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Abstract: In this paper, we adopt the choice theory of the shape parameters contained in the smooth
radial basis functions to solve Poisson equations. Luh’s choice theory, based on harmonic analysis, is
mathematically complicated and applies only to function interpolation. Here, we aim at presenting
an easily accessible approach to solving differential equations with the choice theory which proves to
be very successful, not only by its easy accessibility but also by its striking accuracy and efficiency.
Our emphases are on the highly reliable prediction of the optimal value of the shape parameter and
the extremely small approximation errors of the numerical solutions to the differential equations. We
hope that our approach can be accepted by both mathematicians and non-mathematicians.
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1. Introduction

Here, we focus on the generalized multiquadrics

φ(x) := (−1)dβ/2e(c2 + ‖x‖2)β/2, β ∈ R \ 2N≥0, c > 0, x ∈ Rd, (1)

where dβ/2e denotes the smallest integer greater than or equal to β/2. These are the most
popular radial basis functions (RBFs) and are frequently used in the collocation method of
solving partial differential equations. The choice of the shape parameter c contained in φ(x)
has been considered to be a hard and important question in this field for decades and often
leads to giving up this approach. Hitherto, there is no strict theory about its optimal choice
when dealing with partial differential equations (PDEs). Although Luh’s theory, called
the c theory by E. Kansa, can predict its optimal value almost exactly, it applies mainly
to function interpolation only and involves the complicated theory of harmonic analysis.
Scientists, especially non-mathematicians, still do not know how to choose it when solving
PDEs with RBFs.

As the inventor of the choice theory, the author knows that the theory applies to PDEs
as well, maybe with a moderate search when necessary. The main reason is that collocation
is, in spirit, a kind of interpolation. Moreover, Dirichlet conditions do offer interpolation
points on the boundary. As can be seen in Luh [1,2], when c is chosen according to the MN
curves, the accuracy of the function approximation is incredibly good, both in theory and
practice. It is not hard to imagine that the combination of the c theory and collocation may
lead to very good results in the field of numerical PDEs.

In this paper, we follow Kansa’s route [3–5] to make collocation for solving Poisson
equations but in a totally different way of choosing c. Basically, we discard the traditional
time-consuming trial-and-error search and adopt the theoretically predicted optimal value
of c. It greatly increases the time efficiency of finding a suitable c because it avoids the
traditional way of solving a linear system for each trial of the c value. Experiments show
that such a c does produce a very good numerical solution to the PDE, even if the value of
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c is not exactly the experimentally optimal one. If one insists on finding the experimentally
optimal value, it can be achieved by a moderate search. The stopping criterion is totally
different from Kansa’s approach and perhaps has never appeared in the literature. Our
stopping criterion proves to be very reliable and does lead to the experimentally optimal
value of c. The highly precise prediction greatly relieves the trouble of finding a suitable c
value when using RBFs to solve PDEs.

For readers who are interested in the historical development and traditional methods
of finding a suitable c value, we refer them to Kansa [3–5], Powell [6], Madych [7], Rippa [8],
Fasshauer [9], and Huang et al. [10,11], although they are not needed in this paper.

2. Materials and Methods
2.1. Fundamental Theory

We revisit the c theory introduced in Luh [12]. Some basic definitions are cited
as follows.

Definition 1. For any positive number σ,

Eσ :=
{

f ∈ L2(Rd) :
∫
| f̂ (ξ)|2e|ξ|

2/σdξ < ∞
}

where f̂ denotes the Fourier transform of f . For each f ∈ Eσ, its norm is

‖ f ‖Eσ :=
{∫
| f̂ (ξ)|2e|ξ|

2/σdξ

}1/2
.

Here, f ∈ L2(Rd) means that f 2 is integrable. In our theory, all functions f ∈ Eσ can
be interpolated by a function s(x) of the form

s(x) :=
N

∑
i=1

ciφ(x− xi) + p(x), (2)

where p(x) ∈ Pm−1, the space of polynomials of degree less than or equal to m− 1 in Rd, and
X = {x1, . . . , xN} is the set of centers (interpolation points). For m = 0, Pm−1 := {0}. The
integer m := dβ/2e. A well-established theory of RBF (radial basis functions) asserts that
any set of data points (x1, y1), . . . , (xN , yN), xi ∈ Rd, yi ∈ R1 for all i, can be interpolated
by s(x) if ∑N

i=1 ci pj(xi) = 0, for j = 1, . . . , Q, where {p1, . . . , pQ} is a basis of Pm−1. The

coefficients c1, . . . , cN and b1, . . . , bQ in p(x) := ∑Q
i=1 bi pi(x) exist and are unique. For β = 1,

the polynomial p(x) can be dropped. For β = −1, p(x) is a zero polynomial.
For any set Ω ⊆ Rd and any set X = {x1, . . . , xN} of centers contained in Ω, the fill

distance is defined by
δ(Ω, X) := sup

x∈Ω
inf

i=1,...,N
‖x− xi‖,

which measures the spacing of the centers in Ω. The smaller δ is, the more centers are
needed. If one investigates Luh [1,2] carefully, it will be found that the parameter δ was
defined there in a very different and complicated way. Here, we relax the strict requirement
and let it be fill distance. It will greatly ease the pain of using the approach in those two
papers, both for mathematicians and non-mathematicians. The reason we can do so is that
the two kinds of δ’s are in spirit the same thing. We also relax the requirement that the
domain should be a simplex. Instead, we allow it be a cube in any dimensions. This will
also greatly make things easier. In fact, the domain can be of any shape in our unorthodox
approach. In this paper, Ω denotes the function domain. We require that the diameter r of
Ω satisfies b0/2 ≤ r ≤ b0 for some parameter b0 which can be arbitrarily determined by us.
The number b0 plays a crucial role in the error bound of the function interpolation.

In order to bound | f (x)− s(x)|, we need the following definition.
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Definition 2. Let d and β be as in (1). The numbers ρ and ∆0 are defined as follows.

(a) Suppose β < d− 3. Let t = d(d− β− 3)/2e. Then,

(i) If β < 0, ρ = (3 + t)/3 and ∆0 = (2+t)(1+t)...3
ρ2 ;

(ii) If β > 0, ρ = 1 + t
2dβ/2e+3 and ∆0 = (2m+2+t)(2m+1+t)...(2m+3)

ρ2m+2

where m = dβ/2e.

(b) Suppose d− 3 ≤ β < d− 1. Then, ρ = 1 and ∆0 = 1.

(c) Suppose β ≥ d− 1. Let t = −d(d− β− 3)/2e. Then,

ρ = 1 and ∆0 =
1

(2m + 2)(2m + 1) . . . (2m− t + 3)
where m = dβ/2e.

The bound of | f (x)− s(x)| is a very complicated expression and involves ρ and ∆0.
We only extract its essential part and denote it by MN(c), called MN function, whose graph
is called MN curve. We have

| f (x)− s(x)| ≤ MN(c)‖ f ‖Eσ .

Here, c is just the shape parameter introduced in (1). The optimal choice of c should
minimize the value of MN(c).

The definition of the MN function is also complicated. There are three cases.
Case 1: β < 0, |d + β| ≥ 1 and d + β + 1 ≥ 0. Let f ∈ Eσ and φ(x) be as in (1). For

any fixed fill distance δ satisfying 0 < δ ≤ b0/2, the optimal value of c in [24ρδ, ∞) is the
number minimizing

MN(c) :=


√

8ρc(β−d−1)/4
{
(ξ∗)(d+β+1)/2ecξ∗−(ξ∗)2/σ

}1/2
( 2

3 )
c/(24ρδ) if c ∈ [24ρδ, 12b0ρ),√

2
3b0

c(β−d+1)/4
{
(ξ∗)(d+β+1)/2ecξ∗−(ξ∗)2/σ

}1/2
( 2

3 )
b0/(2δ) if c ∈ [12b0ρ, ∞),

where

ξ∗ =
cσ +

√
c2σ2 + 4σ(d + β + 1)

4
.

Case 2: β = −1 and d = 1. Let f ∈ Eσ and φ(x) be as in (1). For any fill distance δ
satisfying 0 < δ ≤ b0/2, the optimal value of c in [24ρδ, ∞) is the number minimizing

MN(c) :=


√

8ρc(β−1)/2
{

1
ln 2 + 2

√
3M(c)

}1/2
( 2

3 )
c/(24ρδ) if c ∈ [24ρδ, 12b0ρ),√

2
3b0

cβ/2
{

1
ln 2 + 2

√
3M(c)

}1/2
( 2

3 )
b0/(2δ) if c ∈ [12b0ρ, ∞),

where

M(c) :=

 e1−1/(c2σ) if 0 < c ≤ 2√
3σ

,

g( cσ+
√

c2σ2+4σ
4 ) if 2√

3σ
< c,

g being defined by g(ξ) :=
√

cξecξ−ξ2/σ.
Case 3: β > 0 and d ≥ 1. Let f ∈ Eσ and φ(x) be as in (1). For any fixed fill distance δ

satisfying 0 < δ ≤ b0/2, the optimal value of c in [24ρδ, ∞) is the number minimizing

MN(c) :=


√

8ρc(β−d−1)/4
{

(ξ∗)(1+β+d)/2ecξ∗

e(ξ∗)2/σ

}1/2
( 2

3 )
c/(24ρδ) if c ∈ [24ρδ, 12b0ρ),√

2
3b0

c(1+β−d)/4
{

(ξ∗)(1+β+d)/2ecξ∗

e(ξ∗)2/σ

}1/2
( 2

3 )
b0/(2δ) if c ∈ [12b0ρ, ∞),
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where

ξ∗ =
cσ +

√
c2σ2 + 4σ(1 + β + d)

4
.

The requirement c ≥ 24ρδ can be ignored due to trivial reasons. Moreover, the extreme
cases when c tends to 0 or infinity are not important because the optimal value of c is
always a finite positive number. For detailed explanations, we refer the reader to Luh [12].

The reader should not get scared by the complicated definition of the MN function
because what we need is mainly its graph which can be easily sketched by Mathematica.
This function was so named by the author just to honor Professors W. R. Madych and S. A.
Nelson for their outstanding contributions to the development of radial basis functions.

Seemingly, the MN-curve theory works only for function interpolation. In fact, it works
for the collocation method of solving PDEs as well. The main reason is that collocation is
in spirit a kind of interpolation. Combining collocation and the MN-curve theory leads to
very good results, as we shall see in the next section.

2.2. Poisson Equations

The partial differential equations we deal with are of the form{
uxx(x, y) + uyy(x, y) = f (x, y) for (x, y) ∈ Ω\∂Ω,
u(x, y) = g(x, y) for (x, y) ∈ ∂Ω,

(3)

where Ω is the domain with boundary ∂Ω, and f , g are given functions. The reason we
choose the Dirichlet condition as the boundary condition is that this setting is closer to
function interpolation. For simplicity, we let Ω be a square.

The numerical solution to Equation (3) will be denoted by û which is in the form of s(x)
introduced in Equation (2). Although we cannot interpolate u with û in the interior of the
domain Ω, we require that û satisfies the differentiation property defined by Equation (3)
at some interior points, called collocation points. Then, û serves as an approximation to u.
As for the boundary condition, because g is explicitly given, we require that û interpolates
u at some boundary points. In spirit, the function û is a kind of interpolator of u, like
s(x) in Equation (2). The coefficients ci in Equation (2) can then be obtained by solving a
system of linear equations. This technique of establishing a numerical solution û is called
the collocation method. A typical example of applying this approach to solving Poisson
equations can be found in Kansa [3–5]. The choice of the shape parameter c can then be
determined by our MN-curve theory. The technique of solving (3) by the MN-curve theory
will be introduced in detail in our experiments which can be easily understood, even if the
reader has not learned the collocation method.

3. Results
3.1. One-Dimensional Experiment

Although we are interested mainly in two-dimensional problems, as a prelude, a
one-dimensional problem is illustrated and tested so that the reader can grasp the central
idea and obtain a simple understanding of our approach.

In this experiment, the solution function is u(x) = e(−σ/2.1)x2
where σ = 1. It satisfies

the equations {
uxx(x) = e(−1/2.1)x2

[(−2/2.1)2x2 − 2/2.1],
u(0) = 1, u(10) = e−100/2.1 (4)

in the domain [0, 10]. Then, u ∈ Eσ, σ = 1, and the MN curves of Case 2 for interpolation
apply if we choose β = −1. The reason we adopt the inverse multiquadrics is that their
programming is easier because the polynomial p(x) in (2) disappears. For β > 0, where
p(x) exists, the way of dealing with interpolation for Eσ functions can be seen in Luh [2].
We offer six MN curves in Figures 1–6, which serve as the essential error bounds for the
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function interpolations. The number b0, which greatly affects the MN curves, denotes
the diameter of the interpolation domain. In these figures, it is easily seen that as the fill
distance δ decreases, i.e., the number of data points increases, the optimal values of c move
to 120 and are fixed there at last. The empirical results, as shown in Luh [12], show that one
should choose c = 120 to make the approximation.

10 12 14 16 18 20
c

2.×10-9

4.×10-9

6.×10-9

8.×10-9

MN(c)
MN curve for �=0.005

Figure 1. Here, d = 1, β = −1, b0 = 10, and σ = 1.

72 74 76 78 80 82
c

5.×10-106

1.×10-105

1.5×10-105

2.×10-105

10
200
MN(c)

MN curve for �=0.0009

Figure 2. Here, d = 1, β = −1, b0 = 10, and σ = 1.

111.5 112.0 112.5 113.0 113.5 114.0 114.5
c

1.×10-89

1.1×10-89

1.2×10-89

1.3×10-89

1.4×10-89

10
600
MN(c)

MN curve for �=0.0006

Figure 3. Here, d = 1, β = −1, b0 = 10, and σ = 1.
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119.2 119.4 119.6 119.8 120.0 120.2 120.4
c

5.×10-79

1.×10-78

1.5×10-78

2.×10-78

2.5×10-78

3.×10-78

10
900
MN(c)

MN curve for �=0.0005

Figure 4. Here, d = 1, β = −1, b0 = 10, and σ = 1.

119.9 120.0 120.1 120.2
c

50

100

150

10
1420

MN(c)

MN curve for �=0.0004

Figure 5. Here, d = 1, β = −1, b0 = 10, and σ = 1.

119.9 120.0 120.1 120.2
c

200

400

600

800

10
2154

MN(c)

MN curve for �=0.0003

Figure 6. Here, d = 1, β = −1, b0 = 10, and σ = 1.

Now, we let

û(x) =
201

∑
j=1

λjφ(x− xj),

where φ(x) = 1/
√

1202 + |x|2, and require that û satisfies

ûxx(xj) = e(−1/2.1)x2
j [(−2/2.1)2x2

j − 2/2.1] for j = 2, . . . , 200,
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and
û(0) = 1, û(10) = e−100/2.1,

where x1 = 0, x201 = 10, and xj = 0.05(j− 1) for j = 1, . . . , 201.
This is a standard collocation setting. The function û(x) is used to approximate the

exact solution u(x) of the differential equation. After solving the linear equations for λ′js,
we test |u(x) − û(x)| at 400 test points z1, . . . , z400 evenly spaced in [0, 10] and find its
root-mean-square error (RMS)

RMS =

{
1

400

400

∑
i=1
|u(zi)− û(zi)|2

}1/2

= 1.25× 10−83.

The condition number of the linear system is 4.4× 10643. With the arbitrarily precise com-
puter software Mathematica, we kept 800 effective digits to the right of the decimal point
for each step of the calculation, successfully overcoming the problem of ill-conditioning.
The computer time for solving the linear system is less than one second. We did not test
smaller fill distances δ′s and different c′s because the RMS is already satisfactory.

Note that, here, û(x) is in the same form as the interpolating function defined in
(2) where m = 0 because β = −1. Although the collocation points are not exactly the
interpolation points, they are in spirit like the interpolation points. It is not surprising that
|u(x)− û(x)| is very small.

3.2. Two-Dimensional Experiment

Here, the solution function is u(x, y) = e−(σ/2.1)(x2+y2) where σ = 10−36. The domain
is a large square with vertices (0, 0), (1016, 0), (1016, 1016), and (0, 1016). The function
u(x, y) satisfies

uxx(x, y) + uyy(x, y) = −(2σ/2.1)e−(σ/2.1)(x2+y2)[2− (2σ/2.1)(x2 + y2)] (5)

for (x, y) in the interior of the domain Ω = {(x, y)| 0 ≤ x ≤ 1016, 0 ≤ y ≤ 1016} and

u(x, y) = e−(σ/2.1)(x2+y2) (6)

for (x, y) on the boundary ∂Ω.
It can be easily checked that u ∈ Eσ where σ = 10−36 and Case 1 of the MN curves

applies if we choose β = −1. Five MN curves are shown in Figures 7–11.

9.50×1017 1.00×1018 1.05×1018 1.10×1018
c

7.51×10-37

7.52×10-37

7.53×10-37

7.54×10-37

7.55×10-37
MN(c)

MN curve for �=1.25E14

Figure 7. Here, d = 2, β = −1, b0 =
√

2E16, and σ = 1E−36.
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9.50×1017 1.00×1018 1.05×1018 1.10×1018
c

1.215×10-47

1.216×10-47

1.217×10-47

1.218×10-47

1.219×10-47

1.22×10-47

MN(c)
MN curve for �=0.6E14

Figure 8. Here, d = 2, β = −1, b0 =
√

2E16, and σ = 1E−36.

9.50×1017 1.00×1018 1.05×1018 1.10×1018
c

2.148×10-68

2.15×10-68

2.152×10-68

2.154×10-68

2.156×10-68

2.158×10-68
MN(c)

MN curve for �=0.3E14

Figure 9. Here, d = 2, β = −1, b0 =
√

2E16, and σ = 1E−36.

9.50×1017 1.00×1018 1.05×1018 1.10×1018
c

2.098×10-151

2.1×10-151

2.102×10-151

2.104×10-151

2.106×10-151

MN(c)
MN curve for �=0.1E14

Figure 10. Here, d = 2, β = −1, b0 =
√

2E16, and σ = 1E−36.
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9.50×1017 1.00×1018 1.05×1018 1.10×1018
c

1.822×10-249

1.824×10-249

1.826×10-249

1.828×10-249

1.83×10-249

10
400
MN(c)

MN curve for �=0.02E14

Figure 11. Here, d = 2, β = −1, b0 =
√

2E16, and σ = 1E−36.

All these curves show that one should choose c = 7000×
√

2× 1014 ≈ 0.99× 1018

as the shape parameter in φ(x, y) = 1/
√

c2 + x2 + y2. We let û(x, y) := ∑Nd
j=1 λjφ(x −

xj, y − yj) be the approximate solution of the Poisson equation satisfying (5) and (6), and
require that it satisfy

ûxx(x, y) + ûyy(x, y) = −(2σ/2.1)e−(σ/2.1)(x2+y2)[2− (2σ/2.1)(x2 + y2)]

for (x, y) = (xj, yj) where (xj, yj) belong to the interior of Ω, i.e., Ω\∂Ω, and Nd denotes
the number of data points used. Moreover,

û(x, y) = e−(σ/2.1)(x2+y2)

for (x, y) = (xj, yj) where (xj, yj) belong to the boundary ∂Ω.
A grid of 41× 41 is adopted. Hence, there are 1681 data points (xj, yj) altogether.

Among them, 160 are boundary points where the Dirichlet condition occurs. Thus, the
fill distance is δ = 1.25

√
2E14. The reason we choose such a delta is that it is close

to the one in Figure 7. When applying the MN curves, we consider all the 1681 data
points to be the interpolation points, even though it is not theoretically rigorous. As
explained in Luh [12], it is supposed to work well. However, something important must
be pointed out. Although MN curves can be used to predict almost exactly the optimal
value of c for function interpolation, a moderate search may be needed if this approach
is used in a non-rigorous way. We begin with the theoretically predicted optimal value
c = 7000

√
2× 1014 and test two nearby values, one larger and the other smaller. Then, we

check the RMS on the boundary for each c and choose the direction which makes the RMS
smaller. Continuing to choose c in this direction, we stop when the RMS values begin to
grow. Our experiment shows that not many steps are needed, and the finally obtained c
does produce the best result.

The experimental results are presented in Table 1. Here, RMS, Nd, Nt, and COND
denote the root-mean-square error, number of data points, number of test points, and
condition number of the linear system, respectively. The optimal value of c is marked with
the symbol *. We use RMSbdy to denote the root-mean-square error of the approximation
on the boundary, generated by 800 test points located on the boundary. In the entire
domain Ω, 6400 test points were used to generate the RMSs. The most time-consuming
command of solving the system of linear equations took about 30 min for each c. Although
we adopted 1200 effective digits for each step of the calculation, it still worked with an
acceptable time efficiency.
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Table 1. δ =
√

2× 1.25× 1014, b0 =
√

2× 1016, Nd = 1681, Nt = 6400.

c 300
√

2× 1014 400
√

2× 1014 500
√

2× 1014 600
√

2× 1014 700
√

2× 1014

RMS 5.2× 10−134 3.7× 10−139 1.5× 10−143 2.1× 10−145 5.8× 10−147

COND 1.1× 10505 5.8× 10524 1.2× 10540 3.9× 10552 1.5× 10563

RMSbdy 1.07× 10−143 7.2× 10−149 3.2× 10−153 4.1× 10−155 1.1× 10−156

c 800
√

2× 1014 * 900
√

2× 1014 1000
√

2× 1014 1100
√

2× 1014 1200
√

2× 1014

RMS 3.6× 10−148 7.9× 10−148 8.2× 10−146 5.2× 10−144 6.0× 10−143

COND 2.1× 10572 2.6× 10580 4.4× 10587 1.5× 10594 1.4× 10600

RMSbdy 7.2× 10−158 1.7× 10−157 1.6× 10−155 1.0× 10−153 1.2× 10−152

c 3000
√

2× 1014 5000
√

2× 1014 7000
√

2× 1014 8000
√

2× 1014

RMS 2.3× 10−133 7.1× 10−127 1.1× 10−122 5.4× 10−121

COND 1.1× 10663 1.2× 10698 1.5× 10721 2.2× 10730

RMSbdy 4.4× 10−143 1.8× 10−136 5.1× 10−132 3.2× 10−130

Note that the optimal value of c is 800
√

2× 1014 which coincides with the value chosen
by our stopping criterion based on RMSbdy. This optimal value was obtained without
much effort. The most time-consuming step is solving a linear system for each trial of the
c value whenever the condition number is very large. Fortunately, it took only 30 min in
our experiment. Obviously, we could have obtained better RMS values by increasing the
number of data points, whereas we did not do so because the approximation was already
quite good. Moreover, it can be seen that the theoretical value 7000

√
2× 1014 is not the

same as the experimental value. The main reason is that we relaxed two strict requirements
in Luh [1,2], as explained in the paragraph preceding Definition 2.2. Another important
reason is that, according to the strict theory in [1,2], the MN functions are defined only for
function interpolation, not for the collocation method of solving PDEs.

In this paper, all the calculations were not performed by double precision. Instead,
they were made by the arbitrarily precise computer software Mathematica. In the MN-
curve approach, the condition number of the linear system may be very large. If double
precision is adopted, the final results may be meaningless. For example, in Table 1, when
c = 8000

√
2× 1014, the condition number is 2.2× 10730. One has to adopt at least 750

effective digits to the right of the decimal point for each step of the calculation. In order
to increase the reader’s confidence, we adopted 1200 digits at the cost of spending more
time. Hence, our calculations should be reliable. This is about the stability. As for the
convergence, in Figures 1–11, it can be clearly seen that as the fill distance δ decreases, the
value of MN(c), which denotes the essential error bound of the approximation, decreases
rapidly. It fully reflects a salient characteristic of the RBF approach. In our experiments, we
did not test different fill distances because our primary concern is finding a good c value,
not the convergence rate.

Seemingly, it is a limitation of our approach that one has to adopt Mathematica rather
than the widely used Matlab. In fact, it probably can be considered to be a limitation
of the entire RBF approach. In Madych [7], an incomplete experiment was presented.
Meaningless results appear in that experiment whenever the condition number is greater
than 1016. What Madych used was Matlab and a double-precision scheme. In the paper,
Madych said that he did not know how to overcome this trouble. By virtue of Mathematica,
we can now handle it successfully. The severe ill-conditioning of the RBF approach seems
to be an inherent problem which we have to face.
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4. Discussion

The author believes that only a very small part of the PDE problems has been dealt with
in this paper. For future research, we should try to explore different boundary conditions,
different domains, and various PDEs. These will be an endless work.

Another paper by Oaxaca-Adams et al. [13] may be worth mentioning. In [13], a
curve is also used to obtain the optimal point of interest, and in a similar way, a numer-
ical approach is used that allows numerically solving a type of systems of interest in
applied sciences.

In physics, as said by Kansa, many numerical solutions to PDEs are not bad, but truly
good solutions are rarely seen. E. Kansa invented the collocation method and opened a
new route to solving them. The combination of the c theory and collocation does produce
very good results, as shown in our experiments. Maybe this is just a starting point. We are
still facing a huge challenge and have a lot of work to conduct in the future.
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