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Abstract: Graph embedding is of great significance for the research and analysis of graphs. Graph
embedding aims to map nodes in the network to low-dimensional vectors while preserving information
in the original graph of nodes. In recent years, the appearance of graph neural networks has significantly
improved the accuracy of graph embedding. However, the influence of clusters was not considered
in existing graph neural network (GNN)-based methods, so this paper proposes a new method to
incorporate the influence of clusters into the generation of graph embedding. We use the attention
mechanism to pass the message of the cluster pooled result and integrate the whole process into the
graph autoencoder as the third layer of the encoder. The experimental results show that our model has
made great improvement over the baseline methods in the node clustering and link prediction tasks,
demonstrating that the embeddings generated by our model have excellent expressiveness.

Keywords: network representation learning; attributed graph embedding; graph autoencoder; graph
neural networks

MSC: 68R10; 05C62; 68T07

1. Introduction

The node in the attributed graph has not only topological characteristics but also
features. Attributed graphs are widely used in various fields, such as protein networks,
chemical molecular composition networks, and recommendation systems [1–3]. The anal-
ysis of the attribute graph is of great significance for understanding the topology and
dynamic characteristics, modules, functions and evolution of the entire network. Graph
embedding, also known as graph representation learning, is a method of mapping nodes
in a graph to corresponding low-dimensional vectors, which can significantly reduce the
difficulty of analyzing attributed graphs. The difficulty of embedding in the attributed
graph is how to make the learned low-dimensional vectors perfectly integrate and represent
the topology information and feature information of nodes.

In recent years, thanks to the excellent performance of graph neural networks in fusing
topological information and feature information, GNN-based methods [2] have greatly
improved the accuracy of graph embedding. At present, most graph-embedding methods
based on graph neural networks use graph autoencoders [4]. The focus of this paper is to
learn better low-dimensional vector representations of attributed graph based on graph
autoencoders. The graph autoencoder structure uses graph convolutional network (GCN)
as the encoder, the inner product of the vectors as the decoder, and the cross-entropy
between the reconstructed graph and the original graph as the loss function.

Among the existing methods, the improvement of the graph autoencoder is also the
improvement of the encoder, the decoder, and loss function, respectively. After analyzing
the existing methods, we find that most of the methods mentioned so far do not take into
consideration the cluster. In real life, groups have an obvious influence on individual
decision making; a persuasive example is herd mentality. In the same way, embeddings
will be clustered spontaneously and automatically during generation, and these clusters
will have a non-ignorable impact on the subsequent generation of each embedding.
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Accordingly, we assume that clusters play an important role in the process of learning
low-dimensional vectors of nodes. Based on this assumption, in this paper, we design and
propose a new model that takes into account the influence of clusters. We name our method
Graph Autoencoder based on Attention with Cluster (GAE-AC). In our method, for the
first two layers, we use the GCN layer to generate node representations, except that we add
a new layer in which we first divide nodes into different clusters, then perform the pooling
operation, and finally, we use the attention mechanism to pass the message of pooling
nodes and generate the embedding of the graph. To validate our model and assumption,
we can perform a link prediction task and node clustering task. Experiments on different
datasets show that our model achieves remarkable improvement on graph downstream
tasks compared with baseline methods, which verifies rationality of our assumption and
excellence of our model. Our main contributions are as follows.

• We propose a novel spatial convolution layer based on attention with cluster. We
use attention mechanisms to integrate different information from clusters, which
effectively aggregates and distinguishes the information of different clusters for nodes
in a graph.

• We propose a new attributed graph-embedding method named GAE-AC. We use GCN
layers to integrate local information of neighbors and use an attention-with-cluster
layer to integrate global information of different clusters.

• We use different datasets and apply the learned low-dimensional of GAE-AC to node
clustering and link prediction tasks. The experimental results show that our model
has achieved excellent performance in the corresponding tasks.

The remaining sections of this paper are arranged as follows. In Section 2, we review
related studies about graph embedding and graph autoencoders. In Section 3, we present
the proposed model. In Section 4, we introduce our design of experiments and detail
the results. In Section 5, we conduct a comprehensive analysis of our model based on
experimental results. Finally, in Section 6, we conclude this paper.

2. Related Works
2.1. Graph Embedding

Graph embedding is also called graph representation learning. The difficulty of graph
embedding is how to convert nodes in the original graph to low-dimensional space. At
the same time, since the node also has its own features, how to integrate the topological
information and the feature information is a key point of the research. Traditional methods
are inspired by Laplacian eigenmaps [5] and matrix factorization [6]. For the embedding
only for the graph with no features, the existing research mainly includes methods based on
graph topology. DeepWalk [7] first samples the node sequence from the graph by random
walk, and we apply the SkipGram model to obtain the final vector representation. Methods
such as DeepWalk include node2vec [8], LINE [9], and SDNE [10]. The methods mentioned
above have an obvious disadvantage in that the algorithms only learn the embedding for
the topology structure of the graph. If you want to consider the features of the node, you
need to define another separate module and then perform extra aggregation [11].

Another more reasonable way is to effectively combine the feature information and
topology information of nodes during the training process. The proposition of the graph
neural network solves this problem effectively. The graph neural network represented by
GCN [2] or GAT [12] defines the convolution on the typical non-European data such as graphs,
so that when generating vectors in low-dimensional space, the topological information and
feature information of the nodes are perfectly and directly integrated together.

2.2. Graph Autoencoder

Graph autoencoder applies the graph neural network into the autoencoder framework,
making it applicable to unsupervised learning tasks. The purpose of the graph autoencoder
is to learn the low-dimensional representation of the graph so that it can reconstruct the
original graph structure or node features through decoding.
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The typical models of the graph autoencoder are GAE and VGAE [4]. GAE/VGAE
uses GCN as the encoder, the inner product of the embedding vector as the decoder, and
the cross-entropy between the reconstructed adjacency matrix and the original adjacency
matrix as the loss function. We also divide methods based on the graph autoencoder into
three corresponding categories: DAEGC [13], GEC-CSD [14] and MRFasGCN [15] are
representative methods of improving the encoder, TGA/TVGA [16] using triadic decoder is
the typical method of improving the decoder; in addition to the loss function, improvements
include clustering loss optimizer [17], modularity optimizer [18], and difference maximizer
between the real dataset and corresponding random model [19].

For the improvement of the encoder, except for when using GCN, DAEGC and GEC-
CSD apply GAT as the encoder; GUCD [20] uses MRFasGCN as the encoder. MRFasGCN
is an encoder designed based on the idea of a Markov random field, which designs a new
convolution layer to focus on community detection tasks. In addition, we find that the
current encoder does not fully consider the impact of clusters aggregated in the process
of learning embeddings. So, we take the impact of clusters into account, and our research
also focuses on the encoder. We also find that GAT uses the attention to pass the features of
neighbors. GAT is more efficient compared with GCN, which improves the performance
of DAEGC and GEC-CSD in the experiments. Inspired by these methods, we also use the
attention mechanism to fuse the cluster information.

3. Method

In this section, we mainly introduce the design of GAE-AC for graph embedding.
In GAE-AC, we use traditional GCN layers into the first two layers of the encoder to
fully integrate the information from neighbors. We also add an attention layer to pass the
message of clusters. The overall structure of GAE-AC is shown in Figure 1.

Figure 1. The GAE-AC architecture. The left part is the input of the model, including the graph and
features; the middle part is the encoder part, the first two layers are the traditional GCN layer, the
third layer is the attention-with-cluster layer, and finally, it links to a residual block; the right part is
the decoder and loss function of GAE-AC.

3.1. Problem Description

In this section, we formulate the attributed graph-embedding problem. We define
the nodes in graph as V, expressed as V = {vi}i=1, ..., n, edges in graph as E, expressed as
E = {eij}, where eij represent the edge between node i and node j; we define features of
the node as X, expressed as X = {x1; . . . ; xn}, among this, xi ∈ Rm indicates the feature of
node i. So, the attributed graph can be expressed as G = (V, E, X). The topology of the
graph is represented by an adjacency matrix A, which is defined as A ∈ Rn×n, if (vi, vj) ∈ E
then Ai,j = 1; otherwise, Ai,j = 0.
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The main purpose of attributed graph embedding is to map nodes of the graph to low-
dimensional space Z, while preserving the topological information and feature information
of the original attributed graph. Then, we apply vectors to the downstream tasks to evaluate
expressiveness.

In this paper, the graph downstream tasks involved include node clustering and
link prediction. Node clustering aims to divide the nodes in the graph into clusters
without intersection C = {C1, C2, . . . , Ck}, Cka ∩ Ckb

= ∅(∀a, b), according to the topology
information and feature information of nodes. The link prediction task aims to measure
the potential of two unconnected nodes in the graph to establish a new edge based on the
existing edges.

3.2. Encoder

For the first two layers in the encoder, we use traditional GCN. The vectors generated
by the first two layers are represented by Z(1):

Z(0) = f1(X, A) = ReLU(D̃−
1
2 ÃD̃−

1
2 XW(0)), (1)

Z(1) = f2(Z(0), A) = D̃−
1
2 ÃD̃−

1
2 Z(0)W(1), (2)

where Ã = A + In, In is an identity matrix with the same dimensions as A, and D̃ is the
diagonal matrix of Ã, which is expressed as D̃ii = ∑j Ãij.

GAE uses GCN as the encoder. Because of the hardcode convolution kernel, GCN
can fully consider the influence of the node’s neighbors when learning the embeddings of
nodes. However, the GCN layer has certain defects. For example, in traditional unsuper-
vised clustering algorithm K-means [21], in each iteration process, clusters are redivided
according to the Euclidean distance from the node to the center of each class; from this
aspect, K-means focuses on the influence of the cluster. Instead, the vector generated by
GCN only fuses the information of the neighbors but does not consider the message of
the cluster.

Extending from the idea mentioned above, we design a new layer to integrate the
information of clusters. The design of the new layer includes the following three parts.
The first part is designed to divide the nodes into different clusters according to Z(1); the
second part is designed to take pooling operations on clusters; the third part is designed to
fuse the pooled result of clusters to every node with the attention mechanism. The overall
structure is shown in Figure 2.

Figure 2. Design of the third layer. On the left part, we divide nodes into different clusters and then
perform pooling. On the right part, we use the attention mechanism to fuse pooled information.

3.2.1. Cluster Generation

In this part, we mainly learn the cluster distribution of nodes according to vectors Z(1)

generated after two layers of GCN. We define this process as g. We predefine the cluster
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distribution as Ct, while the number of clusters is k, which need to be input into the model
in advance. The formulated description is as follows:

Ct = {Ct
1, Ct

2, · · · , Ct
k} = g(Z(1)), Ct

k ∈ Rnk×m, (3)

where nk is the number of nodes in the cluster Ct
k, and m is the size of Z(1). g is used to

learn the cluster distribution, and we chose to use the K-means algorithm.

3.2.2. Cluster Pooling

After learning cluster distribution, we carry on the pooling operation on each cluster
and finally obtain the representative nodes. The formulated description is as follows:

ZC(1) = Concat(MeanPooling({Ct
1, Ct

2, · · · , Ct
k}))Zc ∈ k×m, (4)

the pooling operation can use either maximum pooling or average pooling. We used the
average pooling operation to obtain the representative nodes of each cluster.

3.2.3. Attention with Cluster

Inspired by the GAT, in the third layer, for each node, we use different coefficients to
measure the impact of each cluster on it and learn the influence vector Zc of clusters on it,
which is defined as follows:

zc
i = ∑

j∈k
αijWz

c(1)
j , (5)

where zc
i represents the cluster information vector learned by the node.

In order to retain the pooled vector information as much as possible, we set the weight
matrix W to the identity matrix whose size is 1 × 1. αij is the attention coefficient between
the pooled vectors of node i and cluster j, which is formulated as follows:

αij =
exp

(
δ
(
~aT
[
Wz(1)i ‖Wz

c(1)
j

]))
∑j∈k exp

(
δ
(
~aT
[
Wz(1)i ‖Wz

c(1)
j

])) , (6)

our attention mechanism uses a forward neural network same as mentioned in GAT,
which is expressed as the parameter ~aT ∈ R2F, F has the same size as Z(1), δ is the
activation function, we generally use LeakyReLU (α = 0.2), and the whole part is defined
as Zc = fAC(AC).

3.2.4. Fusing Information of Cluster

Finally, we use a residual block to fuse the vectors of the nodes Z(1) and the vectors of
pooling results of clusters ZC to obtain the final embedding vectors Z:

Z = Z(1) + fAC

(
Z(1)

)
. (7)

3.3. Decoder

The existing decoder can be mainly divided into two parts: reconstruct graph and
reconstruct features. In this paper, to make the model more efficient, we use the simplest
inner product decoder to reconstruct the graph, as shown below:

Âij = sigmod(zi
T , zj), (8)

where Â represents the reconstructed adjacency matrix.
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3.4. Loss Function

The training of our model is mainly to minimize the cross-entropy between the recon-
structed adjacency matrix and the original adjacency matrix, as shown below:

L = −
n

∑
i,j=1

[
aijIn

(
âij
)
+
(
1− aij

)
In
(
1− âij

)]
. (9)

3.5. Summay

GAE-AC is summarized in Algorithm 1, which has the following advantages:

• The GCN-based encoder can effectively integrate the topology information and feature
information of nodes in the graph.

• By learning the cluster distribution of nodes, the information of clusters are fused into
the process of generating embeddings, which improves the accuracy of embeddings.

• The influence of different clusters is fused into embeddings through an attention mech-
anism, making embeddings more similar in the same class and more distinguishable
in different classes.

Algorithm 1: Summary of GAE-AC.
Input: Adjacency matrix A; Feature matrix X; Number of iterations Epoch;
Embedding size N; Cluster update epoch T.
Output: Node embedding matrix Z.
1: Compute the initial cluster distribution C based on X;
2: For i = 0 to Epoch − 1 do:
3: Calculate node embedding Z with Equations (1), (2) and (7);
4: If i % T == 0 then:
5: Update cluster distribution C;
6: Update best node embedding Z;
7: End if
8: Calculate the reconstructed matrix Â with Equation (8);
9: Calculate loss L with Equation (9);
10: Update the whole model by minimizing loss L;
11: End for

4. Experiments

In this section, we evaluated the performance of the embeddings generated by GAE-
AC in different graph downstream tasks through experiments. We introduce the experimen-
tal details in this section, including the dataset we used, the baseline methods we compared,
the setting of experimental parameters, and the metrics we used in the evaluation.

4.1. Datasets

We used widely used network datasets that contain graph information and features of
nodes, including Cora (avaliable at https://paperswithcode.com/dataset/cora, accessed
on 28 October 2022), Citeseer (avaliable at https://paperswithcode.com/dataset/citeseer,
accessed on 28 October 2022), and Wiki [22] (avaliable at https://github.com/thunlp/
OpenNE/tree/master/data/wiki, accessed on 28 October 2022). We performed node
clustering and link prediction experiments on three datasets. The details of the three
datasets are shown in Table 1.

Table 1. Summary of datasets.

Dataset Nodes Edges Features Classes

Cora 2708 5429 1433 7
Citeseer 3327 4732 3703 6

Wiki 2405 17,981 4973 17

https://paperswithcode.com/dataset/cora
https://paperswithcode.com/dataset/citeseer
https://github.com/thunlp/OpenNE/tree/master/data/wiki
https://github.com/thunlp/OpenNE/tree/master/data/wiki
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4.2. Baseline Methods

In downstream tasks, we compared GAE-AC with the following baseline methods.
We divide these methods into three categories.

(1) Methods using graph structure only (G).

• DeepWalk [7] uses random walks and SkipGram models to learn node embed-
dings.

• Spectral clustering [23] regards the adjacency matrix of a graph as the similarity
matrix and only uses the graph structure information.

(2) Methods using features only (F).

• K-means [21] directly generates clusters according to features of nodes.
• Spectral clustering [23] also generates clusters according to features of nodes.

(3) Methods using both features and graph (F&G).

• TADW [22] interprets DeepWalk [7] as an equivalent matrix factorization model,
enabling it to support the embedding of features.

• GAE and VGAE [4] incorporate GCN into autoencoder architecture and varia-
tional autoencoder architecture to generate node embeddings.

• ARGA and ARVGA [24] improve the GAE and VGAE by adding a discriminator
to train adversarial.

• AGC [25] uses high-order graph convolution to fuse node features, and the
number of orders can be adjusted according to different datasets.

• DAEGC [13] uses graph attention network to integrate features of neighbors of
different orders and finally apply reconstruction loss and clustering loss to jointly
optimize the model.

4.3. Evaluation Metrics

We use three widely used metrics ACC (Accuracy), NMI (Normalized Mutual Infor-
mation) and ARI (Adjusted Rand Index) [26] to measure the quality of node clustering
tasks. The ACC measures the accuracy of node clustering, which is defined as follows:

ACC =

n
∑

j=1
δ(gi(j), o′(j))

n
, δ(x, y) =

{
1, ifx = y
0, else

, (10)

where o′ is a mapping function between the labels and assignments. We used a traditional
Kuhn–Munkres algorithm to find the best matching between the ground truth label and
cluster assignments. The NMI is a normalized measure of similarity between two labels of
the same data, which is defined as follows:

NMI(U, V) = 2
MI(U, V)

H(U) + H(V)
, (11)

where MI is the mutual information between the predicted cluster assignment V and the
ground truth label U, and H is the entropy. The ARI measures the quality of overlap
between the ground truth label and cluster assignments, which is defined as follows:

ARI =
RI − E[RI]

max(RI)− E[RI]
, (12)

where RI is the Rand Index, which can be calculated as in [27].
We use two widely used metrics AUC score (the area under a receiver operating

characteristic curve) and AP score (average precision) to measure the quality of our model
in the link prediction task. The AUC measures the probability of predicting the positive
sample rather than the negative sample, which is defined as follows:
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AUC =
∑ I(Px, Py)

N ×M
I(Px, Py) =


1, Px > Py
0.5, Px = Py
0, Px < Py

, (13)

where Px is the probability of predicting positive samples, and Py is the probability of
predicting negative samples. N is the numbers of positive samples X, and M is the number
of negative samples Y. The AP can be calculated as follows:

AP =
∑k Precision

N
, Precision =

TP
TP + FP

, (14)

where N is the number of positive samples, k is an index of class k, TP is the true positive
samples and FP is the false positive samples.

4.4. Parameter Settings

In the node clustering task, on all datasets, the dimension of the hidden layer in
GAE-AC in the encoder was set at 256, and the dimension of the embedding size was set
at 32; we trained GAE-AC for 100 epochs and used Adam optimizer [28] to optimize the
whole model while learning rates were set at 0.005, 0.005, and 0.001 on Cora, Citeseer and
Wiki, respectively. We clustered the low-dimensional vectors by K-means algorithm [29,30].
For the baseline methods, we used the parameter settings and the best results mentioned in
their original papers for comparison.

In the link prediction task, for the partition of the dataset, we adopted the same
settings as GAE/VGAE, randomly removing 15% of the edges in the graph, of which 10%
is the verification set and 5% is the test set, for all algorithms. For experimental setting, the
hidden layer dimension was set at 256, and the embedding size was set at 32. We mainly
conducted experiments on Cora and Citeseer; for both datasets, we trained our model for
200 epochs and used Adam optimizer to optimize the whole model while learning rates
were set at 0.005 on Cora and 0.004 on Citeseer. For the baseline method, we used the
parameter settings and the best results mentioned in their original papers for comparison.

4.5. Results

We mainly measured the performance of GAE-AC in the node clustering and link
prediction tasks, which correspond to Sections 4.5.1 and 4.5.2, respectively. In Section 4.5.3,
in order to measure the impact of the setting of the embedding size on the performance of
GAE-AC, we used the results of attributed graph clustering under different embedding
sizes as a measure. In Section 4.5.4, we used the t-SNE [31] to map embeddings generated
into the two-dimensional space to observe more intuitively.

4.5.1. Node Clustering

The experimental results of node clustering on three datasets corresponded to Tables 2–4,
respectively. We find that the method using both topology information and feature in-
formation can often achieve higher performance. Because some models do not design
specifically for graph clustering tasks, topology information and feature information are not
well fused. The optimized methods including AGC and DAEGC have obviously achieved
better performance, which also proves the need to improve the original model to adapt to
different tasks.

We highlighted the best-performing methods in bold, and the best-performing baseline
methods are underlined. The performance of GAE-AC exceeds all baseline methods on
the three datasets. For ACC, GAE-AC is 1.84% higher than the best baseline method in
Cora, 1.93% in Citeseer, and 11.4% in Wiki; for NMI, GAE-AC is 0.745% higher than the
best baseline method in Cora, 7.06% in Citeseer, and 5.13% in Wiki; for NRI, GAE-AC is
5.24% higher than the best baseline method in Cora, 8.11% in Citeseer, and 6.71% in Wiki.
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Table 2. Node Clustering Results on Cora Dataset.

Method Info. ACC NMI ARI

K-means F 0.500 0.317 0.239
Spectral-F F 0.347 0.147 0.071

Spectral-G G 0.342 0.195 0.045
DeepWalk G 0.529 0.384 0.291

TADW F&G 0.536 0.366 0.240
GAE F&G 0.611 0.482 0.302

VGAE F&G 0.592 0.408 0.347
ARGA F&G 0.640 0.449 0.352

ARVGA F&G 0.638 0.450 0.374
DAEGC F&G 0.704 0.528 0.496

AGC F&G 0.689 0.537 0.486
GAE-AC F&G 0.717 0.541 0.522

Table 3. Node Clustering Results on Citeseer Dataset.

Method Info. ACC NMI ARI

K-means F 0.544 0.312 0.285
Spectral-F F 0.441 0.203 0.183

Spectral-G G 0.259 0.118 0.013
DeepWalk G 0.390 0.131 0.137

TADW F&G 0.529 0.320 0.286
GAE F&G 0.456 0.221 0.191

VGAE F&G 0.467 0.261 0.206
ARGA F&G 0.573 0.350 0.341

ARVGA F&G 0.544 0.261 0.245
DAEGC F&G 0.672 0.397 0.410

AGC F&G 0.670 0.411 0.419
GAE-AC F&G 0.685 0.440 0.453

Table 4. Node Clustering Results on Wiki Dataset.

Method Info. ACC NMI ARI

K-means F 0.417 0.440 0.151
Spectral-F F 0.491 0.464 0.254

Spectral-G G 0.236 0.193 0.017
DeepWalk G 0.385 0.324 0.173

TADW F&G 0.310 0.271 0.045
GAE F&G 0.379 0.345 0.189

VGAE F&G 0.451 0.468 0.263
ARGA F&G 0.451 0.468 0.112

ARVGA F&G 0.387 0.339 0.107
DAEGC F&G 0.482 0.448 0.331

AGC F&G 0.477 0.453 0.343
GAE-AC F&G 0.547 0.492 0.366

4.5.2. Link Prediction

The experimental results are shown in Table 5. We used bold to mark the best results
and underline to mark the best baseline methods.

The experimental results show that GAE-AC also performed well in link prediction
tasks and achieved better performance. For the AUC, GAE-AC is 0.866% higher than the
best baseline method in Cora and 0.858% higher in Citeseer. For the AP, GAE-AC is 1.30%
higher than the best baseline method in Cora and 1.72% higher in Citeseer.
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Table 5. Link Prediction Result on Cora and Citeseer Dataset.

Methods Info.
Cora Citeseer

AUC AP AUC AP

Spectral-G G 0.846 0.885 0.805 0.850
DeepWalk G 0.831 0.850 0.805 0.836

GAE F&G 0.910 0.920 0.895 0.899
VGAE F&G 0.914 0.926 0.908 0.920
ARGA F&G 0.924 0.932 0.919 0.930

ARVGA F&G 0.924 0.926 0.924 0.930
GAE-AC F&G 0.932 0.940 0.936 0.946

4.5.3. Influence of Embedding Size

We discuss the effect of the dimension of the embedding size through the node clus-
tering task in this section. We conducted experiments on attributed graph clustering with
dimensions of 4, 16, 32, 64, and 256, respectively, and measured the impact of embedding
size on the clustering task using ACC and NMI. The experimental results are shown in
Figure 3.

Through the results, we find that GAE-AC achieved best performance when the
embedding dimension was 32. However, the embedding size of 16 performed better on the
ACC indicator than the embedding dimension of 32 on Citeseer, which can reach 0.708. It
is 3.36% higher than the case where the embedding size is 32.

(a) (b)

(c) (d)
Figure 3. Cont.
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(e) (f)
Figure 3. Influence of embedding size. (a) Influence of embedding size on ACC on Cora. (b) Influence
of embedding size on ACC on Citeseer. (c) Influence of embedding size on ACC on Wiki. (d) Influence
of embedding size on NMI on Cora. (e) Influence of embedding size on NMI on Citeseer. (f) Influence
of embedding size on NMI on Wiki.

4.5.4. Visualization

In order to intuitively validate the expressiveness of learned embeddings, we mapped
each embedding of a node to two-dimensional space on the Cora dataset and the Citeseer
dataset using t-SNE [31]. To demonstrate the effectiveness of our attention-with-cluster
layer, we mainly compared visualization with GAE.

The results on Cora and Citeseer are shown in Figures 4 and 5, respectively. We find
out that GAE-AC distinguished better than GAE for red, orange, and brown classes on
Cora and GAE-AC learned more discriminative and denser embeddings compared to GAE
on Citesseer, which shows the effectiveness of our attention-with-cluster layer.

(a) Raw Features (b) GAE (c) GAE-AC
Figure 4. Two-dimensional (2D) visualization results on Cora.

(a) Raw Features (b) GAE (c) GAE-AC
Figure 5. Two-Dimensional (2D) visualization results on Citeseer.
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5. Discussion

In this paper, we proposed the hypothesis that clusters will spontaneously formed
in the process of learning embeddings, and these clusters will affect subsequent learning
process. Based on this assumption, we designed and implemented a new spatial con-
volution layer to learn the impact of clusters, and apply it to GAE-AC. We carried on
link prediction and node clustering experiments to verify the performance of GAE-AC on
different datasets. In this section, we fully discuss the results of the experiment in detail for
proving the correctness and rationality of our assumption and model. We discuss from the
following three aspects.

GAE-AC outperforms the methods only using either topology information or node
features by a very large margin. In the baseline method, K-means, Spectral-F, Spectral-G,
and DeepWalk only use one type of information (topology or feature). Our model improves
significantly in the link prediction task and node clustering task compared with these methods,
which shows the necessity of fusing topology information and feature information.

GAE-AC has more excellent ability in aggregating topology information and feature
information. In the process of fusing topology information and feature information, most
baseline methods use a typical approach that fuses t-order neighbor information. GAE,
VGA, ARGA and ARVGA consider the one-order neighbors, whereas DAEGC uses GAT and
considers the information of two-order neighbors in their experiment. AGC uses k-order graph
evolution with an automatically selected k to aggregate information within k-hop neighbor.
Different from the integrating-t-order type methods, GAE-AC first fuses the information of
one-order neighbors through two-layer GCN and then fuses the information of higher-order
information through the attention-with-cluster layer. This mechanism enables GAE-AC to
integrate both the local information of neighbors and global information of different clusters,
thus improving the expressiveness of the embedding generated, making GAE-AC outperform
the baseline methods in link prediction and node clustering tasks.

GAE-AC has a novel spatial convolution layer that can significantly improve the
expressiveness of embeddings. Compared with GAE, the only difference of GAE-AC is
the attention-with-cluster layer. In the link prediction experiment, compared with GAE,
on the Cora dataset, GAE-AC improved the AUC and AP indicators by 2.42% and 2.17%,
respectively. On the Citeseer dataset, the AUC and AP indicators of GAE-AC have increased
by 4.58% and 5.23%, respectively. In node clustering tasks, compared with GAE, ACC is
17.3% higher in Cora, 50.2% higher in Citeseer, and 44.3% higher in Wiki, which shows
that our attention-with-cluster layer can significantly improve the performance in the link
prediction task and node clustering task. Finally, in visualization, we can intuitively find
out that the distinction between classes is more obvious than GAE after using t-SNE. From
the above perspectives, we can find out that the introduction of our attention-with-cluster
layer improves the performance of the model obviously, which also proves the rationality
of our assumption.

Finally, we discuss the shortcomings of GAE-AC. In the node clustering task, DAEGC
can directly learn the class of nodes end-to-end by introducing the self-supervised clus-
tering module, without extra steps. However, in GAE-AC, after learning the embedding,
additional clustering algorithms are needed. Additionally, DAEGC can dynamically adjust
the dimensions of embeddings according to the number of classes of the dataset, while the
embedding dimensions of GAE-AC can only be fixed at 32 if we want GAE-AC perform
better, indicating that GAE-AC is less flexible than DAEGC.

In practice, we can apply GAE-AC to link prediction-related tasks due to their ex-
cellent performance. For example, we can use GAE-AC to improve the accuracy in the
recommendation system. At the same time, we can also apply GAE-AC to tasks related
to node clustering. For example, node clustering on citation networks can reveal the im-
portance of each research field, find the relationship between publications in the research
field, analyze the relationship and difference between each research field, and discover the
future direction of research; node clustering in social networks can directly find out the
social circle formed by users.
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6. Conclusions

In this paper, we propose GAE-AC based on the graph autoencoder and apply it to
graph representation learning. We first make the hypothesis that clusters have an impact
on the embedding of each node; then, we design a novel spatial convolution layer that
fuses the information of a cluster through the attention mechanism. Then, we add it based
on two-layers GCN to learn the embedding of nodes. Experimental results on the dataset
show that our method is more expressive and performs well in two downstream graph
tasks including attributed graph clustering and link prediction.

In future work, due to the independence of our attention-with-cluster layer, we plan
to apply it to other models directly, such as GAT, and we will perform other types of
experiments to verify the effectiveness of our model such as semi-supervised classification.
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