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Abstract: In this article, an approach to achieve the anti-disturbance fault-tolerant constrained
consensus is proposed for time-delay faulty multi-agent systems under semi-Markov switching
topology. Firstly, an observer based on the coupled disturbance and fault information is designed
to estimate the disturbance and failure at the same time. Next, because of the conservatism of the
traditional H∞ control method, a new performance index is constructed to replace the zero initial
condition by making use of initial conditions. Then, the time-varying transfer rate is expressed as a
convex combination by using the boundedness of transfer rate, so as to solve the numerical solution
problem of time-varying transfer rate. On this basis, according to the performance requirements, an
anti-disturbance fault-tolerant constrained consensus strategy is proposed. Finally, simulation results
are given to verify the feasibility of the approach.

Keywords: time-delay multi-agent system; fault-tolerant constrained consensus; disturbance ob-
server; H∞ control; semi-Markov switching topology
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1. Introduction

In the past years, it is obvious that the consensus problem has gradually become one of
the most active topics in the field of multi-agent systems. It has attracted extensive research
in the fields of building automation [1], smart grids [2], intelligent transportation [3],
underwater exploration [4], cooperative search [5], etc. However, considering security and
the particularity of tasks, the agent state is often constrained in practical applications. For
example, due to terrain constraints, the agent can only move within constrained areas.
Therefore, the constrained consensus of many systems has attracted the attention of more
and more researchers; see related articles [6–11]. A new distributed primal–dual augmented
(sub) gradient algorithm is studied in reference [10], and the distributed constrained
optimization and consensus problem in uncertain networks via proximal minimization are
discussed in [11].

Furthermore, in many practical multi-agent systems, considering the limitations and
disturbances of obstacles and communication range, the communication topology between
agents may change randomly. In order to be more in line with the actual situation, it is a
good choice to model the random change in communication topology as a semi-Markov
process. The synchronization problem of complex networks with semi-Markov switching
topology has attracted more attention of some scholars; see [12,13]. The change in system
topology will affect the implementation of constrained consensus, which is one of the
research purposes of this article.

On the other hand, in the actual multi-agent system, faults, external disturbances
and communication delays are also inevitable, which will lead to the destruction of the
system performance. In order to ensure the safety and reliability of the closed-loop system,
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it is feasible for fault-tolerant control to be used; see [14–20] . By using the adjacency
matrix information, a robust adaptive fault-tolerant protocol is proposed to compensate
the actuator bias fault and the partial loss of actuator effectiveness fault in [21]. In [22],
the consensus problem of nonlinear multi-agent systems with multi-actuator failure and
uncertainty is analyzed. Ref. [23] proposed a strategy to solve the bipartite consensus of
high-order multi-agent systems with unknown time-varying disturbances. The distur-
bances are estimated by designing the adaptive law for unknown parameters. Additionally,
the proposed adaptive control method can realize consensus control. In [24], a nonlinear
disturbance observer is proposed to estimate the disturbances to better realize the consen-
sus of linear multi-agent systems. In [25], a disturbance observer with adaptive parameters
is designed for nonlinear multi-agent systems to suppress the total disturbance, including
unknown external disturbances and deviation faults. Ref. [26] proposed an accelerated
algorithm to solve the linear quadratic optimal consistency problem of multi-agent systems.
Ref. [27] studied the global consensus problem of a class of heterogeneous multi-agent
systems, but both of them ignore the impact of external interference and actuator failure
on the constraint consistency of multi-agent systems. Most of the above studies focus on
consensus, but there are few studies on anti-disturbance constrained consensus, especially
the existence of disturbance and fault coupling in a time-delay system. This is the second
motivation of this article.

This article studies the fault-tolerance constrained consensus for time-delay multi-
agent systems with external disturbances and faults based on semi-Markov switching
topology. The main contributions of this article are as follows:

(a) Owing to the external disturbances and actuator failures being coupled in time-
delay multi-agent systems, inspired by [28–31], a new disturbance observer can be used to
estimate disturbance and fault concurrently.

(b) In order to make the influence of semi-Markov switching topology weaken, tak-
ing [32] as the starting point, the time-varying transfer rate is expressed as a convex com-
bination by using the boundedness of transfer rate, so as to solve the numerical solution
problem of time-varying transfer rate.

(c) For actuator failures and external disturbances, a novel anti-disturbance fault-
tolerant control algorithm is provided to ensure the stability of multi-agent systems, as well
as to achieve a consensus on the anti-disturbances’ dynamic fault tolerance constraints.

Notation: Rm denotes the m-dimensional Euclidean space; Rm×m denotes the set of
vectors and matrices of appropriate dimension; and for a symmetric matrix, ‘∗’ denotes
the elements below the main diagonal, which are determined by the matrix symmetry. Let
diag{A1, . . ., An} be the block-diagonal matrix with matrices A1, . . ., An on its principal
diagonal; for a given matrix A, AT denotes its transpose; ⊗ denotes the Kronecker product
of matrix; In stands for the identity matrix of n× n; and In ∈ Rn is a column vector with all
entries being 1. we use ‖.‖ to represent the Euclidean norm of vectors or matrices.

2. Preliminaries and Problem Formulation
2.1. Graph Theory

A vertices set V={ν1, . . . , νn}, an edges set E ⊆ V × V and an adjacency matrix
A = [apq] ∈ Rn×n make up graph G = (V , E ,A). ProΩ(x) stands for the projection of the
vector x on the closed convex set Ω. Use (νp, νq) for each edge, which means that node
νp is a neighbor of νq, or node νq is a neighbor of νp. When the graph G is undirected,
apq = aqp for all p, q. The adjacency matrix A = [apq]n×n has the following character-
istics: (app = 0, apq > 0, i f (νp, νq) ∈ E ), and the Laplacian matrix L= [lpq]n×n can be
represented by lpp = ∑n

q=1,q 6=p apq, lpq = −apq, (p 6= q). Furthermore, the interactive
topology of semi-Markov topology switching is noted as : Ḡ(r(t)) = (V , E(r(t)),A(r(t))) ,
Ḡ(r(t)) ∈ {Ḡ(1), Ḡ(2), . . . , Ḡ(s)}, where r(t) : R+ → Z = {1, 2, . . ., s} is a switching signal,
which is controlled by semi-Markov process. The evolution of semi-Markov processes is
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determined by the following transition probability:

Pr{r(t + h) = α | r(t) = β} =
{

πβα(h)h + o(h), β 6= α

1 + πβα(h)h + o(h), β = α

In the equation above, the transition rate πβα(h) is time-varying and dependent on h,
where h is called sojourn time, which represents the duration between two jumps.

2.2. Problem Formulation

Given the multi-agent systems with the following dynamics:

ẋp(t) = u f
p(t) + ωp(t), p = 1, 2, . . . , n (1)

where u f
p(t) = [u f

p1
T
(t), u f

p2
T
(t), . . . , u f

pm
T
(t)]T, u f

p(t) ∈ Rm stands for the control input. n is
the number of the agent. xp ∈ Rm stands for the state of agent. ωp(t)=
[ωT

p1(t), ωT
p2(t), . . . , ωT

pm(t)]T is the external disturbance in the system. Considering the
partial failure of actuator, the model can be described as

u f
pd(t)=θpdupd(t), 0 < θpd ≤ θpd ≤ θ̄pd ≤ 1

d = 1, 2, . . . , m
(2)

which denotes the output signal from the dth actuator of the pth agent. d represents the
numbers of actuator channels. θ̄pd and θpd stand for the upper and lower bounds of θpd,
respectively. When θ̄pd = θpd = 1, it represents that there is no failure of the dth actuator. If
0 < θpd < 1, it indicates that the dth actuator is partially faulty.

For each agent described by (1), a variable ωp(t) ∈ Rm represents the disturbance of
the pth agent to be rejected, and it can be described by the following exosystem:

ω̇p(t) = Spωp(t) (3)

where Sp∈ Rm×m is a known constant matrix, and the matrix of each agent can be different.
Our ultimate goal is to make the anti-disturbance fault-tolerant constrained consensus

of multi-agent systems (1), achieved by designing an appropriate controller
up(t) = [up1(t), up2(t), . . . , upm(t)]T in the case of semi-Markov topology switching. The
following definition and lemmas are recalled:

Definition 1 ([33]). When the state xp(t) of agent p and the state xq(t) of any other agent q satisfy
the following equation, the multi-agent system is said to have constrained consensus:

lim
t→∞

∥∥xp(t)− xq(t)
∥∥ = 0 ∀p, q ∈ V

lim
t→∞

xp(t) ∈ Ω

Note that ProΩ(x) stands for the projection of the vector x on the closed convex set Ω,
and V is the vertex set defined in the above graph theory.

Lemma 1 (Schur complement [34]). Given a symmetric matrix

S =

[
S11 S12
ST

12 S22

]
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the following statements are equivalent:

(1) S < 0;

(2) S11 < 0, S22 − ST
12S−1

11 S12 < 0;

(3) S22 < 0, S11 − S12S−1
22 ST

12 < 0.

Lemma 2 ([35]). Let ℘=℘T andM and N be real matrices of appropriate dimensions with F(t)
satisfying FT(t)F(t) 6 I, then ℘+MF(t)N +N T FT(t)M < 0, if and only if there exists some
σ > 0 such that ℘+ σMMT + σ−1N TN < 0.

Lemma 3 ([36]). The transition rate πβα(h) of semi-Markov is time-varying. If its bound is
[π−βα, π+

βα], the following formulas are recalled:

πβα(h) =
˘

∑
δ=1

Λδπβα,δ,
˘

∑
δ=1

Λδ = 1, Λδ ≥ 0, λ ≥ 2

πβα,δ =

 π−βα +(δ− 1)
π+

βα −π−βα

λ−1 , β 6= α, α ∈ Z

π+
βα−(δ− 1)

π+
βα −π−βα

λ−1 , β = α, α ∈ Z

3. Distributed Fault-Tolerant Protocol Design

In this section, the following control law is designed for systems with constant com-
munication delay τ:

up(t) = K(r(t))
p
∑

q=1,q 6=p
apq(r(t))[xq(t− τ)− xp(t− τ)]

+ ProΩ(xp(t))− xp(t)− ω̂p(t)
(4)

where K(r(t)) represents the controller gain that we need to design. ω̂p(t) stands for the
estimation of the disturbance ωp(t).

In addition, in an actual system, disturbance and fault are often coupled together, so
disturbance observer and fault estimation cannot be designed separately. Therefore, we
design the following interconnected disturbance observer and fault adaptive law

ω̂p(t) = Op(t) + Mpxp(t)
Ȯp(t)= Sp

(
Op(t) + Mpxp(t)

)
−Mp[θ̂p(t)µp(t) + (1− θ̂p(t))ω̂p(t)]

µp(t)= K(r(t))
n
∑

q=1,q 6=p
apq(r(t))[xq(t− τ)− xp(t− τ)]

+ ProΩ(xp(t))− xp(t)

(5)

˙̃θpd(t)=− ϑdω̃T
p (t)Mp[ω̂p(t)− µp(t)] (6)

where Op(t) is a subsidiary variable, and Mp is the gain of the observer and can be
calculated to obtain it. θ̂p(t) = diag{θ̂p1(t), θ̂p2(t), . . . , θ̂pm(t)} is the estimation of the
failure θp(t). θ̃p(t)=θ̂p(t)− θp(t), ω̃p(t)=ω̂p(t)−ωp(t), ϑd is a positive number. ProΩ(x)
stands for the projection of the vector x on the closed convex set Ω.

Next, we solve the anti-disturbance fault-tolerant constrained consensus problem of
system (1) under semi-Markov switching topology.

4. Main Result

Theorem 1. For the undirected and connected graph Ḡ(r(t)) and multi-agent system (1), let the
attenuation level γ > 0. Given partial failure coefficient θ0 and matrix H, the whole system can
achieve anti-disturbance fault-tolerant constrained consensus with an H∞ disturbance attention
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level γ under the control law (4) and disturbance observer (5) (6) if the existence of matrices
K(r(t)) = Ȳ(r(t))X̄−1, Φ̂, Mp, p = 1, 2, . . ., n, and Fi, i=1, 2, . . ., 6 with suitable dimensions,
suitable parameter b3, W > 0, D̂ > 0, Ẑ > 0 and a positive number σ̂ make the following matrix
inequalities hold:

^

Ξ =


^

Ξ1 Λ̂T σ2Γ̂
∗ −σ1 I 0
∗ ∗ −σ2 I

 < 0, (7)

γ2 ΦF1− 1
2 Φ > 0, γ2 F2−I > 0, γ2 F3− 1

2 I > 0,
γ2F4 − I > 0, γ2F5 − I > 0, γ2F6 − I > 0.

(8)

where
^

Ξ1 =

[
^

Ξ11
^

Ξ12
∗ −X1

]

^

Ξ11 =


ψ̃11 Ẑ− 1

2 θ0Y(r(t)) 1
2 X 0 1

2 I
∗ −D̂− Ẑ 0 0 0
∗ ∗ b̂2 0 0
∗ ∗ ∗ ψ̃44 0
∗ ∗ ∗ ∗ −γ2 I


ψ̃11 = 1

2 ∑
α∈Z

πβα(h)W, ψ̃44 = b2
3 I + 2(S−M),

^

Ξ12 =
[

0 −τθ0Y(r(t)) τθ0X 0 τ I
]T ,

X = In ⊗ X̄, Y(r(t)) = L(r(t))⊗ Ȳ(r(t)) = (L(r(t))⊗ K(r(t)))X,
S = diag{S1, S2, . . . , Sn}, M = diag{M1, M2, . . . , Mn},

Λ̂ =



0 Y(r(t)) 0 0 0 0
0 0 0 0 0 τY(r(t))
0 0 0 0 0 τX
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,

Γ̂=diag{ 1
2 σ̂θ0H, σ̂θ0H, σ̂θ0H, 0, 0, 0},

σ1=diag{−σ̂I,−σ̂I,−σ̂I,−σ̂I,−σ̂I,−σ̂1I},
σ2 = diag{−σ̂I,−σ̂I,−σ̂I,−σ̂I,−σ̂I,−σ̂I},

Φ = In − 1
n 1n1T

n ,
Ẑ=XZX, ZX1 = I.

Proof. Choose a Lyapunov function, shown as follows:

V(t) = V1(t) + V2(t) + V3(t)

where

V1(t) =
n
∑

p=1

m
∑

d=1

θ̃2
pd(t)
ϑd

+
n
∑

p=1
ω̃T

p (t)ω̃p(t) +
n
∑

p=1

1
2 maxp

∥∥xp(t)− ProΩ(xp(t))
∥∥2

V2(t) = 1
2

n
∑

p=1

∥∥∥∥∥xp(t)− 1
n

n
∑

q=1
xq(t)

∥∥∥∥∥
T

P(r(t))

∥∥∥∥∥xp(t)− 1
n

n
∑

q=1
xq(t)

∥∥∥∥∥
V3(t) =

n
∑

p=1
τ
∫ 0
−τ

∫ t
t+θ ẋT

p (s)Zp ẋp(s)dsdθ +
n
∑

p=1

∫ t
t−τ xp

T(s)Dpxp(s)ds

The weak infinitesimal operator L of V(t) can be calculated as follows:

E{LV1(t)} ≤ 2
n
∑

p=1

m
∑

d=1

θ̃pd(t) ˙̃θpd(t)
ϑd

−
n
∑

p=1
maxp

∥∥xp(t)− ProΩ(xp(t))
∥∥2

+ 2
n
∑

p=1
ω̃T

p (t) ˙̃ωp(t)

E{LV3(t)} = xT(t)Dx(t)− xT(t− τ)Dx(t− τ) + τ2 ẋT(t)Zẋ(t)
− xT(t)Zx(t) + xT(t)Zx(t− τ) + xT(t− τ)Zx(t)
− xT(t− τ)Zx(t− τ)
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Define Bp = xp(t) − 1
n

n
∑

q=1
xq(t) and the following results can be obtained directly:

E{LV2(t)} =
n
∑

p=1
Bp

T PβB′ + 1
2 ∑

α∈Z
πβα(h)(

n
∑

p=1

∥∥Bp
∥∥TPα

∥∥Bp
∥∥)

=
n
∑

p=1
Bp

TPβ[ωp(t)−θp ω̂p(t)]+
n
∑

p=1
Bp

TPβθp[ProΩ(xp(t))−xp(t)]

+
n
∑

p=1
Bp

T PβθpK(r(t)) ∑
q∈Np(t)

apq(r(t))[xq(t− τ)−xp(t−τ)]

+ 1
2

n
∑

p=1
Bp

T ∑
α∈Z

πβα(h)Pα

∥∥Bp
∥∥

Therefore, considering the above analysis, using augmented vector and adaptive law
(6), we can obtain the following results:

E{LV(t)} ≤ −‖∆(t)‖2 − xT(t)Pβθ(L(r(t))⊗ K(r(t)))x(t− τ)
+
∥∥xT(t)

∥∥∥∥Pβ

∥∥‖∆(t)‖+ ∥∥xT(t)
∥∥∥∥Pβ

∥∥‖z(t)‖
+2ω̃T(t)(Si −Mi)ω̃(t) + 1

2

∥∥xT(t)
∥∥∥∥∥∥ ∑

α∈Z
πβα(h)Pα

∥∥∥∥‖x(t)‖
+xT(t)Dx(t)− xT(t− τ)Dx(t− τ) + τ2 ẋT(t)Zẋ(t)
−xT(t)Zx(t) + xT(t)Zx(t− τ) + xT(t− τ)Zx(t)
−xT(t− τ)Zx(t− τ)

(9)

where z(t) = ω(t)− θω̂(t). See Appendix A for the specific derivation process of Equa-
tion (9). It is necessary to ensure that zero initial conditions are met when we use the
traditional H∞ control theory. This situation will bring some conservatism, and the follow-
ing performance requirements are built based on initial conditions:

J =
∫ ∞

0 [yT(t)y(t)− γ2(zT(t)z(t) + xT(0)ΦPβF1x(0) + ω̃T(0)F2ω̃(0)

+ ∆̂T(0)F3∆̂(0) + θ̃T(0)F4 θ̃(0)
ϑd

+
∫ 0
−τ xT(s)F5Dx(s)ds

+ τ
∫ 0
−τ

∫ 0
θ ẋT(s)F6Zẋ(s)dsdθ)]dt < 0

where
y(t)= [y1(t), y2(t), y3(t)]

T, y1(t)=b1
∥∥x(t)−(1n1T

n
/

n)x(t)
∥∥

y2(t) = b2∆(t)T , y3(t) = b3ω̃T(t),
∆̂(0) = maxp

∥∥xp(0)− ProΩ(xp(0))
∥∥, p = 1, 2, . . . , n

Therefore, define J̃ = yT(t)y(t)− γ2zT(t)z(t) + V̇(t), then we have

J̃ ≤ ∆T(t)(b2
2 − I)∆(t) + xT(t)b2

1Φx(t)+
∥∥xT(t)

∥∥‖∆(t)‖+∥∥xT(t)
∥∥Pβ‖z(t)‖

+ b2
3ω̃T(t)ω̃(t) + 2ω̃T(t)(S−M)ω̃(t)− γ2zT(t)z(t) + τ2 ẋT(t)Zẋ(t)

− xT(t)Pβθ(L(r(t))⊗K(r(t)))x(t−τ)+ 1
2

∥∥xT(t)
∥∥ ∑

α∈Z
πβα(h)Pα‖x(t)‖

+xT(t)Dx(t)− xT(t− τ)Dx(t− τ)− xT(t)Zx(t) + xT(t)Zx(t− τ)
+ xT(t− τ)Zx(t)− xT(t− τ)Zx(t− τ)

= ξT(t)Ξ11ξ(t)+τ2 ẋT(t)ZZ−1Zẋ(t)
= ξT(t)Ξ11ξ(t) + ξT(t)Ξ12Z−1ΞT

12ξ(t)
= ξT(t)Ξξ(t)

where ξ(t)=
[
xT(t), xT(t− τ), ∆T(t), ω̃(t), zT(t)

]T and

Ξ=
[

Ξ11 Ξ12
∗ Ξ22

]
(10)
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where

Ξ11 =


ψ11 ψ12

1
2 Pβ 0 1

2 Pβ

∗ −D− Z 0 0 0
∗ ∗ −I 0 0
∗ ∗ ∗ ψ44 0
∗ ∗ ∗ ∗ −γ2 I


ψ11 = 1

2 ∑
α∈Z

πβα(h)Pα+D−Z, ψ12 =Z− 1
2 Pβθ(L(r(t))⊗ K(r(t))),

ψ44 = 2(S−M), Ξ12 = [0,−τθ(L(r(t))⊗ K(r(t)))Z, τθZ, 0, τZ]T , Ξ22 = −Z,
S = diag{S1, S2, . . . , Sn}, M = diag{M1, M2, . . . , Mn}.

However, θ in Ξ is unknown. How to deal with it? The answer is that we can utilize
θp = θ0p(I + gp) to reduce its conservation, where

θ0p =
θp+θ̄p

2 , gp =
θp−θ0p

θ0p
, hp =

θ̄p−θp
θp+θ̄p

, | gp |≤ hp ≤ I (11)

Therefore, the following formula can be obtained from (11):

θ = θ0(I + G) (12)

where
| G |≤ H ≤ I, G=diag{g1, g2, . . . , gn}, H = diag{h1, h2, . . . , hn}

By utilizing (10), (12) and Lemma 2, the following result can be obtained:

Ξ ≤ Ξ̃ + Γ̃FΛ̃ + Λ̃T FT Γ̃T (13)

Based on Lemma 2, (13) can be converted to (14) Ξ̃ Λ̃T σΓ̃
∗ −σI 0
∗ ∗ −σI

 < 0 (14)

where

Ξ̃=
[

Ξ̃11 Ξ̃12
∗ Ξ̃22

]

Ξ̃11 =


ξ1 ξ2

1
2 Pβ 0 1

2 Pβ

∗ −D− Z 0 0 0
∗ ∗ b2

2 I − I 0 0
∗ ∗ ∗ ξ3 0
∗ ∗ ∗ ∗ −γ2 I

,

Λ̃ =



0 Pβ K(r(t)) 0 0 0 0
0 0 0 0 0 τK(r(t))Z
0 0 0 0 0 τZ
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,

Ξ̃12 =
[

0 −τθ0(L(r(t))⊗ K(r(t)))Z τθ0Z 0 τZ
]T , Ξ̃22 = −Z,

ξ1 = 1
2 ∑

α∈Z
πβα(h)Pα + D− Z + b2

1Φ, ξ2 = Z− 1
2 Pβθ0(L(r(t))⊗ K(r(t))),

ξ3 = b2
3 I + 2(S−M), Γ̃ = diag{ 1

2 θ0 H, θ0 H, θ0 H, 0, 0, 0}.
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According to the above, if inequality (14) holds, we can obtain that J̃ < 0, clearly. Next,
we can obtain∫ ∞

0 J̃dt = J + V(t) + [γ2∫ t
0 xT(0)ΦPβF1x(0)dt− 1

2 γ2xT(0)ΦPβx(0)]
+[γ2 ∫ t

0 ω̃T(0)F2ω̃(0)dt− ω̃T(0)ω̃(0)]

+[γ2 ∫ t
0 ∆T(0)F3∆(0)dt− ∆T(0)∆(0)] + [γ2 ∫ t

0
θ̃T(0)F4 θ̃(0)

ϑd
dt− θ̃T(0)θ̃(0)

ϑd
]

+{γ2
∫ t

0

[∫ 0
−τ xT(s)F5Dx(s)ds

]
dt− γ2

∫ 0
−τ xT(s)Dx(s)ds}

+{γ2
∫ t

0

[
τ
∫ 0
−τ ẋT(s)F6Zẋ(s)dsdθ

]
dt− τγ2

∫ 0
−τ

∫ 0
θ ẋT(s)Zẋ(s)dsdθ}

See Appendix B for the detailed derivation process.
Combined J̃ < 0 and V(t) > 0, when the linear matrix inequalities (14) and (8) are

satisfied, J < 0, lim
t→∞
‖xp(t) − ProΩ(xp)‖ = 0, xp(t) − (1/n)∑ n

q=1xq(t) = 0. Therefore,

the whole system can achieve anti-disturbance fault-tolerant constrained consensus with
required performance indicators. But the above linear matrix inequality contains coupling
terms, definition:

D=diag{X,X,X,I,I,X1,X,X,X,X,X,X1,X,X,X,X,X,X}

multiply matrices D and D on the left and right sides of Ξ̃, some transformations are
introduced to better illustrate the theorem:

W=XPαX, D̂=XDX, Ẑ=XZX, Φ̂=Xb2
1ΦX, Y(r(t)) = (L(r(t))⊗K(r(t)))X,

b̂2 = X(b2
2 − 1)X, σ̂ = XσX, σ̂1 = Xσ1X, PβX = I, ZX1 = I.

From the above, we can obtain the linear matrix inequalities (7) and (8), and the
controller gains can be obtained by K(r(t)) = Ȳ(r(t))X̄−1. The proof of Theorem 1 is
completed.

Since the transition rate of the semi-Markov process in Theorem 1 is time-varying and
difficult to solve, in order to solve this problem, we design the following theorem.

Theorem 2. For the undirected and connected graph Ḡ(r(t)) and multi-agent system (1), let the
attenuation level γ > 0. The transition rate has upper and lower bounds. Given partial failure
coefficient θ0 and matrix H. The whole system can achieve anti-disturbance fault-tolerant con-
strained consensus in the presence of time-delay and semi-Markov switching topology with an
H∞ disturbance attention level γ under the control law (4) and disturbance observer (5) (6) if the
existence of matrices K(r(t)) = Ȳ(r(t))X̄−1, Φ̂, Mp, p = 1, 2, . . . , n and Fi, i = 1, 2, . . ., 6 with
suitable dimensions, suitable parameter b3, W > 0, Ŵ > 0, D̂ > 0, Ẑ > 0 and a positive number
σ̂ make the following matrix inequalities hold:

Ω1 =

 Ω̄1 Λ̂T σ2Γ̂
∗ −σ1 I 0
∗ ∗ −σ2 I

 < 0, Ω2 =

 Ω̄2 Λ̂T σ2Γ̂
∗ −σ1 I 0
∗ ∗ −σ2 I

 < 0,

γ2 ΦF1− 1
2 Φ > 0, γ2 F2−I > 0, γ2 F3− 1

2 I > 0,
γ2F4 − I > 0, γ2F5 − I > 0, γ2F6 − I > 0

(15)
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where:

Ω̄i =

[
Ω̄i11 Ω̄12
∗ −X1

]
, i = 1, 2

Ω̄i11 =


^
ψi11

^
ψ12

1
2 X 0 1

2 I
∗ −D̂− Ẑ 0 0 0
∗ ∗ b̂2 0 0

∗ ∗ ∗
^
ψ44 0

∗ ∗ ∗ ∗ −γ2 I

,

Λ̂ =



0 Y(r(t)) 0 0 0 0
0 0 0 0 0 τY(r(t))
0 0 0 0 0 τX
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,

^
ψi11 = 1

2 Wi + D̂− Ẑ + Φ̂,
^
ψ12 = Ẑ− 1

2 θ0Y(r(t)),
^
ψ44 = b2

3 I + 2(S−M),
Ω̄12 =

[
0 −τθ0Y(r(t)) τθ0X 0 τ I

]T , Φ = In − 1
n 1n1T

n ,
X = In ⊗ X̄, Y(r(t)) = L(r(t))⊗ Ȳ(r(t)) = (L(r(t))⊗ K(r(t)))X,
W1 = ∑

α∈Z ,α 6=β
π+

βα W + π−ββ Ŵ, W2 = ∑
α∈Z ,α 6=β

π−βα W + π+
ββ Ŵ.

Proof. Based on the Lemma 3, the term ∑
α∈Z

πβα(h)Pα can be split into portions: one is Λδ

with the element δ, and the other is Q without the element δ. Note that
λ

∑
δ=1

Λδ∆δ = 1 and

Λδ ≥ 0, then one has
≥
∑
δ=1

Λδ∆δ +Q =
≥
∑
δ=1

Λδ(∆δ +Q)

That is to say
λ

∑
δ=1

Λδ∆δ +Q

can be ensured by
∆δ +Q < 0 (16)

Then

∑
α∈Z

πβα(h)Pα =
≥
∑

δ=1
∑

α∈Z
Λδπβα,δPα =

≥
∑

δ=1
Λδ ∑

α∈Z
πβα,δPα

=
≥
∑

δ=1
Λδ[πβ1,δP1 ++πβ2,δP2 + . . .. . . + πββ,δPβ]

=
≥
∑

δ=1
Λδ[π

−
β1 P1 + (δ− 1)

π+
β1 −π−β1
≥−1 P1 + π−β2 P2

+ (δ− 1)
π+

β2 −π−β2
≥−1 P2. . .. . . + π+

ββ Pβ − (δ− 1)
π+

ββ −π−ββ

≥−1 Pβ]

= ∑
α∈Z ,α 6=β

π−βα Pα + π+
ββ Pβ +

≥
∑

δ=1
Λδ[

π+
β1 −π−β1
≥−1 (δ− 1)P1

+
π+

β2 −π−β2
≥−1 (δ− 1)P2 + . . .. . .−

π+
ββ −π−ββ

≥−1 (δ− 1)Pβ]

Note that
∑

α∈Z
πβα(h)Pα = Θ1 + Θ2
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where

Θ1 = ∑
α∈Z ,α 6=β

π−βα Pα + π+
ββ Pβ,

Θ2 =
≥
∑

δ=1
Λδ[

π+
β1 −π−β1
≥−1 (δ− 1)P1 +

π+
β2 −π−β2
≥−1 (δ− 1)P2 + . . .. . .−

π+
ββ −π−ββ

≥−1 (δ− 1)Pβ].

We have:

Θ3 = δ−1
≥−1 [ ∑

α∈Z ,α 6=β
(π+

βα−π
−
βα
)Pα−(π+

ββ−π−ββ)Pβ]

Θ4 = ∑
α∈Z ,α 6=β

(π+
βα−π

−
βα
)Pα−(π+

ββ−π−ββ)Pβ

Θ2 = Θ3 + Θ4

=
≥
∑

δ=1
Λδ

δ−1
≥−1 [(π

+
β1−π−β1)P1+(π+

β2−π−β2)P2+. . .. . .−(π+
ββ−π−ββ)Pβ]

=
≥
∑

δ=1
Λδ

δ−1
≥−1 [ ∑

α∈Z ,α 6=β
(π+

βα−π
−
βα
)Pα−(π+

ββ−π−ββ)Pβ]

The following can be obtained from (16): ∑
α∈Z

πβα(h)Pα < 0 is equivalent to Θ1 + Θ3 <

0, where Θ1 is the determined constant.
if Θ4 ≥ 0 , max(Θ1 + Θ3) = Θ1 + Θ4.
if Θ4 < 0 , max(Θ1 + Θ3) = Θ1.
where

Θ1 + Θ4 = ∑
α∈Z ,α 6=β

π−βα Pα + π+
ββ Pβ + ∑

α∈Z ,α 6=β
(π+

βα−π
−
βα
)Pα−(π+

ββ−π−ββ)Pβ

= ∑
α∈Z ,α 6=β

π+
βα Pα + π−ββ Pβ

Θ1 = ∑
α∈Z ,α 6=β

π−βα Pα + π+
ββ Pβ

So, ∑
α∈Z

πβα(h)Pα < 0 is equivalent to Θ1 < 0, Θ1 + Θ4 < 0. Then, we define W =

XPαX, Ŵ = XPβX. Linear matrix inequality (7) can be transformed into linear matrix
inequality (15), and Theorem 2 is proved.

5. Numerical Example

In this part, it is assumed that the dynamic interaction topology is semi-Markov
switching and the semi-Markov process has three modes. Let us take four agents as
examples. It is assumed that the weight of the first mode is 1 and that of the other two
modes is 10. The corresponding topology is shown in Figure 1.

(a) The first topology (b) The second topology (c) The third topology
Figure 1. Topological structure of three modes.
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The corresponding Laplacian matrices of communication graph are described as
follows:

L1=


2 −1 0 −1
−1 2 −1 0
0 −1 2 −1
−1 0 −1 2

, L2=


10 −10 0 0
−10 20 −10 0

0 −10 20 −10
0 0 −10 10

, L3=


20 −10 0 −10
−10 30 −10 −10

0 −10 10 0
−10 −10 0 20

.

It is assumed that the transition probability is bounded and satisfies:

π11(h) ∈ (−7.8,−1.3), π12(h) ∈ (0.5, 3), π13(h) ∈ (0.8, 4.5),
π21(h) ∈ (0.6, 3.8), π22(h) ∈ (−9,−1.6), π23(h) ∈ (1, 5),
π31(h) ∈ (1.6, 5.6), π32(h) ∈ (0.7, 6), π33(h) ∈ (−12,−2).

In the simulation, the ranges of fault are set to 0.5 ≤ θ1m ≤ 1 , 0.7 ≤ θ2m ≤ 1 ,
0.5 ≤ θ3m ≤ 1 and 0.65 ≤ θ4m ≤ 1 , m = 1, 2. The communication delay is set to τ = 0.13.
Let

S1=

[
1 0
0 1

]
, S2=

[
sin(tπ/40− π) 0

0 1

]
, S3=

[
1 0
0 0

]
, S4=

[
cos(tπ/50− π) 0

0 0

]
.

b1 = 0.13, b2 = 0.99, b3 = 0.06.

Based on Theorem 2, the calculated gain is as follows:

M1=

[
10 0
0 10

]
, M2=

[
9.53 0

0 9.53

]
, M3=

[
9.91 0

0 9.91

]
, M4=

[
10 0
0 10

]
.

K(1)=
[

0.1515 0
0 0.1515

]
, K(2)=

[
0.0155 0

0 0.0155

]
, K(3)=

[
0.0134 0

0 0.0134

]
.

The simulation results of failure estimations and disturbance estimations of each agent
are shown in Figures 2–5. When there are disturbances and actuator failures in the system,
the observer can quickly and accurately estimate the disturbances and judge the occurrence
of the failure and, finally, estimate the failure rate of the actuator to improve the control
effect.

Considering the influence of disturbance, actuator failures and the change in topology
on the system, the trajectory of each agent is shown in Figure 6. Set Agent 1 and Agent
3 to fail when the time is 6 seconds, and Agent 2 and Agent 4 to fail at 7 seconds. The
change in topology satisfies the semi-Markov process. In reference [37], considering
the influence of interference and actuator partial failure under the same conditions, the
trajectory of each agent is shown in Figure 7. Obviously, in the absence of the application
of the anti-disturbance fault-tolerant algorithm, due to the lack of strong robustness, once
partial actuator failures and disturbances occur during system operation, and the control
performance of the system will be greatly affected. Figure 8 shows the semi-Markov
switching signal with three modes. We can clearly see in Figure 6 that under the influence
of the fault-tolerant controller we designed, after constantly fluctuating the trajectory, all
the agents finally reach the consensus point in Ω.
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(a) Estimations of partial failure θ1
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(b) Estimations of disturbances ω1

Figure 2. Estimations of partial failure of actuators and disturbances (Agent 1).
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(a) Estimations of partial failure θ2
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Figure 3. Estimations of partial failure of actuators and disturbances (Agent 2).
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(b) Estimations of disturbances ω3

Figure 4. Estimations of partial failure of actuators and disturbances (Agent 3).
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Figure 5. Estimations of partial failure of actuators and disturbances (Agent 4).
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Figure 6. All state trajectories of agents in our method.

Figure 7. All state trajectories of agents in other method.
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Figure 8. Semi-Markov switching signal with three modes.
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6. Conclusions

This article studies the consensus problem of anti-disturbance and fault-tolerant
constraints of a time-delay multi-agent with semi-Markov topology switching. Firstly, a
disturbance observer is designed to observe the external disturbance, and an adaptive
law is designed to estimate the fault information combined with the known information
of the system. Then, in order to bypass the zero initial condition in the harsh control
method, a new performance index is designed by using the zero initial condition, and the
time-varying problem is solved by using the upper and lower bounds of the time-varying
transfer rate of the semi-Markov topology switching, so as to calculate the gain of the
controller and disturbance observer. After this, the interference suppression level γ of the
closed-loop system is given. Finally, the feasibility of our approach is verified by numerical
simulations. Compared with the reference [37], it is obvious that the multi-agent system
has better anti-interference performance and fault tolerance in case of failure after the use
of the anti-disturbance fault-tolerant control algorithm. This article mainly discusses the
actuator failure fault of a constant time-delay multi-agent, and the number of agents is
fixed. In future work, we can consider more complex fault models with time-varying delay
and an uncertain number of agents in the system.
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Appendix A

The detailed process of obtaining E{LV(t)} in Theorem 1 is as follows. First, according
to the derivation of E{LV1(t)}, E{LV2(t)}, E{LV3(t)} in Theorem 1, we have

E{LV(t)}
≤ 2

n
∑

p=1

m
∑

d=1

θ̃pd(t) ˙̃θpd(t)
ϑd

+ 2
n
∑

p=1
ω̃T

p (t) ˙̃ωp(t)

−
n
∑

p=1
maxp

∥∥xp(t)− ProΩ(xp(t))
∥∥2

+ xT(t)Dx(t)

− xT(t− τ)Dx(t− τ)+ τ2 ẋT(t)Zẋ(t)− xT(t)Zx(t)
+ xT(t)Zx(t− τ) + xT(t− τ)Zx(t)− xT(t− τ)Zx(t− τ)

+
n
∑

p=1
Bp

T Pβ[ωp(t)−θp ω̂p(t)]+
n
∑

p=1
Bp

TPβθp[ProΩ(xp(t))− xp(t)]

+
n
∑

p=1
Bp

T PβθpK(r(t)) ∑
q∈Np(t)

apq(r(t))[xq(t−τ)−xp(t−τ)]

+ 1
2

n
∑

p=1
Bp

T ∑
α∈Z

πβα(h)Pα

∥∥Bp
∥∥

Next, for ease of description, define the following augmented vectors as following:

x(t) = [xT
1 (t), · · · , xT

n (t)]T , ω(t) = [ωT
1 (t), · · · , ωT

n (t)]T ,
ω̂(t) = [ω̂T

1 (t), · · · , ω̂T
n (t)]T , θ = diag{θ1, θ2, . . . , θn},

∆(t) = [ProΩ(x1(t))− x1(t), · · · , ProΩ(xn(t))− xn(t)]
T .
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Therefore, we have:

E{LV(t)}
≤ 2

n
∑

p=1

m
∑

d=1

θ̃pd(t) ˙̃θpd(t)
ϑd

−‖∆(t)‖2+ 2
n
∑

p=1
ω̃T

p (t)Mp
m
∑

d=1
θ̃pd(t)(ω̂p(t)

− µp(t)) + 2
n
∑

p=1
ω̃T

p (t)(Sp −Mp)ω̃p(t)

+ xT(t)ΦPβ[ω(t)− θ ω̂(t)] + xT(t)ΦPβθ∆(t)
− xT(t)Pβθ(L(r(t))⊗K(r(t)))x(t− τ)+ 1

2 xT(t)Φ∑
α∈Z

πβα(h)PαΦTx(t)

+ xT(t)Dx(t)− xT(t− τ)Dx(t− τ) + τ2 ẋT(t)Zẋ(t)− xT(t)Zx(t)
+ xT(t)Zx(t− τ) + xT(t− τ)Zx(t)− xT(t− τ)Zx(t− τ)

Then, combine (9) with adaptive law (6), and we can finally obtain the following
results

E{LV(t)} ≤ −‖∆(t)‖2 − xT(t)Pβθ(L(r(t))⊗ K(r(t)))x(t− τ)
+
∥∥xT(t)

∥∥∥∥Pβ

∥∥‖∆(t)‖+ ∥∥xT(t)
∥∥∥∥Pβ

∥∥‖z(t)‖
+2ω̃T(t)(Si −Mi)ω̃(t) + 1

2

∥∥xT(t)
∥∥∥∥∥∥ ∑

α∈Z
πβα(h)Pα

∥∥∥∥‖x(t)‖
+xT(t)Dx(t)− xT(t− τ)Dx(t− τ) + τ2 ẋT(t)Zẋ(t)
−xT(t)Zx(t) + xT(t)Zx(t− τ) + xT(t− τ)Zx(t)
−xT(t− τ)Zx(t− τ)

where z(t) = ω(t)− θω̂(t).
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Appendix B

On the complex derivation process in the proof of theorem one∫ ∞
0 J̃dt = ∫∞

0 [yT(t)y(t)− γ2zT(t)z(t)]dt + V(t)−V(0)
= ∫∞

0 [yT(t)y(t)− γ2zT(t)z(t)]dt + V(t)
−
∫ 0
−τ xT(s)Dx(s)ds− τ

∫ 0
−τ

∫ 0
θ ẋT(s)Zẋ(s)dsdθ

− 1
2 xT(0)ΦPβx(0)− ω̃T(0)ω̃(0)− ∆T(0)∆(0)− θ̃T(0)θ̃(0)

ϑd

+ γ2
∫ t

0

[∫ 0
−τ xT(s)F5Dx(s)ds

]
dt− γ2

∫ ∞
0

∫ 0
−τ xT(s)F5Dx(s)dsdt

+ γ2
∫ t

0

[
τ
∫ 0
−τ ẋT(s)F6Zẋ(s)dsdθ

]
dt− γ2

∫ ∞
0

[
τ
∫ 0

θ ẋT(s)F6Zẋ(s)dsdθ
]
dt

+ γ2 ∫ t
0 xT(0)ΦPβF1x(0)dt− γ2 ∫∞

0 xT(0)ΦPβF1x(0)dt
+ γ2 ∫ t

0 ω̃T(0)F2ω̃(0)dt− γ2 ∫∞
0 ω̃T(0)F2ω̃(0)dt + γ2 ∫ t

0 ∆T(0)F3∆(0)dt

− γ2 ∫∞
0 ∆T(0)F3∆(0)dt + γ2 ∫ t

0
θ̃T(0)F4 θ̃(0)

ϑd
dt− γ2 ∫∞

0
θ̃T(0)F4 θ̃(0)

ϑd
dt

= ∫∞
0 [yT(t)y(t)− γ2zT(t)z(t)]dt + V(t)

− γ2
∫ ∞

0

∫ 0
−τ xT(s)F5Dx(s)dsdt− γ2

∫ ∞
0

[
τ
∫ 0

θ ẋT(s)F6Zẋ(s)dsdθ
]
dt

− γ2 ∫∞
0 xT(0)ΦPβF1x(0)dt− γ2 ∫∞

0 ω̃T(0)F2ω̃(0)dt

− γ2 ∫∞
0 ∆T(0)F3∆(0)dt− γ2∫∞

0
θ̃T(0)F4 θ̃(0)

ϑd
dt +γ2∫ t

0 xT(0)ΦPβF1x(0)dt
− 1

2 γ2xT(0)ΦPβx(0) + [γ2 ∫ t
0 ω̃T(0)F2ω̃(0)dt− ω̃T(0)ω̃(0)]

+ [γ2 ∫ t
0 ∆T(0)F3∆(0)dt− ∆T(0)∆(0)] + [γ2 ∫ t

0
θ̃T(0)F4 θ̃(0)

ϑd
dt− θ̃T(0)θ̃(0)

ϑd
]

+ γ2
∫ t

0

[∫ 0
−τ xT(s)F5Dx(s)ds

]
dt− γ2

∫ 0
−τ xT(s)Dx(s)ds

+ γ2
∫ t

0

[
τ
∫ 0
−τ ẋT(s)F6Zẋ(s)dsdθ

]
dt− τγ2

∫ 0
−τ

∫ 0
θ ẋT(s)Zẋ(s)dsdθ

= J + V(t) + [γ2∫ t
0 xT(0)ΦPβF1x(0)dt− 1

2 γ2xT(0)ΦPβx(0)]
+ [γ2 ∫ t

0 ω̃T(0)F2ω̃(0)dt− ω̃T(0)ω̃(0)]

+ [γ2 ∫ t
0 ∆T(0)F3∆(0)dt− ∆T(0)∆(0)] + [γ2 ∫ t

0
θ̃T(0)F4 θ̃(0)

ϑd
dt− θ̃T(0)θ̃(0)

ϑd
]

+ {γ2
∫ t

0

[∫ 0
−τ xT(s)F5Dx(s)ds

]
dt− γ2

∫ 0
−τ xT(s)Dx(s)ds}

+ {γ2
∫ t

0

[
τ
∫ 0
−τ ẋT(s)F6Zẋ(s)dsdθ

]
dt− τγ2

∫ 0
−τ

∫ 0
θ ẋT(s)Zẋ(s)dsdθ}
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