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Abstract: A new mathematical model of Coronavirus (2019-nCov) using piecewise hybrid fractional
order derivatives is given in this paper. Moreover, in order to be consistent with the physical model
problem, a new parameter µ is presented. The boundedness, existence, and positivity of the solutions
for the proposed model are discussed. Two improved numerical methods are presented in this paper.
The Caputo proportional constant nonstandard modified Euler–Maruyama method is introduced
to study the fractional stochastic model, and the Grünwald–Letnikov nonstandard finite difference
method is presented to study the hybrid fractional order deterministic model. Comparative studies
with real data from Spain and Wuhan are presented.
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1. Introduction

Infectious diseases continue to impact a vast number of people across the world,
despite substantial technical improvements in treatment and prevention. To reduce the
prevalence of these diseases, tight management of infection transmissibility, population
size, human contact rates, infection duration, and other critical parameters are required
to control the spread of infectious diseases. Mathematical models play an important role
in understanding the dynamics of pandemic diseases and their control, especially in the
initial stages of diseases or when vaccination is not accessible. In recent years, the number
of researchers from numerous domains have studied and investigated various types of
biological models. A variety of mathematical models have been created in the literature to
represent the dynamics of various infectious diseases [1–10].

Recently, the literature has proposed piecewise fractional differential equations, i.e.,
deterministic–stochastic differential equations or vice versa. The goal of this piecewise
approach is to effectively investigate the model with real data [11–13]. Many processes in
real-world problems display crossover behavior. Humanity has found it challenging to
model processes based on crossover behavior. Real-world challenges have been found in a
variety of cases as a result of the transition from Markovian to random processes, such as
in epidemiology with the spread of infectious diseases and even some chaos. Deterministic
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and stochastic methodologies were created independently to improve the future state of
the system and predictability [12].

The concepts of piecewise integral and differential operators were used and proposed
to describe several complicated real-world problems, such as chaos problems [14]; the
authors introduced three different cases for formulating the deterministic–stochastic chaotic
models and studied these models numerically. Furthermore, the concept of piecewise
differentiation appears to be efficient for the epidemiological problems, when there are
modeling problems with crossover behaviors [12,15].

Recently, there have been very interesting papers on piecewise Coronavirus (2019-nCov)
mathematical models such as [11,16,17].

In the current paper, we will present a novel Coronavirus (2019-nCov) mathematical
model using piecewise fractional differential derivatives. Moreover, we will construct new
numerical methods dependent on the modified Euler–Maruyama method (MEM) and the
nonstandard finite difference method with the discretization of the Caputo proportional
constant (CPC-NMEMM) to solve the hybrid fractional Brownian motion stochastic model
and Grünwald–Letnikov nonstandard finite difference approximation, with the discretiza-
tion of the Caputo proportional constant, to numerically study the hybrid fractional order
deterministic models [18]. The mean square stability analysis of the CPC-NMEMM is stud-
ied. Some important analysis including boundedness, positivity, uniqueness and existence
of the proposed model solutions are studied. In order to demonstrate the effectiveness and
broad applicability of the suggested methods, numerical simulations will be provided.

To our knowledge, the proposed piecewise model and CPC-NMEMM given in this
paper are new and have not been conducted before.

The rest of this paper is organized as follows: In Section 2, important definitions of hy-
brid fractional order derivatives, fractional Brownian motion and fractional Gaussian noise
are introduced. An analysis of the fractional stochastic–deterministic model is proposed in
Section 3; moreover, the existence and uniqueness of the proposed model are proved in
Section 4. In Section 5, numerical schemes for solving the proposed model are constructed.
Numerical simulations are presented with discussions in Section 6. Finally, the conclusions
are offered in Section 7.

2. Fractional Order Operator Definitions

Definition 1. The hybrid fractional order proportional Caputo operator is defined as follows [19]:

CP
0 Dα

t y(t) = (Γ(1− α))−1(
∫ t

0
(t− s)−α

(
y(s)K1(α, s) + y′(s)K0(α, s)

)
ds),

= (t−α(Γ(1− α))−1)(K0(α, t)y′(t) + y(t)K1(α, t)).
(1)

Furthermore, the hybrid fractional order Caputo proportional constant (CPC) operator is
defined as follows [19]:

CPC
0 Dα

t y(t) = (Γ(1− α))−1(
∫ t

0
(t− s)−α

(
y′(s)K0(α) + y(s)K1(α)

)
ds)

= K0(α)
C
0 Dα

t y(t) +RL
0 I1−α

t y(t)K1(α),
(2)

where K1(α) and K0(α) are constants. Here, we consider K0(α) = αQ(1 − α), K1(α) = (1− α)Qα,,
0 < α < 1 and Q as a constant.

In both of these formulas, the domain of functional space is given by requiring that y
is differentiable and both y and y0 are locally L1 functions on the positive reals.

Definition 2. The fractional order CPC derivative’s inverse operators are given by [19]:

CPC
0 Iα

t y(t) = (
∫ t

0
exp

[
K1(α(t))(K0(α))

−1(t− s)
]RL

0
D1−α

t y(s)ds)
1

K0(α)
. (3)
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2.1. Fractional Gaussian Noise and Fractional Brownian Motion

The integer order Brownian motion Bt is the classical white noise Wt:

Bt =
∫ t

0
Wsds. (4)

For the fractional Brownian motion (FBM), there are various definitions. The most prevalent
definition will be indicated as BH∗

1 (t) and is referred to as the order’s fractional integral
H∗ − 0.5 of classical white noise, i.e., [20]:

BH∗
1 (t) =

1
Γ(H∗ − 0.5)

∫ t

0
(t− s)H∗−0.5Wsds. (5)

When H∗ + 0.5, it reverts to the standard Brownian motion definition (4). Another formula-
tion, BH∗

2 (t), extends the classical Brownian motion but with a fractional order increment
of order H∗ [21]:

BH∗
2 (t) =

∫ t

0
W(t)dtH∗+0.5. (6)

For simplicity, we denote BH∗
1 (t) as BH∗(t).

Now, we can write:

dBH∗ = WH∗dt. (7)

Bt =
∫ t

0
WH∗(s)ds. (8)

Then, (5) is given as:

BH∗(t) = (Γ(H∗ − 0.5))−1
∫ t

0
(t− s)−0.5+H∗Wsds, (9)

or

BH∗(t) =
1

Γ(H∗ + 1.5)

∫ t

0
(t− s)0.5+H∗Wsds. (10)

2.2. Modified Euler–Maruyama Technique

Consider the following stochastic differential equations (SDEs) driven by FBM:

dyϑ = Λϑ(y1, y2, . . . , yκ , t) + Yϑ(y1, y2, . . . , yκ , t)dBH∗
η (t), 0 < t ≤ T, (11)

yϑ(t0) = yϑ,0, η, ϑ = 1, . . . , κ,

where Λϑ(y1, y2, . . . , yκ , t) and Yϑ(y1, y2, . . . , yκ , t) are real continuous functions and yϑ,0 is
a deterministic initial value. Furthermore, Λϑ(y1, y2, . . . , yκ , t) is the mean rate of change
of the system state yκ at time t and Yϑ(y1, y2, . . . , yκ , t)dBH∗

η (t) is the random perturbation.
The term Λϑ(y1, y2, . . . , yκ , t) is used to represent the average or the deterministic part of
the problem and Yϑ(y1, y2, . . . , yκ , t) is used to represent the intensity of the random part.

In the case of classical Brownian motion, i.e., when H∗ − 0.5, the following Euler–
Maruyama method (EMM) is a popular solution for Equation (11):

yn+1
ϑ = yn

ϑ + Λϑ

(
yn

1 , yn
2 , . . . , yn

κ , tn)∆t + Yϑ

(
yn

1 , yn
2 , . . . , yn

κ , tn)∆Bn
η , 0 < t ≤ T,

η, ϑ = 1, . . . , κ.
(12)

The MEMM for solving Equation (11) in the case of the FBM can be written as H∗ > 0.5 [22].

yn+1
ϑ = yn

ϑ + Λϑ

(
yn

1 , yn
2 , . . . , yn

κ , tn)∆t + Yϑ

(
yn

1 , yn
2 , . . . , yn

κ , tn)∆Bn
η

+0.5Yϑ

(
yn

1 , yn
2 , . . . , yn

κ , tn)Y′ϑ(yn
1 , yn

2 , . . . , yn
κ , tn)∆t2H∗ , 0 < t ≤ T, η, ϑ = 1, . . . , κ,

(13)
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where H∗ is the Hurst index. The EMM has a relatively low convergence rate, according
to [21,23]; the strong convergence of the EMM for pure Brownian motion H∗ = 0.5 is
O
(
∆t0.5), but for FBM with H∗ > 0.5 the convergence of the MEMM is O

(
∆tH∗−0.5

)
,

meaning that as the Hurst index H∗ increases, the rate of convergence of the MEMM
increases. The biggest challenge with adopting the EMM in the instance of FBM is the time
required to generate random samples that include a matrix inversion in addition to the
huge sample size required for reliable results [24].

3. Fractional Stochastic–Deterministic Model

In the following, we will extend the Coronavirus (2019-nCov) mathematical model [25]
by applying the piecewise differentiation technique. This model takes into account the
super-spreading phenomenon of some individuals. Moreover, we consider a fatality
compartment related to death due to the virus infection. In doing so, the constant total
population size N is subdivided into eight epidemiological classes: susceptible class (S),
exposed class (E), symptomatic and infectious class (I), super-spreaders class (P), infectious
but asymptomatic class (A), hospitalized class (H), recovery class (R), and fatality class (F).
The new hybrid fractional order operator CPC, which is defined as a linear combination
of integral Riemann–Liouville and the fractional order derivative of Caputo, is applied to
extend the deterministic model. The fractional Brownian motion and the hybrid fractional
order operator are applied to extend SDEs. A new parameter, µ, is presented in order to be
consistent with the physical model problem. Moreover, we avoid dimensional mismatches
by modifying the fractional model with an auxiliary parameter µ. As a result, the left side
possesses the dimension day−1 [26]. Now, the updated nonlinear piecewise fractional order
differential mathematical model is given as follows:

1
µ1−α

CPC

0
Dα

t S = −β IS
N − lβ HS

N − β′ PS
N ,

1
µ1−α

CPC

0
Dα

t E = β IS
N + lβ HS

N + β′ PS
N − KE,

1
µ1−α

CPC

0
Dα

t I = Kρ1E− (γa + γi)I − δi I,
1

µ1−α

CPC

0
Dα

t P = Kρ2E− (γa + γi)P− δpP,
1

µ1−α

CPC

0
Dα

t A = K(1− ρ1 − ρ2)E, 0 < t ≤ T1,
1

µ1−α

CPC

0
Dα

t H = γa(I + P)− γr H − δh H,
1

µ1−α

CPC

0
Dα

t R = γi(I + P) + γr H,
1

µ1−α

CPC

0
Dα

t F = δi I + δpP + δh H,

(14)

P(0) = P0, E(0) = E0, S(0) = S0, F(0) = F0, A(0) = A0, R(0) = R0,
H(0) = H0, I(0) = I0.

(15)



1
µ1−α1

CPC

0
Dα1

t S =
(
−β IS

N − lβ HS
N − β′ PS

N

)
+ σ1S dBH∗

1 (t)
dt ,

1
µ1−α1

CPC

0
Dα1

t E =
(

β IS
N + lβ HS

N + β′ PS
N − KE

)
+ σ2E dBH∗

2 (t)
dt ,

1
µ1−α1

CPC

0
Dα1

t I = (−δi I + Kρ1E− (γa + γi)I) + σ3 I dBH∗
3 (t)
dt , T1 < t ≤ T,

1
µ1−α1

CPC

0
Dα1

t P =
(
−δpP− (γa + γi)P + Kρ2E

)
+ σ4P dBH∗

4 (t)
dt ,

1
µ1−α1

CPC

0
Dα1

t A = ((−ρ1 − ρ2 + 1)KE) + σ5 A dBH∗
5 (t)
dt ,

1
µ1−α1

CPC

0
Dα1

t H = (−γr H − δh H + γa(P + I)) + σ6H dBH∗
6 (t)
dt ,

1
µ1−α1

CPC

0
Dα1

t R = (γr H) + γi(P + I) + σ7R dBH∗
7 (t)
dt ,

1
µ1−α1

CPC

0
Dα1

t F =
(
δhH + δi I + δpP

)
+ σ8F dBH∗

8 (t)
dt .

(16)
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E(T1) = E1, P(T1) = P1, I(T1) = I1, H(T1) = H1, R(T1) = R1, A(T1) = A1,

F(T1) = F1, S(T1) = S1.

4. Analysis of the Model

It is well known that it makes no sense for the system to have negative solutions
because the model’s purpose is population evolution. As a result, we first show that the
state variables are both nonnegative and bounded. Boundedness of the proposed model
solution can be verified by adding all of the equations of system (14) as follows:

CPC
0 Dα

t S(t) + CPC
0 Dα

t I(t) + CPC
0 Dα

t E(t) + CPC
0 Dα

t A(t) + CPC
0 Dα

t P(t) + CPC
0 Dα

t H(t)
+ CPC

0 Dα
t R(t) + CPC

0 Dα
t F(t) = CPC

0 Dα
t N(t).

Then,
CPC
0 Dα

t N(t) = 0, 0 ≤ N(0) = A, (17)

where A is a constant and N represents the population. The solution to (17) is provided as
follows [19]:

N(t) ≥ Ae
(− K1(α)

K0(α)
t)

. (18)

The inequality (18) implies that 0 ≤ N(t), t −→ ∞, i.e., the solutions of the system (14)
are bounded.

Theorem 1. All solutions of system (14) are nonnegative and remain in R8 for all t ≥ 0.

Proof. Using (3), we have

y(t) = y(t0) +
1

K0(α)

∫ t

t0

exp
(
−K1(α)

K0(α)
(t− s)

)RL

0
D1−α

t y(s)ds > 0. (19)

Using [27], Equations (15) and (19), if 0 ≤ t < ∞, we can prove the soluations of the
following equations are positive:

1
µ1−α

CPC

0
Dα

t S
∣∣∣S=0 = 0,

1
µ1−α

CPC

0
Dα

t E
∣∣∣E=0 = β IS

N + lβ HS
N + β′ PS

N ≥ 0,
1

µ1−α

CPC

0
Dα

t I
∣∣∣I=0 = Kρ1E ≥ 0,

1
µ1−α

CPC

0
Dα

t P
∣∣∣P=0 = Kρ2E ≥ 0,

1
µ1−α

CPC

0
Dα

t A
∣∣∣A=0 = K(1− ρ1 − ρ2)E ≥ 0,

1
µ1−α

CPC

0
Dα

t H
∣∣∣H=0 = γa(I + P) ≥ 0,

1
µ1−α

CPC

0
Dα

t R
∣∣∣R=0 = (γi(I + P) + γr H) ≥ 0,

1
µ1−α

CPC

0
Dα

t F
∣∣∣F=0 = (δi I + δpP + δh H

)
≥ 0.

(20)

It follows from (20) that the solution is positive and will remain in R8 and, thus, we define
the biologically feasible region for the model (15), given

Z =
{
(S(t), I(t), P(t), A(t), R(t), H(t), F(t), E(t)) ∈ R8

∣∣∣S(t) + I(t) + P(t) + A(t) + R(t) + H(t) + F(t) + E(t) = N ≥ 0
}
�



Mathematics 2022, 10, 4579 6 of 18

4.1. Basic Reproduction Number

In the following, we briefly derive the basic reproduction number (R0) for (14) by
using the next generation method [28]. Consider the following matrices F1 and V, where F1
represents the new infection terms, and V represents the remaining transfer terms [28,29]:

F1 = µ1−α


0 β β β′

0 0 0 0
0 0 0 0
0 0 0 0

,

V = µ1−α


−K 0 0 0
−K −(γa + γi) 0 0
−Kρ1 0 −

(
γa + γi + δp

)
0

0 γa γa −(γr + δh)


Then,

R0 = ρ
(

F1V−1
)
= µ1−α[

βρ1(γal + (γr + δh))

(γr + δh)(γa + γi + δi)
+

(βαγal + β′(γr + δh))ρ2

(γr + δh)
(
γa + γi + δp

) ], (21)

where ρ denotes the spectral radius of the F1V−1 [28].

4.2. Uniqueness and Existence

The existence and uniqueness of the solutions of the proposed model will be estab-
lished using.

Banach fixed point theorem. Let 0 ≤ t < ∞; the system (14) can be written as follows:

CPC
0 Dα

t y(t) = q(y(t), t), y(0) = y0 ≥ 0. (22)

y(t) = (S, H, E, I, P, D, R, A)T and refers to the state variables, and q is a vector of
continuous function such that:



q1
q2
q3
q4
q5
q6
q7
q8


=



µ1−α
(
−β IS

N − lβ HS
N − β′ PS

N

)
µ1−α

(
β IS

N + lβ HS
N + β′ PS

N − KE
)

µ1−α(−(γa + γi)I − δi I + Kρ1E)
µ1−α

(
−(γi + γa)P + Kρ2E− δpP

)
µ1−α((−ρ2 − ρ1 + 1)KE)
µ1−α(−γr H + γa(P + I)− δh H)
µ1−α(γr H + γi(P + I))
µ1−α

(
δh H + δi I + δpP

)


with initial condition y0. Moreover, the Lipschitz condition is satisfied by q, where q is a
quadratic vector function, i.e., there exists M0 ∈ R, such that [30]:

‖ q(y1(t), t)− q(y2(t), t) ‖≤ M0 ‖ y1(t)− y2(t) ‖ . (23)

Theorem 2. The proposed model (14) has a unique solution if the below condition holds:

M0Yα
maxXα

max
Γ(α− 1)K0(α)

< 1, 0 ≤ t < ∞ . (24)

Proof. Applying (2) in (22), we have:

y(t) = y(t0) +
1

K0(α)

∫ t

0
exp(−K1(α(t))

K0(α)
(t− s))RL

0 D1−α
t q(y(s), s)ds. (25)
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Let K = (0, T) and B : C
(
K,R8) −→ C

(
K,R8) ⇒

B[y(t)] = y(t0) +
1

K0(α)

∫ t

0
exp(− K1(α)

K0(α(t))
(t− s))RL

0 D1−α
t q(y(s), s)ds. (26)

It provides:
y(t) = B[y(t)].

Let ‖ . ‖K be the supremum norm on K. Thus

‖ y(t) ‖K = sup
t∈K
‖ y(t) ‖, y(t) ∈ C(K,R8).

So, C
(
K,R8) with ‖ . ‖K as a Banach space. The relationship below is valid:

‖
∫ t

0
ϕ(s, t)y(s)ds ‖≤ Λ ‖ ϕ(s, t) ‖K‖ y(s) ‖K,

with y(t) ∈ C
(
K,R8), ϕ(s, t) ∈ C

(
K2,R8)⇒: ‖ ϕ(s, t) ‖K= supt,s∈K|ϕ(s, t)|.

Then (26) is written as:

‖ B[y1(t)]− B[y2(t)] ‖K≤‖ 1
K0(α)

∫ t
0 exp(−K1(α)

K0(α)
(t− s))( RL

0 D1−α
t q(y1(s), s).

−RL
0 D1−α

t q(y2(s), s))ds‖K.
≤ Yα

max
Γ(α−1)K0(α)

‖
∫ t

0 (t− s)α−2(q(y1(s), s)− q(y2(s), s))ds ‖K,

≤ Yα(t)
max Xα(t)

max
Γ(α−1)K0(α)

‖q(y1(t), t)− q(y2(t), t)‖K,

≤ M0Yα
maxXα

max
Γ(α−1)K0(α)

‖y1(t)− y2(t)‖K.

(27)

Then, we have:
‖ B[y1(t)]−B[y2(t)] ‖K≤ L ‖ y1(t)− y2(t) ‖K, (28)

where

L =
M0Yα(t)

max Xα
max

Γ(α− 1)K0(α)
.

If L < 1, the operator B is called a contraction. Then, (14) is a unique solution. �

5. Numerical Procedure for Piecewise Model

The numerical procedure can be used to solve the model (14–16) as follows: assuming
that a real-world problem exhibits crossover from memory processes (i.e., fractional order)
to fractional stochastic processes, the Cauchy problem associated with this problem can be
expressed as follows:

CPC
0 Dα

t yϑ = Λϑ(y1, y2, . . . , yκ), 0 < t ≤ T1, 0 < α ≤ 1, (29)

yϑ(t0) = yϑ,0,

CPC
0 Dα1

t yϑ = Λϑ(y1, y2, . . . , yκ , tn) + Yϑ(y1, y2, . . . , yκ , tn)dBH∗
η (t),

T1 < t ≤ T, 0 < α1 ≤ 1,
yϑ(t1) = yϑ,1.

(30)

First, by dividing [0, T] into two parts:

0 < t ≤ t1 ≤ . . . ≤ tn1 = T1 ≤ tn1+1 ≤ tn1+2 ≤ . . . tn2 = T.
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Relation (2) can be written as follows:

CPC
0 Dα

t y(t) =
1

Γ(1− α))

∫ t

0
(t− s)−α

(
K1(α)y(s) + K0(α)y′(s)

)
ds,

= K1(α)
RL
0 I1−α

t y(t) + K0(α)
C
0 Dα

t y(t),

= K1(α)
RL
0 Dα−1

t y(t) + K0(α)
C
0 Dα

t y(t),

(31)

where K1(α), and K0(α) are solely dependent on α.
One of the most developed methods was the nonstandard finite difference method

(NSFDM) that was introduced by Mickens [31]. This method can be constructed easily to
improve the discretization of some terms in the differential equations such that, depending
on the denominator function and the specific discretization, this method is more accurate
and more stable than the standard method; for more details on the advantages of the
NSFDM compared to the standard finite difference method see [3].

We can discretize (31) using GL-approximation and the NFDM as follows:

CPC
0 Dα

t y(t)
∣∣
t=tn1 = K1(α)

(Θ(∆t))α−1 (yn1+1 +
n1+1

∑
i=1

ωiyn1+1−i)

+ K0(α)
(Θ(∆t))α (yn1+1 −∑n1+1

i=1 µiyn1+1−i − qn1+1y0),
(32)

K1(α)

(Θ(∆t))α−1 (yn1+1 + ∑n1+1
i=1 ωiyn1+1−i) +

K0(α)
(Θ(∆t))α (yn1+1 −∑n1+1

i=1 µiyn1+1−i − qn1+1y0)

= Λϑ

(
yn1

1 , yn1
2 , . . . , yn1

k
)
,

(33)

where ω0 = 1, ωi =
(
1− α

i
)
ωi−1, tn1 = n1(Θ(∆t)), ∆t = T1

Nn
, and Nn is a natural number.

µi = (−1)i−1( α
i
)
, µ1 = α, qi =

iα
Γ(1−α)

and i = 1, 2, . . . , n1 + 1.
Also, let us assume that [25]:

0 < µi+1 < µi < . . . < µ1 = α < 1,
0 < qi+1 < qi < . . . < q1 = 1

Γ(−α+1) .

Remark 1. If K1(α) = 0 and K0(α) = 1 in (33), we can obtain the discretization of the nonstandard
finite difference technique with the Caputo operator (C-NFDM).

If H∗ > 0.5, the NMEMM for solving Equation (30) in the case of the FBM in [T1, T]
can be written as [22]:

yn2+1
ϑ = yn2

ϑ + Λϑ

(
yn2

1 , yn2
2 , . . . , yn2

κ , tn2)∆t + Yϑ

(
yn2

1 , yn2
2 , . . . , yn2

κ , tn2)∆Bn2
η

+0.5Yϑ

(
yn2

1 , yn2
2 , . . . , yn2

κ , tn2)Y′ϑ(yn2
1 , yn2

2 , . . . , yn2
κ , tn2)∆t2H∗ ,

0 < t ≤ T,η, ϑ = 1, . . . , κ,
(34)

Now, to solve FSDEs driven by FBM and CPC fractional derivatives (30) in T1 < t ≤ T,
we constructed a new method to solve (30); this method is developed from a modified
EM technique and Grünwald–Letnikov nonstandard finite difference method with dis-
cretization of the CPC operator. The new method, called Caputo proportional constant
nonstandard modified Euler–Maruyama method (CPC-NMEMM), is given as follows:

K1(α)

(Θ(∆t))α−2

(
yn2+1 +

n2+1
∑

i=1
ωiyn2+1−i

)
+ K0(α)

(Θ(∆t))α−1

(
yn2+1 −

n2+1
∑

i=1
µiyn2+1−i − qn2+1y0

)
= Λϑ

(
yn2

1 , yn2
2 , ..., yn2

κ

)
+ Yϑ

(
yn2

1 , yn2
2 , ..., yn2

κ , tn2
)
∆Bn2

η

+0.5Yϑ

(
yn2

1 , yn2
2 , ..., yn2

κ , tn2
)
Y′ϑ
(
yn2

1 , yn2
2 , ..., yn2

κ , tn2
)
∆t2H∗ ,

T1 < t ≤ T, ϑ = 1, ..., κ, 0 < α1 ≤ 1,

(35)
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where ω0 = 1, ωi =
(
1− α1

i
)
ωi−1, tn2 = n2(Θ(∆t)), ∆t = T1

Nn
, and Nn is a natural number.

µi = (−1)i−1( α1
i
)
, µ1 = α1, qi = iα1

Γ(1−α1)
and i = 1, 2, . . . , n2 + 1. Furthermore, let us

assume that [32]:
0 < µi+1 < µi < . . . < µ1 = α1 < 1,

0 < qi+1 < qi < . . . < q1 =
1

Γ(−α1 + 1)

Mean Square Stability of the CPC-NMEMM

The stability of the CPC-NMEMM (35) will be proved here. Consider:

CPC
0 Dα

t y(t) = σy(t) dBH∗

dt + ay(t), 0 < t ≤ T.
y(0) = y0,

(36)

as a test problem.

Theorem 3. The CPC-NMEMM (35) is a mean square stable method.

Proof. Using the CPC-NMEMM (35) and (36), we have:

Ayn2+1 + A ∑n2+1
i=1 yn2−i+1BB + G(yn2+1 −∑n2+1

i=1 µiyn2+1−i − qn2+1y0)

= aΘ(4t)yn2 + σyn2 4 Bn2 +
1
2 σ2yn2(Θ(4t))2H∗ ,

(37)

where A = Qα(1−α)

Θ(4t)α−2Γ(2−α)
, BB = Qα(1−α)

Θ(4t)α−2Γ(2−α)
, G = αC2αQ(1−α)

Θ(4t)α−1 .

Then,

yn2+1 = (
Θ(∆t)a+σ∆Wn2+

1
2 σ2(Θ(∆t))2H∗

A+G )yn2 + G(∑n2+1
i=1 µiyn2+1−i − qn2+1y0)

−
(

A ∑n2+1
i=1 yn2−i+1BB

)
,

(38)

also,

yn2+1 = (
Θ(Mt)a+σ∆Bn2+

1
2 σ2(Θ(Mtn2 ))

2H∗

A+G )yn2 + G(
n2+1

∑
i=1

µiyn2+1−i − qn2+1y0)

−(A
n2+1

∑
i=1

yn2−i+1B).
(39)

Then, we can claim:

yn2+1 ≤ (
Θ(4t)a + σ4 Bn2 +

1
2 σ2(4Bn2)

2H∗

A + G
)yn2 , (40)

From [33], the proposed scheme (35) for σ, Θ(4t), a is a mean square stable if

1 ≥ E(|
aΘ(4t) + σ4 Bn +

1
2 (Θ(4t))2H∗σ2

G + A
|2).

�

6. Numerical Simulations

This section studies the piecewise fractional differential equations model (14–16) and
its numerical simulations. We consider the reported cases of COVID-19 infection, so we
consider the time unit per day. We have chosen certain parameter values from [25] for
the real data fitting of the model (14–16), and the remainder values are fitted for the data
gathered for Spain from 25 February to 16 May 2020. Furthermore, since in some parts of
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Spain there is a more concentrated population and intensive use of public transportation,
we consider N = 47,000,000

425 . The data collected for Wuhan were from 4 January to 9 March
2020. For all of these cases, we have considered the official data published by the WHO. The
total population of Wuhan is about 11, 000, 000. During the COVID-19 outbreak, there was
a restriction of movement of individuals due to quarantine in the city. As a consequence,
there was a limitation on the spread of the disease. In agreement, in our model, we consider
the total population, N = 11,000,000

250 [8]. To clarify the importance of the proposed model,
we compared the results we obtained with the real data for the states of Spain and Wuhan,
as we explained previously. The methods (33 and 35) are constructed to study the proposed
model. A comparative study using data from WHO for Spain versus the simulation of the
proposed model (14–16) at different values of H∗, α, σi, i = 1, 2, . . . , 8 and the real data from
Spain are given in Figures 1–5. We noted that the obtained results of Figures 1–3 are in
excellent agreement with real data from Spain. The results in these figures are better than
the results obtained in Figures 4 and 5. By comparing our results with the results in [34]
and using the same data where the real data in this case come from Spain, we noticed
that our results match with the real data better than the results in [34]. Figure 6 shows the
comparison between real data from WHO for Wuhan versus the simulation of the proposed
model (14–16). Furthermore, by comparing our results with the results in [7,8] and the
same data where the real data in this case come from Wuhan, we noticed that our results
match with the real data better than the results in [7,8]. Moreover, Figure 7 shows how the
behavior of solutions changes according to the different values α, σi and a new behavior
appears. Furthermore, Figure 8 shows how the behavior of solutions changes according
to the different values of α1, σi and a new behavior appears. Figures 9–11 show how the
behavior of solutions changes according to the different values of H∗, σi and different
values of α, α1.
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σ4 = σ5 = σ6 = σ7 = σ8 = 0.1.
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σ4 = σ5 = σ6 = σ7 = σ8 = 0.1.



Mathematics 2022, 10, 4579 12 of 18
Mathematics 2022, 10, x FOR PEER REVIEW 13 of 19 
 

 

 

Figure 5. Numerical simulation for system (14–16) at 𝐻∗ = 0.5, 𝛼 = 1, 𝛼1 = 1, 𝜎1 = 𝜎2 =

𝜎3 = 0.01, 𝜎4 = 𝜎5 = 𝜎6 = 𝜎7 = 𝜎8 = 0.1. 

 

Figure 6. Numerical simulation for system (14–16) and the real data from Wuhan at 𝐻∗ =
0.9, 𝛼 = 0.975, 𝛼1 = 0.978, 𝜎1 = 0.1, 𝜎2 = 0.3, 𝜎3 = 0.1, 𝜎4 = 0.01, 𝜎5 = 𝜎6 = 𝜎7 = 𝜎8 = 0.1. 

Figure 5. Numerical simulation for system (14–16) at H∗ = 0.5, α = 1, α1 = 1, σ1 = σ2 = σ3 = 0.01,
σ4 = σ5 = σ6 = σ7 = σ8 = 0.1.

Mathematics 2022, 10, x FOR PEER REVIEW 13 of 19 
 

 

 

Figure 5. Numerical simulation for system (14–16) at 𝐻∗ = 0.5, 𝛼 = 1, 𝛼1 = 1, 𝜎1 = 𝜎2 =

𝜎3 = 0.01, 𝜎4 = 𝜎5 = 𝜎6 = 𝜎7 = 𝜎8 = 0.1. 

 

Figure 6. Numerical simulation for system (14–16) and the real data from Wuhan at 𝐻∗ =
0.9, 𝛼 = 0.975, 𝛼1 = 0.978, 𝜎1 = 0.1, 𝜎2 = 0.3, 𝜎3 = 0.1, 𝜎4 = 0.01, 𝜎5 = 𝜎6 = 𝜎7 = 𝜎8 = 0.1. 

Figure 6. Numerical simulation for system (14–16) and the real data from Wuhan at H∗ = 0.9,
α = 0.975, α1 = 0.978, σ1 = 0.1, σ2 = 0.3, σ3 = 0.1, σ4 = 0.01, σ5 = σ6 = σ7 = σ8 = 0.1.
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7. Conclusions

A new COVID-19 hybrid fractional order using piecewise derivatives has been for-
mulated in this article. The new hybrid fractional order operator is written as a linear
combination of the fractional order integral of Riemann–Liouville, and the fractional order
Caputo derivation is applied to extend the deterministic model. Furthermore, the fractional
Brownian motion and the hybrid fractional order operator are applied to extend the stochas-
tic differential equations. The basic reproduction number R0 is proved. The existence,
uniqueness, boundedness, and positivity of the solutions of the proposed model are estab-
lished. In order to be compatible with the physical model problem, a new parameter µ is
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added. The Caputo proportional constant nonstandard modified Euler–Maruyama method
is presented to study the fractional stochastic model, and the Grünwald–Letnikov nonstan-
dard finite difference method is presented to study the hybrid fractional order deterministic
model. The real data from Spain and Wuhan for the COVID-19 infection are considered to
obtain the parameter’s numerical values. We utilized the Grünwald–Letnikov nonstandard
finite difference method for the approximation solutions of the proposed model. The
Grünwald–Letnikov nonstandard finite difference method has good properties in stability
for solving fractional systems such as these, provides accurate approximation solutions,
and saves computational time when the final time is very long. We studied the proposed
model numerically and presented the graphical results. Some phase portraits in a stochastic
environment are presented. The obtained results lead us to believe that this new approach
of model and numerical methods can study complicated real-world problems in the future.
In the future, the present study can be extended to optimal control and to examine the
impact of multiple vaccination strategies on the dynamics of COVID-19 in a population.
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