated. The final
weight of a single feature is obtained.

Wi+1( fl) = Wi( fl)−
k
∑

j=1

di f f ( fl ,Ri ,Hj)
mk

+∑C ̸=label(Ri)

[
P(C)

1−P(label(Ri))

] k
∑

j=1

di f f ( fl ,Ri ,Mj(C))
mk

(35)

where Wi( fl) is the weight of the l‑th feature f in the i‑th sample; Hj(j = 1, 2, · · · , k) is
the j‑th sample among k nearest neighbour samples of the same kind as Ri; P(C) is the
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probability of label C; P(label(Ri)) is the probability of samples of the same kind as Ri to
the total samples; and Mj(C) represents k nearest neighbour samples different from R. The
calculation method of function di f f ( f , R1, R2) is shown in Equation (36).

di f f ( f , R1, R2) = |R1 f − R2 f |/(max( f )−min( f )) (36)

where di f f ( f , R1, R2) is the normalized distance between sample R1 and sample R2 on the
f ‑th feature. R1 f and R2 f are the f ‑th feature of samples R1 and sample R2.
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3.5. The Proposed Fault Diagnosis Method
To ensure high fault classification accuracy for the gearbox. Based on HRCMFDE,

ReliefF andGWO‑RELM, a novel gearbox fault diagnosismethod is presented in this paper,
and the detailed process is shown in Figure 6.
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(1) Collecting the vibration signals. The various fault states of gears and rolling bearings
in the gearbox are collected by accelerometers;

(2) Determining the optimal parameters of HRCMFDE. The features under different
(m, c) combinations are extracted, respectively, and the (m, c) combination correspond‑
ing to the maximum ValueAED value is taken as the optimal parameter;

(3) Extracting fault features. To extract the fault feature information of the gearbox com‑
pletely, the HRCMFDE method is employed to calculate the entropy value, and the
feature set with a length of 64 is obtained;

(4) Feature dimension reduction. ReliefF is utilized to extract sensitive feature informa‑
tion and remove redundant features;

(5) Fault classification. The obtained low‑dimensional sensitive feature information is
inputted into GWO‑RELM to identify the health conditions of the gearbox.

4. Experimental Verification
In this section, to verify the diagnostic effectiveness and generalization of the above

methods, the gearboxes of three structural types as shown in Figure 1b–d, are selected to
carry out experimental testing.

4.1. Experiment 1: Fault Diagnosis of Reverted Gear Train Gearbox
The experiment data comes from the 2009 PHM Challenge gearbox composite fault

data set [40]. The experimental platform and its structure principle used in the experiment
are shown in Figure 7, which mainly consists of the shaft, bearing, gear and
other components.

Mathematics 2022, 10, x FOR PEER REVIEW 14 of 30 
 

 

(1) Collecting the vibration signals. The various fault states of gears and rolling bearings 
in the gearbox are collected by accelerometers; 

(2) Determining the optimal parameters of HRCMFDE. The features under different (m, 
c) combinations are extracted, respectively, and the (m, c) combination corresponding 
to the maximum  value is taken as the optimal parameter; 

(3) Extracting fault features. To extract the fault feature information of the gearbox 
completely, the HRCMFDE method is employed to calculate the entropy value, and 
the feature set with a length of 64 is obtained; 

(4) Feature dimension reduction. ReliefF is utilized to extract sensitive feature 
information and remove redundant features; 

(5) Fault classification. The obtained low-dimensional sensitive feature information is 
inputted into GWO-RELM to identify the health conditions of the gearbox. 

4. Experimental Verification 
In this section, to verify the diagnostic effectiveness and generalization of the above 

methods, the gearboxes of three structural types as shown in Figure 1b–d, are selected to 
carry out experimental testing. 

4.1. Experiment 1: Fault Diagnosis of Reverted Gear Train Gearbox 
The experiment data comes from the 2009 PHM Challenge gearbox composite fault 

data set [40]. The experimental platform and its structure principle used in the experiment 
are shown in Figure 7, which mainly consists of the shaft, bearing, gear and other 
components. 

  
(a) The experiment platform. (b) The structure of the gearbox. 

Figure 7. The experimental platform and gearbox structure. 

In the study, using the data set of the spur gear for analysis, which includes a normal 
operation state, single fault state and compound fault, fully reflects the fault state in the 
actual operation process of the gearbox. The detailed and time domain waveforms are 
depicted in Table 1 and Figure 8. 

The experiment is performed in the input shaft speed is 2400 r/min and the low load, 
the corresponding number of teeth of the spur gear 1, 2, 3, 4 are 16, 48, 24, 40, respectively. 
Vibration signals are collected by two accelerometers, and the installation mode as shown 
in Figure 9, which the paper uses the vibration data obtained by 1 channel, with sample 
frequency of 66.7 kHz and sampling time is 4 s. For each working status, 60 samples with 
the length of 2048 are taken, where 40 samples as the training samples and 20 samples as 
the testing samples. 

  

Figure 7. The experimental platform and gearbox structure.

In the study, using the data set of the spur gear for analysis, which includes a normal
operation state, single fault state and compound fault, fully reflects the fault state in the
actual operation process of the gearbox. The detailed and time domain waveforms are
depicted in Table 1 and Figure 8.

The experiment is performed in the input shaft speed is 2400 r/min and the low load,
the corresponding number of teeth of the spur gear 1, 2, 3, 4 are 16, 48, 24, 40, respectively.
Vibration signals are collected by two accelerometers, and the installation mode as shown
in Figure 9, which the paper uses the vibration data obtained by 1 channel, with sample
frequency of 66.7 kHz and sampling time is 4 s. For each working status, 60 samples with
the length of 2048 are taken, where 40 samples as the training samples and 20 samples as
the testing samples.
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Table 1. Detailed information on different working statuses.

Labels Gearbox
Status

Gear Bearing Shaft

1 2 3 4 1 2 3 Others Input Output

1 Status 1 Nor Nor Nor Nor Nor Nor Nor Nor Nor Nor
2 Status 2 Chi Nor Ecc Nor Nor Nor Nor Nor Nor Nor
3 Status 3 Nor Nor Ecc Nor Nor Nor Nor Nor Nor Nor
4 Status 4 Nor Nor Ecc Bro Ball Nor Nor Nor Nor Nor
5 Status 5 Chi Nor Ecc Bro Inner Ball Outer Nor Nor Nor
6 Status 6 Nor Nor Nor Bro Inner Ball Outer Nor Imb Nor
7 Status 7 Nor Nor Nor Nor Inner Nor Nor Nor Nor Key
8 Status 8 Nor Nor Nor Nor Nor Ball Outer Nor Imb Nor

Nor = Normal; Chi = Chipped; Ecc = Eccentric; Bro = Broken; Imb = Imblance; Key = Keyway Sheared.
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The performance of the proposed method is verified by experimental data. Firstly,

selecting the best (m, c) combination according to the AEDmethod proposed in Section 2.4
is required, and 50 samples are randomly selected for each working state of the gearbox.
The results ofValueAED under different (m, c) combinations are illustrated in Table 2. It can
be found that, with the increase of (m, c), the ValueAED also increases, the Euclidean dis‑
tance between samples of different states becomes larger and the separability is constantly
enhanced. Hence, selecting m = 3 and c = 8. Comprehensively, the final parameters are set
to k = 3, τ = 8, λ = 1, N = 2048, m = 3 and c = 8.

Table 2. The ValueAED under different (m, c) combinations.

(m, c) ValueAED (m, c) ValueAED
(2,4) 40.72 (3,4) 76.15
(2,5) 44.18 (3,5) 82.94
(2,6) 44.93 (3,6) 85.07.
(2,7) 46.37 (3,7) 88.08
(2,8) 46.73 (3,8) 88.60
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The results of the feature extraction of the training samples are shown in Figure 10,
and the low‑dimensional features after feature reduction are displayed in Figure 11, re‑
spectively. It can be seen that there are differences in features of different states, but it is
difficult to distinguish them directly. Therefore, it is necessary to rely on a classification al‑
gorithm to identify the states. The sensitive feature vectors are inputted into GWO‑RELM,
and the final setting optimization parameters are set to n = 113, θ =0.509.
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To further verify the performance of the method, the samples of the training and test‑
ing are inputted into the optimized RELM model for state recognition. The results are
shown in Figure 12. Among all test samples, 159 samples are identified successfully, and
only one sample is incorrectly identified (“Status 3” is identified as “Status 1”). In the exper‑
iment, the recognition accuracy of all samples in different operating states of the gearbox is
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99.38%. It is indicated that the proposed method can effectively realize the fault diagnosis
of the gearbox under various working conditions, such as single fault and compound fault.
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Then, HRCMFDE is comparedwith the existing RCMFDE,MFDE, RCMDE andMDE.
The parameters are also set to k = 3, τ = 8, λ = 1, N = 2048, m = 3 and c = 8. For each model,
the experiment is repeated 50 times, and the results are shown in Table 3 and Figure 13,
where ‘Time’ in Table 3 refers to the time consumed by a single sample to extract the high‑
dimensional features. The following conclusions can be found:
(1) The correlations can be foundby SDvalues as follows: The SDofMFDEandRCMFDE

is smaller than MDE and RCMDE, respectively. It can be seen that FDE has better
feature evaluation performance than DE, considering the fluctuation characteristics
of the vibration signals. The SD of RCMFDE and RCMDE is smaller than MFDE and
MDE, respectively, which means that the refined composite entropy‑based method
has better stability. The SD of HRCMFDE is small than RCMFDE, indicating that
the hierarchical entropy‑based method further improves the stability. Among these
methods, HRCMFDE has the best stability and apparent advantages. The reason is
that the refined composite multiscale entropy only analyzes the low‑frequency sig‑
nals and often ignores the high‑frequency signals, resulting in a relatively large limi‑
tation of feature extraction performance;

(2) The MFDE model has the fastest calculation speed, but the diagnostic accuracy is
insufficient, and the significant variance indicates a lack of stability. Although the
HRCMFDE model has the lowest computational efficiency, it is still acceptable in
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practical applications. Ultimately, HRCMFDE has the highest accuracy. The reason
is that the information extracted from low‑frequency to high‑frequency is the most
extensive, and the feature information contained is the richest. Hence, it has the best
stability, the highest diagnostic accuracy and a longer calculation time. The above
analysis shows that the HRCMFDE model proposed in this paper has apparent ad‑
vantages in the separability and stability of features. The HRCMFDE model can be
effectively applied in gearbox fault diagnosis.

Table 3. The performance comparison between different feature extraction models.

Feature Extraction Method Time (s)
Recognition Accuracy (%)

Max Min Mean SD

HRCMFDE 1.623 100.00 97.50 98.64 0.46
RCMFDE 0.961 98.13 91.25 94.53 2.69
MFDE 0.017 81.25 71.88 76.48 5.16
RCMDE 1.021 95.63 87.50 91.99 2.96
MDE 0.125 78.13 67.50 72.66 5.51
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Then, the effectiveness of the dimension reduction method in the proposed approach
is studied. The high‑dimensional feature vectors are directly inputted into GWO‑RELM to
identify the health conditions of the gearbox. The results shown in Figure 14 are obtained
according to Tables 3 and 4.

Table 4. The performance comparison between different methods without ReliefF.

Method
Recognition Accuracy (%)

Max Min Mean SD

HRCMFDE + ReliefF + GWO − RELM 95.63 90.63 93.44 1.06
RCMFDE + ReliefF + GWO − RELM 91.25 83.13 87.78 3.29
MFDE + ReliefF + GWO − RELM 63.13 43.75 56.77 6.06
RCMDE +ReliefF + GWO − RELM 91.25 81.88 85.15 4.17
MDE + ReliefF + GWO − RELM 51.25 35.00 42.23 5.81
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Obviously, after ReliefF, the SD of different methods is significantly reduced, and the
average recognition accuracy is significantly improved. It indicates that the low‑dimensional
feature vectors obtained by ReliefF strengthen the stability and accuracy of the recognition
and are more suitable for the recognition of the operating state of the gearbox. All in all,
ReliefF is an essential process for gearbox fault diagnosis.

After that, several classification approaches widely studied in current fault diagnosis
algorithms are selected and comparedwith themethod proposed in this paper. The results
of the feature extraction model under different classification approaches are shown in Ta‑
ble 5. Therefore, the proposed classification method has better classification performance.

Table 5. Comparison of models under different classification methods.

Different ClassificationMethods HRCMFDE RCMFDE MFDE RCMDE MDE

mRMR (%) 98.32 91.76 78.58 92.25 67.74
SVM (%) 97.99 93.74 78.07 91.89 66.62
PNN (%) 94.01 89.14 75.41 89.80 64.20
ELM (%) 96.89 93.47 77.71 92.14 65.35

GWO‑RELM (%) 99.87 94.86 80.71 93.13 70.06

Finally, the HRCMFDE, RCMFDE and RCMDEmodels with better feature extraction
performance are further evaluated. Commonly used indicators used in fault diagnosis
methods to evaluate the superiority of model performance include Precision (P), Recall (R),
Accuracy (Acc) and F1 score (F1) [41]. Precision is the ratio of the actual positive samples
predicted in the test model to the predicted positive samples, which indicates the propor‑
tion of the real positive samples in the prediction results of the model. The Recall is the
ratio of the number of true positive samples predicted by the model and the number of
true positive samples in the samples. The Accuracy and F1 score are used to measure the
overall performance of the model. The higher the index, the stronger the fault diagnosis
capability of the model and the better the overall performance.

Each state is taken as a positive class, and the corresponding four indicators under this
state are calculated successively. Each group of experiments is carried out 50 times. The
average values are recorded in Table 6, where the status corresponds to various fault states
in Table 1 and OM is the overall means. Compared with the RCMDEmodel, the RCMFDE
model has better feature extraction performance and higher comprehensive scoring. Com‑
pared with the RCMFDE model, the P‑means, R‑means, Acc‑means and F‑means of the
HRCMFDE model are increased by 3.89%, 4.16%, 1.04% and 4.17%, respectively. It shows
that the HRCMFDE model has superior performance, higher accuracy and stability.
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4.2. Experiment 2: Fault Diagnosis of Compound Gear Train Gearbox
In Section 4.1, the validity of the proposed method is verified by the typical vibration

signals in the reverted gear train gearbox. Then, this method is used in another experiment
to verify the effectiveness further and provide an effective state diagnosis method for the
compound gear train gearbox, which offers the basis for other studies on the experimental
platform. The structure of the experimental platform and gearbox is shown in Figure 15,
which adopts a dual‑input single‑output fault diagnosis platform to collect the vibration
signals of the gearbox in different working conditions. The platform mainly consists of
driving motors, gears, bearings, transmission shafts and other components.

Table 6. Comparison of different models.

Status
HRCMFDE RCMFDE RCMDE

P (%) R (%) Acc (%) F1 (%) P (%) R (%) Acc (%) F1 (%) P (%) R (%) Acc (%) F1 (%)

G1 97.79 99.00 99.44 97.79 98.54 97.25 99.47 97.84 94.53 85.50 97.56 89.68
G2 100.00 100.00 100.00 100.00 99.75 97.75 99.69 98.72 94.15 92.25 98.31 93.15
G3 97.84 97.00 99.47 97.84 86.02 96.50 97.56 90.87 84.56 83.75 96.00 83.98
G4 98.70 97.50 99.69 98.70 98.72 93.25 99.00 95.87 93.35 94.50 98.47 93.89
G5 98.63 98.75 99.66 98.63 88.17 80.50 96.19 84.08 83.13 83.50 95.78 83.24
G6 99.51 99.75 99.88 99.51 97.65 99.25 99.59 98.41 96.45 100.00 99.53 98.18
G7 99.22 98.50 99.81 99.22 99.25 94.25 99.19 96.66 99.26 98.75 99.75 98.99
G8 98.06 99.25 99.50 98.06 90.53 97.75 98.44 93.98 90.52 96.50 98.28 93.38
OM 98.72 98.72 99.68 98.72 94.83 94.56 98.64 94.55 91.99 91.84 97.96 91.81
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Figure 15. The experimental platform and gearbox structure.

In the experiment, the driving motor provides power, and the two driving wheels
transmit the power to the driven gear to achieve power transmission. The internal structure
of the gearbox and the layout of the accelerometer are displayed in Figure 16. In this paper,
sensor data of channel 1 are employed for analysis, and ten different working states are
simulated by replacing different fault components.

In the experiment, the sampling frequency is 2048 Hz, the sampling time is the 90 s
and the drivingwheel speed is 1200 r/min. 60 sampleswith a length of 2048 are taken under
each working state, with 40 samples as the training samples and 20 samples as the testing
samples. The detailed fault information of the gearbox components is shown in Table 7.
The components with various faults of gears and bearings are shown in Figure 17, which
includes single and compound faults of gears and gearings. The time‑domain waveforms
of different states are shown in Figure 18, and the difference between signals of each state
can be found.
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Firstly, selecting the best (m, c) of HRCMFDE is required. It is observed that m = 3
and c = 8, based on the result in Table 8, are selected, and the other parameter selection is
the same as experiment 1, and the final parameters are set to k = 3, τ = 8, λ = 1, N = 2048,
m = 3 and c = 8. The high‑dimensional fault features corresponding to the different states
extracted by HRCMFDE are shown in Figure 19, and the low‑dimensional features after
feature reduction are displayed in Figure 20.
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Table 7. The detailed fault information of gearbox components.

Labels Gearbox States Abbreviation Fault Type Size of Training Samples Size of Testing Samples

1 Normal Nor – 40 20
2 Gearwheel pitting GP Single 40 20
3 Gearwheel crack GC Single 40 20
4 Gearwheel wear GW Single 40 20
5 Gearwheel tooth breaking GTB Single 40 20
6 Bearing ball pitting BA Single 40 20
7 Bearing inner pitting BI Single 40 20
8 Bearing outer pitting BO Single 40 20

9 Gearwheel pitting + Bearing
outer pitting GP + BO Compound 40 20

10 Bearing inner and
outer pitting IP Single 40 20

Table 8. The ValueAED under different (m, c) combinations.

(m, c) ValueAED (m, c) ValueAED
(2,4) 80.99 (3,4) 175.04
(2,5) 162.18 (3,5) 226.21
(2,6) 106.38 (3,6) 220.90
(2,7) 164.04 (3,7) 247.56
(2,8) 121.94 (3,8) 286.67

Secondly, the sensitive feature vectors of training samples are inputted into GWO‑
RELM, and the final setting optimization parameters are set to n = 121, θ = 0.91.

Then, the low‑dimensional sensitive feature vectors obtained from the gearbox in ten
different states are inputted into the optimized RELMmodel for training and testing. The
final identification result is shown in Figure 21. It can be seen that, among 160 testing
samples, only one sample is misidentified (“GTB” is identified as “GW”), and the overall
recognition accuracy reaches 99.38%. The comparison results of different feature extraction
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models and classification methods are shown in Tables 9 and 10 and Figure 22, and the
conclusions obtained are similar to that of experiment 1.
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Table 9. The performance comparison between different feature extraction models.

Method Time (s)
Recognition Accuracy (%)

Max Min Mean SD

HRCMFDE 1.574 100.00 97.50 98.85 0.60
RCMFDE 0.879 96.88 91.25 93.47 1.79
MFDE 0.018 82.50 71.25 76.65 5.90
RCMDE 1.224 94.34 88.75 91.28 1.51
MDE 0.131 78.13 65.63 72.15 6.25
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Table 10. Comparison of models under different classification methods.

Different Classification Methods HRCMFDE RCMFDE MFDE RCMDE MDE

mRMR (%) 96.43 92.11 73.24 90.01 71.14
SVM (%) 97.01 92.01 71.99 90.13 70.79
PNN (%) 94.32 86.14 70.41 87.71 67.28
ELM (%) 96.69 91.12 74.11 89.84 69.11

GWO‑RELM (%) 98.85 93.47 76.65 91.28 72.15

Mathematics 2022, 10, x FOR PEER REVIEW 24 of 30 
 

 

Secondly, the sensitive feature vectors of training samples are inputted into GWO-
RELM, and the final setting optimization parameters are set to n = 121, θ = 0.91. 

Then, the low-dimensional sensitive feature vectors obtained from the gearbox in ten 
different states are inputted into the optimized RELM model for training and testing. The 
final identification result is shown in Figure 21. It can be seen that, among 160 testing 
samples, only one sample is misidentified (“GTB” is identified as “GW”), and the overall 
recognition accuracy reaches 99.38%. The comparison results of different feature 
extraction models and classification methods are shown in Tables 9 and 10 and Figure 22, 
and the conclusions obtained are similar to that of experiment 1. 

  
(a) GWO-RELM output. (b) Confusion matrix (%). 

Figure 21. Identification results of the proposed method. 

Table 9. The performance comparison between different feature extraction models. 

Method Time(s) 
Recognition Accuracy (%) 

Max Min Mean SD 
HRCMFDE 1.574 100.00 97.50 98.85 0.60 
RCMFDE 0.879 96.88 91.25 93.47 1.79 

MFDE 0.018 82.50 71.25 76.65 5.90 
RCMDE 1.224 94.34 88.75 91.28 1.51 

MDE 0.131 78.13 65.63 72.15 6.25 

Table 10. Comparison of models under different classification methods. 

Different Classification Methods HRCMFDE RCMFDE MFDE RCMDE MDE 
mRMR (%) 96.43 92.11 73.24 90.01 71.14 
SVM (%) 97.01 92.01 71.99 90.13 70.79 
PNN (%) 94.32 86.14 70.41 87.71 67.28 
ELM (%) 96.69 91.12 74.11 89.84 69.11 

GWO-RELM (%) 98.85 93.47 76.65 91.28 72.15 

Figure 21. Identification results of the proposed method.

Mathematics 2022, 10, x FOR PEER REVIEW 25 of 30 
 

 

 
Figure 22. The accuracy of different feature extraction approaches. 

Similar to experiment 1, the feature extraction capability of those models is further 
evaluated, and the results are shown in Table 11. It can be found that the four indexes in 
the HRCMFDE model have improved and still have better comprehensive performance 
and stability. In addition, the HRCMFDE model performs better in the feature extraction 
of bearing faults than gear faults. 

Table 11. Comparison of different models. 

Status 
HRCMFDE RCMFDE RCMDE 

P (%) R (%) Acc (%) F1 (%) P (%) R (%) Acc (%) F1 (%) P (%) R (%) Acc (%) F1 (%) 
G1 99.76  100.00  99.98  99.88  100.00  100.00  100.00  100.00  100.00  99.50  99.95  99.74  
G2 96.46  98.25  99.45  97.30  91.80  75.50  96.85  82.75  83.16  70.25  95.55  75.94  
G3 100.00  99.75  99.98  99.87  87.97  91.50  97.88  89.63  85.54  90.25  97.48  87.77  
G4 99.02  95.25  99.43  97.02  100.00  90.50  99.05  94.87  87.78  83.50  97.18  85.46  
G5 97.85  97.25  99.50  97.49  82.87  75.50  95.98  78.94  77.95  69.25  94.95  73.24  
G6 100.00  99.25  99.93  99.62  100.00  100.00  100.00  100.00  99.52  100.00  99.95  99.76  
G7 100.00  100.00  100.00  100.00  76.29  100.00  96.88  86.52  84.71  100.00  98.18  91.68  
G8 97.49  100.00  99.73  98.69  100.00  100.00  100.00  100.00  93.79  100.00  99.33  96.76  
G9 99.76  99.25  99.90  99.49  99.76  100.00  99.98  99.88  100.00  100.00  100.00  100.00  

G10 99.31  100.00  99.93  99.64  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  
OM 98.97  98.90  99.78  98.90  93.87  93.30  98.66  93.26  91.24  91.28  98.26  91.04  

Aiming at the compound gear train experimental platform, it is shown that this 
method can effectively identify the running state of the fault and provide a diagnosis 
method for the state monitoring of the experimental platform, which offers a basis for 
other studies on the experimental platform. 

4.3. Experiment 3: Fault Diagnosis of Planetary Gear Train Gearboxes 
In experiment 1 and experiment 2, the proposed method is used to realize the state 

identification of two different types of gearboxes, respectively. The results are satisfactory, 
which proves the application potential of the presented approach in the field of gearbox 
fault diagnosis. 

In this experiment, the planetary gearbox data from Southeast University is taken as 
an example to verify further the effectiveness of the proposed method [42]. These data are 
collected from the Drivetrain Dynamic Simulator (DDS). There is a classic planetary 
gearbox fault diagnosis state simulation experimental platform employed by many 
scholars to research the fault diagnosis method. A detailed description of this experiment 

Figure 22. The accuracy of different feature extraction approaches.

Similar to experiment 1, the feature extraction capability of those models is further
evaluated, and the results are shown in Table 11. It can be found that the four indexes in
the HRCMFDE model have improved and still have better comprehensive performance
and stability. In addition, the HRCMFDE model performs better in the feature extraction
of bearing faults than gear faults.

Aiming at the compoundgear train experimental platform, it is shown that thismethod
can effectively identify the running state of the fault and provide a diagnosis method for
the state monitoring of the experimental platform, which offers a basis for other studies on
the experimental platform.

4.3. Experiment 3: Fault Diagnosis of Planetary Gear Train Gearboxes
In experiment 1 and experiment 2, the proposed method is used to realize the state

identification of two different types of gearboxes, respectively. The results are satisfactory,
which proves the application potential of the presented approach in the field of gearbox
fault diagnosis.
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Table 11. Comparison of different models.

Status
HRCMFDE RCMFDE RCMDE

P (%) R (%) Acc (%) F1 (%) P (%) R (%) Acc (%) F1 (%) P (%) R (%) Acc (%) F1 (%)

G1 99.76 100.00 99.98 99.88 100.00 100.00 100.00 100.00 100.00 99.50 99.95 99.74
G2 96.46 98.25 99.45 97.30 91.80 75.50 96.85 82.75 83.16 70.25 95.55 75.94
G3 100.00 99.75 99.98 99.87 87.97 91.50 97.88 89.63 85.54 90.25 97.48 87.77
G4 99.02 95.25 99.43 97.02 100.00 90.50 99.05 94.87 87.78 83.50 97.18 85.46
G5 97.85 97.25 99.50 97.49 82.87 75.50 95.98 78.94 77.95 69.25 94.95 73.24
G6 100.00 99.25 99.93 99.62 100.00 100.00 100.00 100.00 99.52 100.00 99.95 99.76
G7 100.00 100.00 100.00 100.00 76.29 100.00 96.88 86.52 84.71 100.00 98.18 91.68
G8 97.49 100.00 99.73 98.69 100.00 100.00 100.00 100.00 93.79 100.00 99.33 96.76
G9 99.76 99.25 99.90 99.49 99.76 100.00 99.98 99.88 100.00 100.00 100.00 100.00
G10 99.31 100.00 99.93 99.64 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
OM 98.97 98.90 99.78 98.90 93.87 93.30 98.66 93.26 91.24 91.28 98.26 91.04

In this experiment, the planetary gearbox data from Southeast University is taken as
an example to verify further the effectiveness of the proposed method [42]. These data are
collected from the Drivetrain Dynamic Simulator (DDS). There is a classic planetary gear‑
box fault diagnosis state simulation experimental platform employed by many scholars to
research the fault diagnosis method. A detailed description of this experiment is shown
in [42]. This paper uses the data of channel 2, and the working condition is 20 HZ‑0 V. The
different fault types of gears and bears in the gearbox are shown in Table 12.

Table 12. The detailed fault information of gearbox components.

Labels Status Abbreviation Description

1 Normal Nor Healthy status
2 Bearing Ball BB Crack occurs in the ball

3 Bearing
Combination BC Crack occurs in both the inner and

outer ring
4 Bearing Inner BI Crack occurs in the inner ring
5 Bearing Outer BO Crack occurs in the outer ring

6 Gearwheel
Chipped GC Crack occurs in the gear feet

7 Gearwheel Miss GM Missing one foot in the gear
8 Gearwheel Root GR Crack occurs in the root of gear feet

9 Gearwheel
Surface GS Wear occurs in the surface of gear

In the experiment, 60 samples are selected for each group, with 40 samples as the train‑
ing samples and 20 samples as the testing samples. The parameter determination process
in the proposedmethod is consistent with that in experiment 1 and experiment 2. The final
parameters are set to k = 3, τ = 8, λ = 1, N = 2048, m = 3, c = 8, n = 113, θ = 0.72. Using the
fault diagnosis method proposed in Section 3.5, the final identification result is shown in
Figure 23. It can be seen that, among 180 testing samples, only one sample is misidentified
(“GS” is identified as “GR”), and the overall accuracy reaches 99.44%. The comparison
results of different methods are shown in Table 13 and Figure 24. In addition, the com‑
parison of recognition results of the feature extraction model under different classification
methods is shown in Table 14. It can be seen that the proposed method still has a more
precise diagnosis accuracy and a more stable performance.
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Table 13. The performance comparison between different methods.

Method Time (s)
Recognition Accuracy (%)

Max Min Mean SD

HRCMFDE 1.391 100.00 98.89 99.89 0.08
RCMFDE 0.803 96.89 92.22 94.86 1.79
MFDE 0.018 85.00 76.11 80.71 4.22
RCMDE 1.129 95.56 89.67 93.13 2.03
MDE 0.124 79.44 63.33 70.06 9.49
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Table 14. Comparison of models under different classification methods.

Different ClassificationMethods HRCMFDE RCMFDE MFDE RCMDE MDE

mRMR (%) 98.32 91.76 78.58 92.25 67.74
SVM (%) 97.99 93.74 78.07 91.89 66.62
PNN (%) 94.01 89.14 75.41 89.80 64.20
ELM (%) 96.89 93.47 77.71 92.14 65.35

GWO‑RELM (%) 99.89 94.86 80.71 93.13 70.06

The HRCMFDE, RCMFDE and RCMDE models with better feature extraction perfor‑
mance are compared, and the results are shown in Table 15. The method proposed can
fully identify testing samples of six different states. Meanwhile, the remaining methods
have no way of completely identifying testing samples of any states. Compared with the
RCMFDE model, the P‑means, R‑means, Acc‑means and F‑means are increased by 4.70%,
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4.89%, 1.09% and 4.89%, respectively. Once again, the superior feature extraction ability
of the HRCMFDE model is highlighted.

This section uses gearbox signals from three different types to discuss the performance
and generalization of the presented method in the field of the gearbox. In experiment 1,
the effectiveness and stability of the proposed method in feature extraction and sensitive
information screening for single and compound faults are verified by the reverted gear
train gearbox vibration signals. In experiment 2, the proposed method is applied to the
constructed fault simulation platform, which proves that it still has excellent stability and
diagnostic accuracy. In experiment 3, the proposed method is successfully used for plane‑
tary gearbox fault diagnosis. Analyzing the results of the three experiments shows that this
method has excellent practicability and superior performance and can effectively identify
single or compound faults in the gearbox. Meanwhile, the method possesses good gener‑
alization performance and is suitable for various structural types of gearboxes.

Table 15. Comparison of different models.

Status
HRCMFDE RCMFDE RCMDE

P (%) R (%) Acc (%) F1 (%) P (%) R (%) Acc (%) F1 (%) P (%) R (%) Acc (%) F1 (%)

G1 100.00 100.00 100.00 100.00 100.00 93.25 99.25 96.48 100.00 92.00 99.11 95.81
G2 100.00 100.00 100.00 100.00 89.92 95.00 98.25 92.37 98.59 100.00 99.83 99.27
G3 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.52 99.75 99.92 99.63
G4 100.00 100.00 100.00 100.00 93.65 95.25 98.75 94.43 95.28 92.75 98.67 93.95
G5 100.00 100.00 100.00 100.00 95.00 95.00 98.89 94.99 99.51 96.75 99.58 98.09
G6 100.00 100.00 100.00 100.00 94.93 88.25 98.17 91.42 91.16 99.75 98.89 95.24
G7 100.00 100.00 100.00 100.00 87.78 95.50 98.00 91.43 83.55 69.25 95.06 75.57
G8 99.76 99.25 99.89 99.49 100.00 99.75 99.97 99.87 90.74 98.00 98.67 94.22
G9 99.29 99.75 99.89 99.51 95.40 93.00 98.72 94.15 81.79 90.50 96.67 85.82
OM 99.89 99.89 99.98 99.89 95.19 95.00 98.89 95.02 93.35 93.19 98.49 93.07

5. Conclusions
In this research, a novel fault diagnosis approach based on HRCMFDE, ReliefF and

GWO‑RELM is developed and applied to gearbox fault diagnosis. The effectiveness and
superiority of the proposed method compared with existing methods are verified, and
the generalization of the method is discussed on various gearbox structures. The main
conclusions of this paper can be summarized as follows:
(1) In view of the problem of poor stability and insufficient feature information extrac‑

tion, a feature extraction method of HRCMFDE is proposed based on the existing
techniques, which can effectively extract fault features of gearbox vibration signals at
different hierarchical layers and scales;

(2) ReliefF is utilized to screen sensitive information of high‑dimensional information
and remove redundant features. GWO‑RELM is used to identify the health condi‑
tions of the gearbox. Combined with HRCMFDE, ReliefF and GWO‑RELM, a novel
gearbox fault diagnosis method is proposed. The method is verified by the gearbox
fault data set. It shows that the proposed method has superior fault diagnosis per‑
formance and can accurately diagnose different working states of gearbox bearings
and gears. The proposed method has better diagnostic accuracy and stability than
the existing RCMFDE, MFDE, RCMDE and MDE methods;

(3) Themain structural types of gearboxes in practical applications have been tested. The
methods proposed in each experiment can effectively identify the fault running state
and have been successfully applied to the fault diagnosis of various gearboxes. The
results show that this method has excellent practicability and generality, so it can
widely apply to gearbox fault diagnosis.
In this preliminary study, the proposed approach is satisfactory and promising in

the health condition identification of the gearbox. Moreover, it can be extended to other
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complex mechanical systems, such as rotating machinery, hydraulic pumps, etc. In our
future work, this research direction will be conducted.
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