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Abstract: Chaos dynamics is an interesting nonlinear effect that can be observed in many chemical,
electrical, and mechanical systems. The chaos phenomenon has many applications in various
branches of engineering. On the other hand, the control of mobile robots to track unpredictable
chaotic trajectories has a valuable application in many security problems and military missions. The
main objective in this problem is to design a controller such that the robot tracks a desired chaotic
path. In this paper, the concept of synchronization of chaotic systems is studied, and a new type-3
fuzzy system (T3FLS)-based controller is designed. The T3FLS is learned by some new adaptive rules.
The new learning scheme of T3FLS helps to better stabilize and synchronize. The suggested controller
has a better ability to cope with high-level uncertainties. Because, in addition to the fact that the
T3FLSs have better ability in an uncertain environment, the designed compensator also improves the
accuracy and robustness. Several simulations show better synchronization and control accuracy of
the designed controller.

Keywords: type-3 fuzzy; adaptive control; chaotic systems; learning algorithm; mobile robots;
machine learning; artificial intelligence

MSC: 93C42; 94D05; 68T05; 34C28; 34H10

1. Introduction

In recent years, researchers from various science and engineering branches have
developed chaos theory to describe complexity in nature. Today, chaos theory is considered
a powerful processing tool for investigating complex systems in nature and has opened
a new horizon in understanding the behavior of physical and natural systems. Many
mechanical, acoustic, optical, chemical, fluid, electronic, and biological systems have been
shown to exhibit chaotic behavior, and researchers are interested in researching them. Due
to the chaotic system’s complex dynamics and inherent instability, controlling it to exhibit
the desired behavior seems impossible. Different control goals can be imagined for these
systems, which can be mentioned as bifurcation control, stabilization, and synchronization.
Bifurcation is one of the phenomena that occurs before the chaos of the system. Bifurcation
means that the structural characteristics (the location of the equilibrium point, stability,
their number, presence or absence, as well as limit cycles with the same characteristics and
conditions) are changed by changing the parameters. In bifurcation control, one of the two
goals is to push back or advance bifurcation and change the type of bifurcation (stable,
unstable, etc.). The relationship between bifurcation and chaos is clear because several
bifurcations usually occur before the system becomes chaotic. Chaos can be delayed by
delaying bifurcation. Another basic application of chaos theory is the developing of robotic
systems [1,2].

Stabilizing is one of the most important and widely used methods to eliminate abnor-
mal behavior in a chaotic system. Stabilization is divided into two categories: adjustment
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and pursuit. In this problem, the stabilization of the system is studied by designing a
control signal to one of the equilibrium points or to one of the unstable absorbers (creating a
stable limit cycle). This type of stabilization is used to control chemical reactors, oscillators,
electrical circuits, lasers, long-distance telecommunications, noise removal, etc. Another
category of problems in stabilizing chaotic systems is the problem of tracking [3]. In this
approach, a time-varying reference is taken into account, and the control law is designed
so that the system’s responses follow the reference signal. The first and second cases are
clear, the system has a chaotic behavior, and this behavior is not desirable for us. For
example, if there is an unacceptable chaotic oscillation in the rotor of a motor, it is necessary
to remove it. The synchronization of two chaotic systems means that we want the state of
two chaotic systems to be the same. On the other hand, in recent years, there have been
many applications in which the optimal state of the system is described as chaotic behavior.
The problem of control regarding these systems is expressed in transforming an unwanted
chaotic behavior into a chaotic behavior with defined and desired characteristics. Stabiliz-
ing has been studied in some papers. For example, in [4], a cancer model is introduced by
the chaotic systems, the equilibrium points are analyzed, and a fractional-order controller
is developed for stabilizing. A chemical reaction is modeled by chaotic systems in [5], and
proportional–integral (PI) is adjusted for stabilizing. By the use of some numerical studies,
the chaotic behavior of electromagnetic machines is analyzed in [6], and the stabilization
methods are reviewed. The circuit implementation is investigated in [7], and an impulsive
controller is designed for stabilization. In [8], the input-to-state stability is studied for fi-
nancial systems, and the effect of delay is analyzed. The chaotic behavior in earthquakes is
studied in [9], and by the use of an evolutionary-based technique, the stabilization problem
is analyzed.

Synchronization refers to a process between two or more identical (non-identical)
chaotic systems so that a particular characteristic of their motion is the coupling or applica-
tion of an external force (periodic or noise) to achieve a typical behavior. Depending on the
type and intensity of the coupling established between two chaotic systems or the signal
sent from one chaotic system to another, chaotic systems synchronize with each other in
different ways. Various synchronization methods have been developed in recent years [10].
For example, in [11], the sliding mode controller (SMC) is developed for synchronization,
and the designed approach is used in an encryption system. The SMC is a method resistant
to uncertainty, whose simplicity and insensitivity to system parameters and quick response
are among its advantages. This method is also used in synchronization. Despite these
advantages, the sliding mode control also has disadvantages, one of the most important of
which is the controller with a variable structure, which is realized with the help of high-
frequency switching of the input signal. This issue leads to a kind of internal instability,
causing thermal losses and the destruction of mechanical parts. Various methods have
been used to reduce or eliminate the vibration, including the boundary layer, which uses
the saturation function instead of the sign function. The sliding control method is based
on low-pass filters, high-order sliding control, and hybrid controllers, among them. In
the boundary layer method, a boundary layer is taken near the sliding surface in order
to avoid noise, which smooths the dynamics of the control input and prevents control
signal fluctuations. This improvement leads to increased tracking errors and reduced
performance. This method is also not efficient when the noise level is high. In [12], the
backstepping scheme is generalized, and it is applied for synchronization. In [13], the
synchronization of Halvorsen chaotic systems is studied, and an approach is introduced for
numerical implementation. The other control methods include feedback controllers [14],
event-triggered [15], adaptive synchronization [16], symmetry control [17], Mittag–Leffler
approach, and optimal control [18]. In [19–21], the chaotic behavior is studied in a dual-spin
spacecraft, and some models and analysis are presented.

The other effective approach is the fuzzy system (FS)-based controllers. For example,
in [22], an FS-based controller is combined with a type of neural network, and by creating
some recurrent weights, the estimations capability is analyzed. In [23], a non-singleton
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FS is developed to design a controller and synchronization scheme for chaotic systems.
In [24], a new controller is designed by the use of FSs, and the designed controller is
employed for an image encryption application. In [25], an FS-based controller is developed
based on the SMC systems, and it is applied for chaotic behavior in vehicle dynamics.
In [26], the feedback controller is improved using FSs, and it is shown that without using a
backstepping scheme, the accuracy of the designed FS controller is acceptable. In [27], the
SMC is improved using type-2 (T2) FSs and the synchronization accuracy improvement is
verified. In [28], the synchronization of two different systems is analyzed, and a T2FS-based
controller is developed.

The control of mobile robots (MRs) to track a chaotic path and synchronized them
with the chaotic systems has been studied in a few papers [29]. For example, in [30], the
chaotic systems are used to design a motion controller for MRs, and the convergence is
analyzed. In [31], a chaotic MR is implemented, and its chaotic behavior is studied. In [32],
a chaotic oscillator is designed for MRs, and its implementation is investigated. In [33],
the Lorenz chaotic system is developed to create a path for MRs, and its convergency is
analyzed. The Chebyshev map is developed in [34] for planning a path for MRs, and the
path convergence is analyzed. The Jerk chaotic system is developed in [35] to design a
navigation system for MRs, and the movement prediction of MR is investigated. In [36], the
Henon chaotic map is used to create a chaotic behavior in MRs, and by numerical analysis,
the chaotic features are analyzed. In [37], an iterative algorithm based on an evolutionary
algorithm is developed for the chaotic path designing of MRs.

In most studies, the dynamics of MRs are known, and the chaotic path is designed just
for the special case. In addition, the stability of MR in the chaotic path is not guaranteed. In
this paper, a new effective intelligent controller is designed. The main contributions are:

• An effective fuzzy controller based on novel T3-FLSs is designed for MRs.
• The chaotic synchronization is studied for MRs.
• To better enhance the robustness of MR, in addition to complicated uncertain dynamics

and reference path, some external disturbances are also considered.
• An adaptive parallel compensator is designed to improve the robustness.
• The stability and robustness of MR in a chaotic path are proved.
• The designed controller is online learned to optimize itself every sample time.

2. Formulation

A class of mobile MRs is considered to track a chaotic system. The suggested controller
is applied to a general class of MRs, and the dynamics of MR are considered to be entirely
general and unknown as follows:

Ψ(q)q̈ + υ(q, q̇)q̇ + G(q) + τd =
B(q)τ − AT(q)λ

(1)

where, q and q̇ are position and velocity, respectively. Ψ(q), υ(q, q̇), G(q) are the inertia,
Coriolis, and gravitational matrices. τd and τ are disturbances and control inputs. A and B
are matrices associated with MR kinematics. In a state-space form, we can write:

ẋ1 = x2
ẋ2 = f (x) + d + u

(2)

where x = [x1, x2]
T , the function f (x) is a nonlinear function, and the control signal is

denoted by u, and d represents the disturbance. Depending on the structure of MR, such as
kinematic constraints, the function f (x) can be different.

In this paper, the controller is designed independently of the dynamics of MR. So, the
terms f (x) + d is approximated by a T3FLS, as shown in Figure 1. The T3FLS is learned
in the direction of stability. The parameters of T3FLS are adjusted by the laws that are
extracted from a stability theorem. In other words, besides the tracking error, the candidate
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Lyapunov function includes the also tuning error of parameters of T3FLS. Furthermore,
a compensator is designed as a supervisor controller that handles the estimation error of
T3FLS and helps for more robustness.

Figure 1. Control structure.

3. Type-3 FLS

As mentioned earlier, the nonlinearities f (x) and disturbance d are estimated by
T3FLSs. In this section, we present the basic structure of T3FLSs as is given in Figure 2.

Figure 2. Structure of T3-FLS.

(1) The inputs are the states of slave system.
(2) For x1(t), x2(t) and xn(t), the upper/lower memberships of M membership functions

(MF) are computed as follows (see Figure 3):

ς̄
mj

i, σ̄k

(xi) = exp

−
(

xi − ϑ
mj

i, σ̄k

)2

χ̄2
mj

i, σ̄k

 (3)
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Figure 3. Type-3 fuzzy set.

(3) The r-th rule is written as:

Rule#r : If x1 is mr
1, σ̄k

and x2 is mr
2, σ̄k

and x3 is mr
3, σ̄k

Then ŷ ∈ [xr, x̄r]
(7)

where mr
1, σ̄k

, mr
2, σ̄k

and mr
3, σ̄k

are r-th MF for x1, x2 and x3, respectively. The rule
firings are written as:

ρr
σ̄k

= ς
mj1

1, σ̄k

(x1)ςmj2
2, σ̄k

(x2)ςm
j3
3, σ̄k

(x3) (8)

ρr
σk

= ς
mj1

1, σk

(x1)ςmj2
2, σk

(x2)ςm
j3
3, σk

(x3) (9)

ρ̄r
σ̄k

= ς̄
mj1

1, σ̄k

(x1)ς̄mj2
2, σ̄k

(x2)ς̄m
j3
3, σ̄k

(x3) (10)

ρ̄r
σk

= ς̄
mj1

1, σk

(x1)ς̄mj2
2, σk

(x2)ς̄m
j3
3, σk

(x3) (11)

where ρ̄r
σ̄k

and ρ̄r
σk

denote the upper bound of firing degrees, and ρr
σ̄k

and ρr
σk

represent

the lower bound of firing degrees.
(4) The output ŷ is written as [38]:

ŷ = xTµ (12)

where x and µ are:

x = [x1, . . . , xM, x̄1, . . . , x̄M]T (13)
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µ =
[
µ

1
, . . . , µ

M
, µ̄1, . . . , µ̄M

]T
(14)

where M is rule numbers, and µ
r

and µ̄r are:

µ̄r =

nσ
∑

k=1
σ̄k

ρ̄r
σ̄k

M
∑

r=1

(
ρ̄r

σ̄k
+ρr

σ̄k

)
nσ
∑

k=1
(σ̄k+σk)

+

nσ
∑

j=1
σk

ρ̄r
σk

M
∑

r=1

(
ρ̄r

σk
+ρr

σk

)
nσ
∑

k=1
(σ̄k+σk)

, r = 1, . . . , M

(15)

µ
r
=

nσ
∑

k=1
σ̄k

ρr
σ̄k

M
∑

r=1

(
ρ̄r

σ̄k
+ρr

σ̄k

)
nσ
∑

k=1
(σ̄k+σk)

+

nσ
∑

j=1
σk

ρr
σk

M
∑

r=1

(
ρ̄r

σk
+ρr

σk

)
nσ
∑

k=1
(σ̄k+σk)

, r = 1, . . . , M

(16)

4. Control Designing and Stability Analysis

To design the controller, the sliding surface (17) is considered:

S = e(n−1) + λne(n−2) + · · ·+ λ1e (17)

where e = y− r, y is the output, r is the reference, and λ1, . . . , λn are the fixed parameters
that are chosen such that (17) to be stable. By taking the derivative of (17), we have:

Ṡ = e(n) + λne(n−1) + · · ·+ λ1 ė (18)

In (18), we substitute e(n) form (2), then:

Ṡ = f (x) + d + u− r(n) + λne(n−1) + · · ·+ λ1 ė (19)

where r(n) is the n-th derivative order r. The controller is considered as:

u =
[
− f̂ (x) + r(n) − λne(n−1) − · · · − λ1 ė

−|S| tanh(S) + uc]
(20)

where tanh represents the hyperbolic tangent and acts like a sign function. By substitut-
ing (20) into the sliding surface (19), we obtain:

Ṡ = f − f̂ + d + ε− |S| tanh(S) + uc (21)

By adding/subtracting optimal T3FLS, we have:

Ṡ = f − f̂ ∗ + f ∗ − f̂ + d− |S| tanh(S) + uc (22)

In a vector form, we can write:

Ṡ = f − f̂
∗
+ d + ε + θ̃

T
ξ

−|S| tanh(S) + uc
(23)

The estimation errors entirely are shown by following relation:
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E = f − f̂ ∗ + d (24)

Then, the sliding surface becomes:

Ṡ = E + θ̃Tξ − |S| tanh(S) + uc (25)

To stability prove, we consider the Lyapunov as:

V =
1
2

S2 +
1

2η
θ̃T θ̃ +

1
2η

Ẽ2 (26)

where 0 < η ≤ 1 is the adaptation rate, Ẽ is designed as Ẽ = E− Ê, E is the upper bound
of estimation error, and Ê is the estimation of E. It is obvious that V is positive-definite.
Because V > 0 while we have S > 0, θ̃ > 0, Ẽ > 0, and V = 0 while we have S = 0, θ̃ = 0,
Ẽ = 0. The derivative of (26) yields:

V̇ = SṠ− 1
η

θ̃T θ̇ − 1
η

Ẽ ˙̂E (27)

By substitution from (21), we obtain:

V̇ = − 1
η θ̃

T
θ̇ − 1

η Ẽ ˙̂E

S
[

E + θ̃
T

ξ − |S| tanh(S) + uc

] (28)

From (28), we have:

V̇ = θ̃
T
(

Sξ − 1
η θ̇
)
− 1

η Ẽ ˙̂E
S[E− |S| tanh(S) + uc]

(29)

In (29), we consider:

θ̇ = ηSξ (30)

Then, from the fact that |S|S tanh(S) ≤ S2, it can be concluded that:

V̇ ≤ − 1
η

Ẽ ˙̂E + SE− S2 + Suc (31)

Regarding Ẽ = E− Ê, it follows from expression (31):

V̇ ≤ − 1
η

(
E− Ê

) ˙̂E + E|S| − |S|2 + Suc (32)

The simplification of (32) yields:

V̇ ≤ − 1
η

E ˙̂E +
1
η

Ê ˙̂E + E|S| − |S|2 + Suc (33)

From (33), we have: {
E|S| = 1

η E ˙̂E

Suc = − 1
η Ê ˙̂E

(34)

Then,
V̇ ≤ −|S|2 ≤ 0 (35)

From (34), the adaptation rule for E (upper bound of uncertainties) and uc (compensator
signal) are derived as: {

˙̂E = η|S|
uc = −ÊS|S|

(36)
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From (35), it is concluded that the system is globally stable, while the adaptations (30)
and (34) are satisfied. It should be noted that from the fact that the derivative of S is
bounded, then from Barbalat’s lemma, the asymptotic stability is also derived [39].

Remark 1. In this paper, the suggested FLS is learned by Lyapunov theorem. For future stud-
ies, to improve the control accuracy, the other learning algorithms can be used such as random
optimization [40,41], reinforcement learning [42], and deep learning [43].

5. Simulation

Example 1. For the first example, the Chua’s system is considered:

ẋ1 = x2, ẋ2 = x3, ẋ3 = f + u
f = 14/1805x1 + 168/9025x2 + 1/38x3

−2/45(28/361x1 + 7/95x2 + x3)
3

(37)

where x1(0) = 0.2, x2(0) = 0.5 and x3(0) = 0.3. The disturbance is d = 0.01 sin(7t) +
0.03 cos(11t). The output and error signals are shown in Figure 4, and the controller is provided
in Figure 5. The trajectories of Figure 4 demonstrate that the output signal is well reached to the
target signal. In addition, the control trajectory has an acceptable shape. It should be noted that good
tracking is achieved by the suggested controller in spite of unknown dynamics and disturbance d(t).

Figure 4. Example 1: Output and error signals.

Figure 5. Example 1: Control signal.

Example 2. For the second examination, the reference/slave systems are considered to be Chua and
Genesio’s systems, respectively:

ẋ1 = x2, ẋ2 = x3, ẋ3 = f
f = 14/1805x1 + 168/9025x2 + 1/38x3

−2/45(28/361x1 + 7/95x2 + x3)
3

(38)
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ẋ1 = x2, ẋ2 = x3, ẋ3 = f + u
f = −6x1 − 2.9x2 − 1.2x3 + x2

1
(39)

where x1(0) = 3.2, x2(0) = −4.5 and x3(0) = 2. The output and error signals are shown
in Figure 6, and the controller is depicted in Figure 7. The phase portrait is shown in Figure 8.
The convergence of the system (39) to the target system (38) is well seen in the phase portrait, as
shown in Figure 8. Similar to the previous example, we see that the trajectories of Figure 6 are well
reached to the target signals. Furthermore, the control trajectory has an acceptable shape. To further
analyze, besides the previous perturbations, we add a dead zone on the control signal and repeat the
simulation. In this case, the output and error signals are shown in Figure 9, and the controller is
depicted in Figure 10. The trajectories of Figure 9 demonstrate the suggested controller has a good
ability to tackle high perturbations.

Figure 6. Example 2: Output and error signals.

Figure 7. Example 2: Control signal.

-10
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40

20

30

30

200

40

10
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50

-10
-20

-30-5 -40

  Output

   Reference

Figure 8. Example 2: Phase portrait.
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Figure 9. Example 2: Output and error signals, faulty condition.

Figure 10. Example 2: Control signal, faulty condition.

Example 3. For the third example, the reference/slave systems are considered to be Genesio and
pendulum, respectively:

ẋ1 = x2, ẋ2 = x3, ẋ3 = f
f = −6x1 − 2.9x2 − 1.2x3 + x2

1
(40)

ẋ1 = x2, ẋ2 = f + u
f = −0.5x1 − 0.12x2 − sin(x1) + 0.5 cos 0.75t
−0.12 sin 0.75t + sin(0.3 cos 0.75t− 3)− 1.5

(41)

where x1(0) = 0, and x2(0) = 0. The output and error signals are shown in Figure 11, and the
controller is depicted in Figure 12. The phase portrait is shown in Figure 13. The convergence of
the system (41) to the target system (40) is well seen in the phase portrait, as shown in Figure 13.
Similar to Example 2, we see that the trajectories of Figure 11 are well reached to the target signals.
Similarly, the control trajectory has an acceptable shape. In addition, to have a better examination,
similar to Example 2, we add a dead zone on the control signal and repeat the simulation. In this
case, the output and error signals are shown in Figure 14, and the controller is depicted in Figure 15.
The trajectories of Figure 14 demonstrate that the suggested controller has a good ability to tackle
high perturbations.
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Figure 11. Example 3: Output and error signals.

Figure 12. Example 3: Control signal.
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Figure 13. Example 3: Phase portrait.
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Figure 14. Example 3: Output and error signals, faulty condition.

Figure 15. Example 3: Control signal, faulty condition.

Example 4. In this example, a fault is suddenly applied to the system, and the effectiveness of the
controller is evaluated. The output and error signals are shown in Figure 16, and the controller is
depicted in Figure 17. We see that after a high perturbation, the output is well converged again to
the references. The tracking error in the steady state has a small acceptable value. The perturbation
is well tackled and the output signal has a good tracking scheme.

Figure 16. Example 4: Output and error signals.
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Figure 17. Example 4: Control signal.

Remark 2. The suggested controller uses the developed type-3 FLSs. This type of FLSs results
in better robustness in high-noisy conditions. The simulation results show that by the suggested
controller, the MR can track various chaotic references well. In spite of dynamic uncertainties,
sudden changes in references, and complicated chaotic behavior of the reference system, the MR well
follows the planned trajectory. So, the suggested approach can be used in various applications of MR.
To better show the superiority of the suggested fuzzy-based controller, the root mean square of error
(RMSE) is compared with a feedback controller [44] and an adaptive controller [45]. The simulation
conditions are the same as shown in Example 1 for all controllers. The results are shown in Table 1.
We see that the accuracy of the suggested approach is much better than classic controllers. However,
in classic controllers, the system’s dynamic information is used in control design. In addition, to
apply the traditional controllers for other MRs, we need to change a lot of settings. However, the
suggested controller does not depend on the MR dynamics.

Table 1. Comparison of RMSE with different controllers.

Proposed method Feedback
controller [44]

Adaptive
controller [45]

RMSE 0.01045 0.7812 0.1357

6. Conclusions

In this study, a new T3FLS-based synchronization system is introduced. The entire
dynamics are unknown and also are disturbed by further perturbation. A new adaptive su-
pervisor controller also works in parallel with the main controller to help better robustness.
The schemed controller is evaluated in four illustrative examples. In the first example, the
designed controller is examined on Chua’s chaotic system. The simulation results verify
that the designed controller has an excellent response versus unknown dynamics. In the
second examination, the designed controller is applied to a synchronization problem, and
the Genesio chaotic system is synchronized with Chua’s chaotic system. The synchroniza-
tion is examined in two cases. In the first one, just the Genesio dynamics are unknown, and
in the second case, in addition to unknown dynamics, a high perturbation is applied to
system dynamics and input signals. The results show a good robust synchronization. In
the third example, a pendulum system is synchronized with the Genesio chaotic system.
Similar to the second example, in two cases, the accuracy and performance are evaluated.
The results demonstrate that the schemed controller shows an excellent ability to tackle
high perturbations. Finally, in the last example, a fault is suddenly imposed on the system,
and the good robustness/stability of the controller is evaluated. We see that after a high
perturbation, the output is well converged again to the references. The tracking error in the
steady state has a small acceptable value. The perturbation is tackled well and the output
signal has a good tracking scheme.
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