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Abstract: We derive exact analytical expressions for the spatial Fourier spectrum of the fundamental
bright soliton solution for the (1 + 1)-dimensional nonlinear Schrödinger equation. Similar to a
Gaussian profile, the Fourier transform for the hyperbolic secant shape is also shape-preserving.
Interestingly, this associated hyperbolic secant Fourier spectrum can be represented by a convergent
infinite series, which can be achieved using Mittag–Leffler’s expansion theorem. Conversely, given
the expression of the series of the spectrum, we recover its closed form by employing Cauchy’s
residue theorem for summation. We further confirm that the fundamental soliton indeed satisfies
essential characteristics such as Parseval’s relation and the stretch-bandwidth reciprocity relation-
ship. The fundamental bright soliton finds rich applications in nonlinear fiber optics and optical
telecommunication systems.
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1. Introduction

The nonlinear Schrödinger (NLS) equation is a nonlinear evolution equation for slowly
varying wave packet envelopes in dispersive media. It belongs to a category of completely
integrable systems or exactly solvable models of a nonlinear partial differential equation
(PDE), with infinitely many conserved quantities and explicit analytical solutions [1,2]. The
NLS equation finds rich applications in mathematical physics, including surface gravity
waves, nonlinear optics, superconductivity, and Bose–Einstein condensates (BECs) [3–5].

The focus of this article is the one-dimensional focusing type of the NLS equation. The
former is sometimes also written as (1 + 1)-D, where usually, there is only one dimension
each in the spatial and temporal variables. Higher-dimensional models usually extend
the dimension of the dispersive term. In the canonical form, the focusing (1 + 1)-D NLS
equation can be expressed as the following nonlinear PDE and the subscript indicates the
partial derivative with respect to the associated variable [1,6,7]:

iqt + qxx + 2|q|2q = 0, (x, t) ∈ R2, q(x, t) ∈ C. (1)

This type of NLS equation is also called the cubic Schrödinger equation because of the
third-order nonlinear term. In the absence of this nonlinear term, the NLS equation reduces
to the linear Schrödinger equation, a comparably well-known mathematical model that is
used extensively in quantum mechanics for calculating the wave function of an electron. In
the context of BECs, the NLS equation is also known as the Gross–Pitaevskii equation.

In nonlinear optics, the derivation of the NLS equation employs Maxwell–Heaviside
equations that unifies light, electricity, and magnetism [8,9]. In plasma physics, the method
of multiple scales was utilized to derive the NLS equation for hydromagnetic waves that
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propagate along the magnetic field in cold plasmas [10]. The NLS equation was also derived
independently around the same time in hydrodynamics for describing the propagation of
wave packet envelopes [11]. Several other authors derived the NLS equation using different
techniques in various physical settings, such as the Whitham–Lighthill adiabatic approxima-
tion [12], asymptotic theory for heat pulses in solids [13], the perturbation method for waves
in an electron plasma system [14,15], a spectral method for deep-water waves [16], and the
singular perturbation method in gravity water waves with finite depth [17].

In surface gravity waves, the independent variables (x, t) represent spatial and tem-
poral quantities, respectively, whereas in nonlinear optics, t denotes the transversal pulse
propagation in space and x designates the time variable. The focusing type is indicated by
the positive product of the dispersive and nonlinear coefficients, which are also known
in optical pulse propagation as group-velocity dispersion and self-phase modulation, re-
spectively. In this article, we adopt the physical interpretation from hydrodynamics for the
independent variables.

The dependent variable q(x, t) is a complex-valued amplitude. It describes the slowly
varying envelope dynamics of the corresponding weakly nonlinear quasi-monochromatic
wave packet profile. Denoted by η(x̄, t̄), the usual relationship with q(x, t) is given by

η(x̄, t̄) = Re
{

q(x, t)ei(kx̄−ωt̄)
}

,

where x = ε
(

x̄− cg t̄
)

and t = ε2 t̄, with ε� 1. Here, cg denotes the group velocity, and the
wavenumber k and wave frequency ω are related by the linear dispersion relationship for
the corresponding medium.

The purpose of this article is to provide a step-by-step explanation for finding the
physical spectrum, i.e., the spatial Fourier spectrum, of the bright soliton solution of the NLS
equation. Additionally, we also demonstrated that, on the one hand, the expression for the
spectrum can be expressed as a convergent infinite series using Mittag–Leffler’s expansion
theorem, while on the other hand, given a series expression, it can be returned to its original
closed form by an entirely different technique, albeit still utilizing a tool from complex
analysis, i.e., Cauchy’s residue theorem. The term “spectrum” should not be confused with
the one used in the well-known inverse scattering transform (IST) technique [1,2,18].

For working definitions, we adopted the ones from [19,20]:

Definition 1 (Spatial Fourier transform). Let q(x, t) be a square-integrable function on the
spatial real line, then it can be represented in a dual-spatial-wavenumber (x, k) space by fixing the
time variable t as integral transforms:

q(x, t) =
1

2π

∫ ∞

−∞
q̂(k, t)eikx dk, (2)

where q̂(k, t) is the spatial non-unitary Fourier transform written in the terms of angular wavenum-
ber k and is defined by

q̂(k, t) =
∫ ∞

−∞
q(x, t)e−ikx dx. (3)

Definition 2 (Temporal Fourier transform). Alternatively, for a square-integrable function
q(x, t) on the temporal real line, it can also be expressed at a fixed location x in space as integral
transforms between dual-temporal–frequency (t, ω) domain:

q(x, t) =
1

2π

∫ ∞

−∞
q̂(x, ω)eiωt dω, (4)

where q̂(x, ω) is the temporal non-unitary Fourier transform written in terms of angular fre-
quency ω and is defined by

q̂(x, ω) =
∫ ∞

−∞
q(x, t)e−iωt dt. (5)
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On the one hand, the relationship between (2) and (3) is between the space and
wavenumber domains, where the spatial and wavenumber variables become the transform
variables for a fixed time. On the other hand, for (4) and (5), they relate between the
time and frequency domains at a fixed location in space by letting time and frequency
be the transform variables [21]. Unless otherwise specified, we will focus on and utilize
Definition 1 for the remainder of the article.

This review article is organized as follows. Section 2 outlines the proof of the spa-
tial Fourier transform for the fundamental bright soliton. It also demonstrates that the
associated Fourier spectrum can be expressed as a convergent infinite series by employ-
ing Mittag–Leffler’s expansion theorem, and vice versa, given a series expression for the
spectrum, we recover its hyperbolic secant profile through the residue theorem involving
summation. Section 3 discusses some essential characteristics of the soliton, including
Parseval’s theorem, the stretch-bandwidth reciprocity relationship, and other essential
quantities that find a wide range of applications in various fields. Finally, Section 4 con-
cludes our discussion.

2. Spatial Fourier Spectrum

For the NLS Equation (1), the simplest form of the fundamental soliton solution is
given by [22]

q(x, t) = eit sech x =
eit

cosh x
.

Often called a bright soliton, this exact expression was discovered one-half century ago
using the IST [23]. Other techniques for acquiring an analytical expression of this soliton are
available. For example, one may apply the Darboux transformation using the seed function
q = 0 to arrive at this solution [24,25]. Without employing the IST, the bright soliton can
also be obtained by solving the NLS equation directly by assuming the existence of a
shape-preserving solution in the form of the phase and time-independent amplitude [22].
The term bright soliton is often used in the nonlinear optics literature to distinguish and
contrast it with the dark soliton. The former exists in the anomalous dispersion regime,
modeled by the focusing NLS Equation (1), whereas the latter occurs under the normal
dispersion regime, which is governed by the defocusing NLS equation [26,27].

This fundamental bright soliton solution occurs as limiting cases of a family of station-
ary periodic wave solutions, another family of periodic solutions, in which both involve
Jacobi elliptic functions, and the Kuznetsov–Ma breather family [28–31]. Although the
possibility for the formation of the bright temporal soliton was suggested as early as 1973
by Hasegawa and Tappert, it was not until 1980 that its appearance was observed experi-
mentally in optical fibers by Mollenauer et al. [32–36]. They succeeded in generating and
transmitting an optical pulse soliton in a quartz single-mode fiber for 700 m in a sustained
envelope shape. Indeed, this fundamental soliton has a remarkable feature that makes it
alluring for practical applications, i.e., if a hyperbolic secant pulse is initiated inside an
ideal lossless fiber, it would propagate without altering its shape for an arbitrarily long
distance [37–40]. In BECs, the formation of matter–wave bright solitons was observed in
2002 [41,42].

For a, k, and λ ∈ R\{0}, the following transformations of the fundamental bright
soliton (2) will also satisfy the NLS Equation (1) [43]:

q1(x, t) = a q
(

ax, at2
)

,

q2(x, t) = q(x− 2kt, t) ei(kx−k2t+λ),

q3(x, t) = a q
(

a(x− 2kt), at2
)

ei(akx−ak2t2+λ).

These three arbitrary parameters characterize and are related to the amplitude, fre-
quency, and phase of the soliton, respectively. The fourth parameter is absent and might
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always be re-introduced if one wishes to indicate the position of the soliton peak. However,
this is inessential, as we can always shift it to x = 0 when t = 0 [22].

2.1. Fourier Spectrum Derivation

We have the following theorem.

Theorem 1. The spatial Fourier spectrum of the bright NLS soliton in its simplest form (2) is
given by

q̂(k, t) = π sech
(π

2
k
)

eit.

Proof. Observe that, if we let

f (x) = sech x =
1

cosh x
=

2
ex + e−x =

2e−x

1 + e−2x ,

then f is an even function and

| f (x)| = 2e−|x|

1 + e−2|x| ≤ 2e−|x| ∈ L1(R).

We are interested in finding the spatial Fourier spectrum of the bright soliton q(x, t):

q̂(k, t) =
∫ ∞

−∞
sech x e−i(kx−t) dx = eit

(∫ ∞

−∞

cos kx
cosh x

dx− i
∫ ∞

−∞

sin kx
cosh x

dx
)

.

Since the second term inside the brackets of the last expression vanishes, we only need
to evaluate: ∫ ∞

−∞

cos kx
cosh x

dx = lim
R→∞

∫ R

−R

2 cos kx
ex + e−x dx, R > 0.

Consider the complex-valued function:

φ(z) =
2 cos kz
ez + e−z , z ∈ C, (6)

and the rectangular contour CR in the complex plane with corners at ±R and ±R + iπ,
with R > 0, as shown in Figure 1.

Proof. Observe that if we let

f (x) = sech x =
1

cosh x
=

2
ex + e−x

=
2e−x

1+ e−2x
,

then f is an even function and

| f (x)|= 2e−|x |

1+ e−2|x | ≤ 2e−|x | ∈ L1(R).

We are interested in finding the spatial Fourier spectrum of the bright soliton q(x , t).

bq(k, t) =

∫ ∞

−∞
sech xe−i(kx−t) d x = ei t

�∫ ∞

−∞

cos kx
cosh x

d x − i

∫ ∞

−∞

sin kx
cosh x

d x

�
.

Since the second term inside the bracket of the last expression vanishes, we only need to evaluate
∫ ∞

−∞

cos kx
cosh x

d x = lim
R→∞

∫ R

−R

2 cos kx
ex + e−x

d x , R> 0.

Consider the complex-valued function

φ(z) =
2 cos kz
ez + e−z

, z ∈ C, (6)

and the rectangular contour CR in the complex plane with corners at ±R and ±R+ iπ, with R> 0, as shown
in Figure 1.

Re(z)

Im(z)

O R−R

iπ

i π2 CR

Figure 1: A rectangular contour CR with corners ±R and ±R+ iπ determined by a closed, simple, piecewise
smooth curve traversed in positive orientation. The functionφ is holomorphic in an open connected domain
containing the interior of CR and its closure, except at the pole z = i π2 .

The function φ(z) (6) has only one pole inside the region bounded by the rectangular contour CR at
z = i π2 . Hence, according to the consequence of the Residue Theorem [44–46], we can calculate that the
contour integral over CR is given by

∫

CR

φ(z) dz = 2πi Res
�
φ, i

π

2

�
= 2πi

2 cos
�
ki π2

�

ei π2 − e−i π2
= 2πi

2 cosh
�
π
2 k
�

2i sin π2
= 2π cosh

�π
2

k
�

. (7)

On the other hand, this very same contour integral can also be expressed as separate four distinct line
integrals along each side of the rectangle. Hence, we have

∫

CR

φ(z) dz =

∫ R

−R

2 cos kx
ex + e−x

d x +

∫ π

0

2 cos k(R+ i y)
eR+i y + e−R−i y

i d y −
∫ R

−R

2 cos k(x +π i)
ex+π i + e−x−π i

d x

−
∫ π

0

2 cos k(−R+ i y)
e−R+i y + eR−i y

i d y. (8)

4

Figure 1. A rectangular contour CR with corners ±R and ±R + iπ determined by a closed, simple,
piecewise smooth curve traversed in the positive orientation (blue rectangle). The function φ is
holomorphic in an open connected domain containing the interior of CR and its closure, except at the
pole z = i π

2 (red point).

The function φ(z) (6) has only one pole inside the region bounded by the rectan-
gular contour CR at z = i π

2 . Hence, according to the consequence of Cauchy’s residue
theorem [44–46], we can calculate that the contour integral over CR is given by
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∫

CR

φ(z) dz = 2πi Res
(

φ, i
π

2

)
= 2πi

2 cos
(
ki π

2
)

ei π
2 − e−i π

2

= 2πi
2 cosh

(
π
2 k
)

2i sin π
2

= 2π cosh
(π

2
k
)

.

(7)

Concurrently, this very same contour integral can also be expressed as four separate distinct
line integrals along each side of the rectangle. We thus have

∫

CR

φ(z) dz =
∫ R

−R

2 cos kx
ex + e−x dx +

∫ π

0

2 cos k(R + iy)
eR+iy + e−R−iy i dy

−
∫ R

−R

2 cos k(x + π i)
ex+π i + e−x−π i dx−

∫ π

0

2 cos k(−R + iy)
e−R+iy + eR−iy i dy. (8)

Now, observe that the integrand of the second integral can be expressed as follows for
sufficiently large R:

∣∣∣∣
2 cos k(R + iy)
eR+iy + e−R−iy

∣∣∣∣ =
∣∣∣∣∣
eikR e−ky + e−ikR eky

eR+iy + e−R−iy

∣∣∣∣∣ =
∣∣∣∣∣
e(1+ik)R e(−k+i)y + e(1−ik)R e(k+i)y

e2(R+iy) + 1

∣∣∣∣∣

≤
∣∣∣∣∣
e(1+ik)R e(−k+i)y

e2(R+iy) + 1

∣∣∣∣∣+
∣∣∣∣∣
e(1−ik)R e(k+i)y

e2(R+iy) + 1

∣∣∣∣∣

≤ eR−ky

e2R − 1
+

eR+ky

e2R − 1
=

2 eR cosh ky
e2R − 1

≤ 4 e−R cosh ky.

Thus, the absolute value of the second integral reads
∣∣∣∣
∫ π

0

2 cos k(R + iy)
eR+iy + e−R−iy i dy

∣∣∣∣ ≤
∫ π

0

∣∣∣∣
2 cos k(R + iy)
eR+iy + e−R−iy i

∣∣∣∣ dy

≤
∫ π

0
4 e−R cosh ky dy = 4 e−R sinh kπ,

which tends to 0 as R → ∞. Similarly, for sufficiently large R, the function of the fourth
integral satisfies the following relationship:
∣∣∣∣
2 cos k(−R + iy)
e−R+iy + eR−iy

∣∣∣∣ =
∣∣∣∣∣
e−ikR e−ky + eikR eky

e−R+iy + eR−iy

∣∣∣∣∣ =
∣∣∣∣∣
e−(1+ik)R e(−k+i)y + e(−1+ik)R e(k+i)y

1 + e−2(R−iy)

∣∣∣∣∣

≤

∣∣∣e−(1+ik)R e(−k+i)y
∣∣∣+
∣∣∣e(−1+ik)R e(k+i)y

∣∣∣
∣∣1 + e−2(R−iy)

∣∣

≤ e−R−ky + e−R+ky

1− e−2R =
2 e−R cosh ky

1− e−2R ≤ 2 e−R cosh ky.

Therefore, the absolute value of the fourth integral becomes
∣∣∣∣
∫ π

0

2 cos k(−R + iy)
e−R+iy + eR−iy i dy

∣∣∣∣ ≤
∫ π

0

∣∣∣∣
2 cos k(−R + iy)
e−R+iy + eR−iy i

∣∣∣∣ dy

≤
∫ π

0
2 e−R cosh ky dy = 2 e−R sinh kπ,

which again tends to 0 as R→ ∞. Considering the third integral, it follows that
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−
∫ R

−R

2 cos k(x + π i)
ex+π i + e−x−π i dx =

∫ R

−R

eikxe−πk + e−ikxeπk

ex + e−x dx

=
∫ R

−R

cos kx cosh πk
cosh x

dx− i
∫ R

−R

sin kx sinh πk
cosh x

dx

= cosh πk
∫ R

−R

cos kx
cosh x

dx,

where the imaginary component of the integral vanishes since sin(kx) is an odd function.
Hence, letting R→ ∞, we observe from (7) and (8) that

lim
R→∞

(1 + cosh πk)
∫ R

−R

cos kx
cosh x

dx = (1 + cosh πk)
∫ ∞

−∞

cos kx
cosh x

dx = 2π cosh
(π

2
k
)

.

Therefore,

∫ ∞

−∞

cos kx
cosh x

dx =
2π cosh

(
π
2 k
)

1 + cosh πk
=

2π cosh
(

π
2 k
)

2 cosh2(π
2 k
) =

π

cosh
(

π
2 k
) = π sech

(π

2
k
)

,

and thus, the spatial Fourier transform for the bright soliton is given by

q̂(k, t) = π sech
(π

2
k
)

eit.

This completes the proof and Figure 2 displays the moduli of the bright soliton and its
corresponding Fourier spectrum.

|q(x, t)|

x−5 5

1

|q̂(k, t)|

k−5 5

3

Figure 2. The moduli of the NLS bright soliton (left panel, blue curve) and its corresponding spectrum
(right panel, red curve). Although both profiles are secant hyperbolic, the former is wider and shorter,
whereas the latter is narrower and taller. Both plots are depicted on the same axis scale.

2.2. Fourier Spectrum as Infinite Series

A similar approach in calculating the bright soliton spectrum yields an expression of
convergent alternating series form, where the integral of the associated Fourier transform
is expressed as Gauss’s hypergeometric function [47]:

q̂(k, t) = 4 eit
∞

∑
n=0

(−1)n 2n + 1

k2 + (2n + 1)2 .

We need the following lemma and the summation theorem to prove the above re-
sult [44,48–50].

Theorem 2 (Mittag–Leffler’s expansion theorem). Let p(z) be a complex-valued function with
singularities in the finite complex plane that are only the simple poles ζ1, ζ2, ζ3, . . ., which are
arranged in the order of increasing modulus, with Res (p(z); ζn) = µn, n ∈ N. Let also CN be
circles of radius RN that do not pass through any poles and for which |p(z)| < M, where M is
independent of N and RN → ∞ as N → ∞. Then, Mittag–Leffler’s expansion theorem states that
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p(z) = p(0) +
∞

∑
n=1

µn

(
1

z− ζn
+

1
ζn

)
.

The readers who are interested to see the proof of this theorem may consult [48].

Lemma 1. The function sech
(

π
2 z
)

is bounded on the circles CN having the center at the origin
and radius RN =

(
2N + 3

4
)
, N ∈ N0.

Proof. Since z = x + iy as usual, then the real and imaginary parts satisfy the equation
of the circle x2 + y2 = R2

N . Consider the reciprocal of this hyperbolic secant function, i.e.,
cosh

(
π
2 z
)
. We attempt to find its lower bound for any value of z inside of or at the circles CN .

We know the following hyperbolic function identity:

∣∣∣cosh
(π

2
z
)∣∣∣

2
= sinh2

(π

2
x
)
+ cos2

(π

2
y
)
≥ π2

4
x2 + cos2

(π

2
y
)

. (9)

Obviously, 0 ≤ cos2(π
2 y
)
≤ 1 for all y ∈ R, but we will consider two different cases, i.e.,

1
2 ≤ cos2(π

2 y
)
≤ 1 when |y− 2N| ≤ 1

2 and 0 ≤ cos2(π
2 y
)
≤ 1

2 when |y− 2N| ≥ 1
2 , N ∈ Z.

From the former, we obtain y ≤ 2N + 1
2 , y2 ≤

(
2N + 1

2

)2
and −y2 ≥ −

(
2N + 1

2

)2
. Upon

substitution of the inequality (9), we obtain

∣∣∣cosh
(π

2
z
)∣∣∣

2
≥ π2

4

(
R2 − y2

)
+

1
2

≥ π2

4

[(
2N +

3
4

)2
−
(

2N +
1
2

)2
]
+

1
2
≥ 5π2

64
+

1
2

,

or
∣∣∣cosh

(π

2
z
)∣∣∣ ≥

√
5π2 + 32

8
.

Thus, we have an upper bound for sech
(

π
2 z
)

when |y− 2N| ≤ 1
2 , N ∈ Z:

∣∣∣sech
(π

2
z
)∣∣∣ ≤ 8√

32 + 5π2
.

For the second case, we obtain either y ≥ 2N + 1
2 or y ≤ 2N − 1

2 . By focusing on the latter,

we acquire −y2 ≥ −
(

2N − 1
2

)2
. Employing again the inequality (9), but now dropping the

term cos2(π
2 y
)

because it is always non-negative, we arrive at

∣∣∣cosh
(π

2
z
)∣∣∣

2
≥ π2

4

(
R2 − y2

)
≥ π2

4

[(
2N +

3
4

)2
−
(

2N − 1
2

)2
]
+

1
2
≥ 5π2

64
.

An upper bound for sech
(

π
2 z
)

when |y− 2N| ≥ 1
2 is therefore:

∣∣∣sech
(π

2
z
)∣∣∣ ≤ 8

π
√

5
.

Taking the largest between the two upper bounds, we take the latter, and this completes
the proof.
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Note that a sharper upper bound can be obtained if we take additional terms in the
Taylor series expansion for the hyperbolic sine function, e.g., instead of using sinh2(π

2 x
)
≥

π2

4 x2, we could take

sinh2
(π

2
x
)
≥ π2

4
x2
(

1 +
π2

12
x2
)

instead. For the sake of simplicity, considering only one term suffices, as demonstrated in
the proof above. We are now ready to state and prove the following important proposition.

Proposition 1. For k ∈ R, the hyperbolic secant function can be expressed as an alternating
infinite series:

sech
(π

2
k
)
=

4
π

∞

∑
n=0

(−1)n(2n + 1)
k2 + (2n + 1)2 .

Proof. Consider the complex-valued function:

p(z) = sech
(π

2
z
)
=

1
cosh

(
π
2 z
) ,

then p(0) = 1 and p(z) has simple poles at ζn = (2n + 1)i, n ∈ Z. See Figure 3. Using the
fact that csch (iz) = −i csc(z) and csc

(
z + π

2
)
= sec(z), we can calculate the residue of p(z)

at these poles:

Res(p(z), ζn) = lim
z→ζn

(z− ζn)sech
(π

2
z
)
= lim

z→ζn

2
π

csch
(π

2
z
)
=

2
π

csch
[π

2
(2n + 1)i

]

= −2i
π

csc
(

πn− π

2

)
= −2i

π
sec(πn) =

2i
π
(−1)n+1.

Furthermore, as shown in Lemma 1, p(z) is bounded on circles CN that are centered at
the origin with radius RN =

(
2N + 3

4
)
, as depicted in Figure 3. Using the well-known

Leibniz–Gregory–Nilakantha formula for π [51–53]:

π

4
=

∞

∑
n=0

(−1)n

2n + 1
= 1− 1

3
+

1
5
− 1

7
+

1
9
− · · · , (10)

we obtain

sech
(π

2
z
)
= 1 +

∞

∑
n=−∞

2i
π
(−1)n+1

(
1

z− (2n + 1)i
+

1
(2n + 1)i

)

= 1 +
2
π

∞

∑
n=−∞

(−1)n
(

1
iz + (2n + 1)

− 1
2n + 1

)

=
2
π

[(
1

iz + 1
− 1

iz− 1

)
−
(

1
iz + 3

− 1
iz− 3

)
+

(
1

iz + 5
− 1

iz− 5

)
− · · ·

]

+ 1− 4
π

(
1− 1

3
+

1
5
− · · ·

)

=
4
π

(
1

z2 + 12 −
3

z2 + 32 +
5

z2 + 52 − · · ·
)
=

4
π

∞

∑
n=0

(−1)n(2n + 1)
z2 + (2n + 1)2 .

Taking real-valued z = k ∈ R, we obtain the desired equality, and the proof is complete.
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For the latter, we obtain either y ≥ 2N + 1
2 or y ≤ 2N − 1

2 . By focusing on the latter, we acquire −y2 ≥
− �2N − 1

2

�2
. Employing again inequality (9), but now dropping the term cos2

�
π
2 y
�

since it is non-negative,
we arrive at

���cosh
�π

2
z
����

2
≥ π

2

4

�
R2 − y2

�≥ π
2

4

��
2N +

3
4

�2

−
�

2N − 1
2

�2
�
+

1
2
≥ 5π2

64
.

An upper bound for sech
�
π
2 z
�

when |y − 2N | ≥ 1
2 is therefore:

���sech
�π

2
z
����≤ 8

π
p

5
.

Taking the largest between the two, we take the latter, and this completes the proof.

Note that a sharper upper bound can be obtain if we take additional terms in the Taylor-series expansion
for the hyperbolic sine function, e.g., instead of using sinh2

�
π
2 x
�≥ π2

4 x2, we could take

sinh2
�π

2
x
�
≥ π

2

4
x2

�
1+

π2

12
x2

�

instead. For the sake of simplicity, considering only one term suffices as demonstrated in the proof above.

Re(z)

Im(z)

−7i

−5i

−3i

−i

i

3i

5i

7i

R0

R1

R2

R3

C0

C1

C2

C3

Figure 3: The poles of sech
�
π
2 z
�
, i.e., ζn = (2n+ 1)i, n ∈ Z, are shown along the imaginary axis. The plot

also shows the several circles CN with radii RN that do not intersect these poles.

Proposition 1. For k ∈ R, the hyperbolic secant function can be expressed as an alternating infinite series:

sech
�π

2
k
�
=

4
π

∞∑
n=0

(−1)n (2n+ 1)
k2 + (2n+ 1)2

.

Proof. Consider the complex-valued function

p(z) = sech
�π

2
z
�
=

1

cosh
�
π
2 z
� ,

7

Figure 3. The poles of sech
(

π
2 z
)
, i.e., ζn = (2n + 1)i, n ∈ Z, are shown as red points along the

imaginary axis. The plot also shows the several concentric blue circles CN with positive orientation
and radii RN that do not intersect these poles.

To verify the converse of the statement, we use the following lemma and summation theorem.

Lemma 2. Let N ∈ N, and let SN be the square with corners at
(

N + 1
2

)
(±1± i) as illustrated in

Figure 4, then there exist positive constants A and B such that |cot(πz)| ≤ A and |csc(πz)| ≤ B
for all z in the square SN .

Proof. On the horizontal sides of the square, we have z = x± i
(

N + 1
2

)
. Because

∣∣∣eiπxe∓π(N+ 1
2 ) + e−iπxe±π(N+ 1

2 )
∣∣∣ ≤

∣∣∣eiπx
∣∣∣ e∓π(N+ 1

2 ) +
∣∣∣e−iπx

∣∣∣ e±π(N+ 1
2 )

= eπ(N+ 1
2 ) + e−π(N+ 1

2 ),
∣∣∣eiπxe∓π(N+ 1

2 ) − e−iπxe±π(N+ 1
2 )
∣∣∣ ≥ eπ(N+ 1

2 ) − e−π(N+ 1
2 ),

and the hyperbolic cotangent function is decreasing in the interval (0, ∞), we deduce that

|cot(πz)| =
∣∣∣∣
cos(πz)
sin(πz)

∣∣∣∣ =
∣∣∣∣
eiπz + e−iπz

eiπz − e−iπz

∣∣∣∣ =
∣∣∣∣∣
eiπ[x±i(N+ 1

2 )] + e−iπ[x±i(N+ 1
2 )]

eiπ[x±i(N+ 1
2 )] − e−iπ[x±i(N+ 1

2 )]

∣∣∣∣∣

≤ eπ(N+ 1
2 ) + e−π(N+ 1

2 )

eπ(N+ 1
2 ) − e−π(N+ 1

2 )
=

cosh
(

N + 1
2

)
π

sinh
(

N + 1
2

)
π

= coth
(

N +
1
2

)
π ≤ coth

3
2

π.

On the vertical sides, we have z = ±
(

N + 1
2

)
+ iy. Employing the trigonometric identities



Mathematics 2022, 10, 4559 10 of 22

cot
(

N ± π
2
)
= − tan z and cot(z± Nπ) = cot z, we obtain

|cot(πz)| =
∣∣∣cot

(
±Nπ ± π

2
+ iπy

)∣∣∣ = |−i tan(iπy)| = |tanh(πy)| ≤ 1,

since tanh2(πy) = 1− sech 2(πy) for all y ∈ R.
Using a similar argument, on the horizontal sides, the cosecant function can be ex-

pressed as follows:

|csc(πz)| =
∣∣∣∣

1
sin(πz)

∣∣∣∣ =
∣∣∣∣

2i
eiπz − e−iπz

∣∣∣∣ =
∣∣∣∣∣

2

eiπ[x±i(N+ 1
2 )] − e−iπ[x±i(N+ 1

2 )]

∣∣∣∣∣

≤ 2

eπ(N+ 1
2 ) − e−π(N+ 1

2 )
= csch

(
N +

1
2

)
π ≤ csch

(
3
2

π

)
,

because the hyperbolic cosecant function is decreasing in the interval (0, ∞). On the vertical
sides of the rectangle, we utilize the identities csc

(
z± π

2
)
= ± sec z and csc(z± Nπ) =

(−1)N csc z to show that

|csc(πz)| =
∣∣∣csc

(
±Nπ ± π

2
+ iπy

)∣∣∣ = |sec(iπy)| = |sech (πy)| ≤ 1,

because sech 2(πy) = 1− tanh2(πy) for all y ∈ R. Hence, we can take A = coth 3
2 π ≥ 1

and B = 1 ≥ csch
( 3

2 π
)
, and the proof is complete.

then p(0) = 1 and p(z) has simple poles at ζn = (2n + 1)i, n ∈ Z. See Figure 3. Using the fact that
csch (iz) = −i csc (z) and csc

�
z + π

2

�
= sec (z), we can calculate the residue of p at these poles:

Res (p(z),ζn) = lim
z→ζn

(z − ζn) sech
�π

2
z
�
= lim

z→ζn

2
π

csch
�π

2
z
�
=

2
π

csch
hπ

2
(2n+ 1) i

i

= −2i
π

csc
�
πn− π

2

�
= −2i

π
sec (πn) =

2i
π
(−1)n+1 .

Furthermore, as shown in Lemma 1, p(z) is bounded on circles CN that are centered at the origin with
radius RN =

�
2N + 3

4

�
, as depicted in Figure 3. Using the well-known Leibniz–Gregory–Nilakantha formula

for π [51–53]:
π

4
=
∞∑
n=0

(−1)n

2n+ 1
= 1− 1

3
+

1
5
− 1

7
+

1
9
− · · · ,

we obtain

sech
�π

2
z
�
= 1+

∞∑
n=−∞

2i
π
(−1)n+1

�
1

z − (2n+ 1) i
+

1
(2n+ 1) i

�

= 1+
2
π

∞∑
n=−∞

(−1)n
�

1
iz + (2n+ 1)

− 1
2n+ 1

�

=
2
π

��
1

iz + 1
− 1

iz − 1

�
−
�

1
iz + 3

− 1
iz − 3

�
+
�

1
iz + 5

− 1
iz − 5

�
− · · ·

�

+ 1− 4
π

�
1− 1

3
+

1
5
− · · ·

�

=
4
π

�
1

z2 + 12
− 3

z2 + 32
+

5
z2 + 52

− · · ·
�
=

4
π

∞∑
n=0

(−1)n (2n+ 1)
z2 + (2n+ 1)2

.

Taking real-valued z = k ∈ R, we obtain the desired equality and the proof is completed.

Re(z)

Im(z)

−(N + 1)

−N −3 −2 −1 1 2 3 N

N + 1

SN
�
N + 1

2

�
(1+ i)

�
N + 1

2

�
(−1+ i)

�
N + 1

2

�
(−1− i)

�
N + 1

2

�
(1− i)

Figure 4: The square SN with vertices at
�
N + 1

2

�
(±1± i) used for an illustration in Lemma 2.

8

Figure 4. The square SN with vertices at
(

N + 1
2

)
(±1± i) used for an illustration in Lemma 2.

Note that the constant 2 in the numerator for the cosecant and the factor π in the
argument for the secant and hyperbolic secant functions were missing in [44], and they have
been restored here. The constants A and B are certainly not unique, and different values
of these constants are possible, as demonstrated in [48], where the authors proved this by
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splitting the portions of the square Sn into several regions depending on the imaginary
variable y, i.e., y < − 1

2 , |y| < 1
2 , and y > 1

2 .

Theorem 3 (Summation theorem). Let f (z) be a function that is differentiable on C except for
finitely many poles z1, z2, . . ., zr, none of which is a real-valued integer. Suppose also that there
exist positive constants K and R such that

∣∣z2 f (z)
∣∣ ≤ K whenever |z| > R. Let

g(z) = π f (z) cot(πz) and h(z) = π f (z) csc(πz),

then
∞

∑
n=−∞

f (n) = −
r

∑
j=1

Res
(

g(z), zj
)

and

∞

∑
n=−∞

(−1)n f (n) = −
r

∑
j=1

Res
(
h(z), zj

)
.

(11)

Note that the assumption of 1/ f (z) is a polynomial function with real coefficients,
degree n ≥ 2, and no integer zeros, as stated in [50], belonging to only some special cases
of f (z).

Proof. Since | f (n)| ≤ K
n2 whenever |n| > R for n ∈ Z, then both series ∑ f (n) and

∑(−1)n f (n) are absolutely convergent, and thus, they are convergent. Furthermore, for
both functions π cot(πz) and π csc(πz), the set of poles is the set of real-valued integers
n ∈ Z. Consequently, the set of poles for both functions g and h is {z1, z2, . . . , zr} ∪ Z. By
the periodic properties of the circular functions, we can express cot(πz) = cot π(z− n)
and csc(πz) = (−1)n csc π(z− n). Therefore, the residues of these functions are given by

Res(cot(πz), n) = lim
z→n

(z− n) cot(πz) = lim
z→n

(z− n) cot π(z− n)

= lim
z→n

cos π(z− n)
z− n

sin π(z− n)
=

1
π

,

Res(csc(πz), n) = lim
z→n

(z− n) csc(πz) = lim
z→n

(−1)n z− n
sin π(z− n)

=
(−1)n

π
.

Furthermore, when the function f generally possesses no zeros on the (real) x-axis, but
each of both functions g and h has a simple pole at each integer n, we can calculate their
residues at z = n ∈ Z:

Res(g(z), n) = lim
z→n

π f (z)(z− n) cot(πz) = f (n), and

Res(h(z), n) = lim
z→n

π f (z)(z− n) csc(πz) = (−1)n f (n).

Meanwhile, from Cauchy’s residue theorem, we have

∫

SN

g(z) dz = 2πi

(
R

∑
n=−R

Res(g(z), n) +
r

∑
j=1

Res
(

g(z), zj
)
)

, and

∫

SN

h(z) dz = 2πi

(
R

∑
n=−R

Res(h(z), n) +
r

∑
j=1

Res
(
h(z), zj

)
)

.

Since the contour of SN has a total length of 4(2N + 1), using Lemma 2 and for sufficiently
large N, we obtain
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∣∣∣∣∣∣

∫

SN

g(z) dz

∣∣∣∣∣∣
≤
∫

SN

|π f (z) cot(πz) dz| ≤ 4(2N + 1) sup
z∈SN

|π f (z) cot(πz)|

≤ 4(2N + 1)
KA
N2 , and

∣∣∣∣∣∣

∫

SN

h(z) dz

∣∣∣∣∣∣
≤
∫

SN

|π f (z) csc(πz) dz| ≤ 4(2N + 1) sup
z∈SN

|π f (z) csc(πz)|

≤ 4(2N + 1)
KB
N2 .

Both of these upper bounds tend to 0 as N → ∞. Hence, by letting N → ∞ (or R → ∞),
we obtain

∞

∑
n=−∞

f (n) +
r

∑
j=1

Res
(

g(z), zj
)
= 0, and

∞

∑
n=−∞

(−1)n f (n) +
r

∑
j=1

Res
(
h(z), zj

)
= 0,

for which the equalities in (11) are established and the proof is complete.

We state and prove another important proposition, which is the converse of Proposi-
tion 1, by leading an infinite series into a closed analytical form.

Proposition 2. For any k ∈ R, the following alternating series converges, and it can be simplified
into a hyperbolic secant function in k:

∞

∑
n=0

(−1)n (2n + 1)

k2 + (2n + 1)2 =
π

4
sech

(π

2
k
)

. (12)

Proof. To prove the convergence, we apply the alternating series test. Let

an(k) = (−1)nbn(k), where bn(k) =
(2n + 1)

k2 + (2n + 1)2 , n ∈ N0, k ∈ R,

then

bn+1(k) =
(2n + 3)

k2 + (2n + 3)2 ≤
(2n + 1)

k2 + (2n + 1)2 = bn(k),

lim
n→∞

bn(k) = lim
n→∞

(2n + 1)

k2 + (2n + 1)2 = 0.

Since the absolute value of the terms is getting smaller and tends to zero as n goes to infinity,
the alternating series is thus convergent. To find a particular function where it converges, let

f (z) =
2z + 1

k2 + (2z + 1)2 , k ∈ R,

then f possesses two poles z1 and z2:

z1,2 = −1
2
(1∓ ik).

By expressing the left-hand side of (12) as the summation over n ∈ Z and applying
Theorem 3, we demonstrate that it arrives at the expression on the right-hand side of (12):
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∞

∑
n=0

(−1)n (2n + 1)
k2 + (2n + 1)2 =

1
2

∞

∑
n=−∞

(−1)n (2n + 1)
k2 + (2n + 1)2 = −1

2

2

∑
j=1

Res
(

π(2z + 1) csc(πz)
k2 + (2z + 1)2 ; zj

)

= −1
2

{π

4
csc

π

2
(ik− 1) +

π

4
csc
[
−π

2
(ik + 1)

]}

=
π

8

[
sec
(π

2
ik
)
+ sec

(
−π

2
ik
)]

=
π

8

[
sech

(π

2
k
)
+ sech

(π

2
k
)]

=
π

4
sech

(π

2
k
)

.

This completes the proof.

For k = 0, we recover the Leibniz–Gregory–Nilakantha formula for π (10) [51–53].

3. Soliton Characteristics

This section examines some characteristics of the fundamental bright soliton and its
corresponding spatial Fourier spectrum. Understanding the properties and characteristics
of this soliton—or any other waves—in the spatial and Fourier domains is particularly
essential from the viewpoint of the applications. Some soliton’s features that are not
obviously captured in one domain during its evolution might be distinctly visible in the
other domain, and vice versa. In water waves, for example, the asymmetric pattern of the
wave signal is closely correlated to the frequency downshift in the spectral domain [47,54].
In digital communications, any changes in the spectral width may have a direct bearing on
the communication system’s capacity and on the equipment design, which accommodates
certain wave characteristics [55]. As we will observe in this section, the width of the soliton
in both domains is inversely related. A contraction in one domain yields an expansion in
the other domain.

Although the literature usually considers the temporal–frequency domain relationship,
i.e., pulse or signal (together with its envelope) in the time domain and its temporal Fourier
spectrum in the frequency domain, we focus on the relationship of the spatial-wavenumber
domains. Hence, some terminologies in the definition are adjusted to the related domains
accordingly. We commence with the following definitions and propositions.

Definition 3 (Soliton power and energy spectral density). The squared-absolute value of the
fundamental bright soliton |q(x, t)|2 is called the (envelope) soliton power, whereas the associated
squared-modulus of its spatial Fourier spectrum |q̂(k, t)|2 is called the energy spectral density [56].

Figure 2 displays the envelope power of the bright soliton (left panel) and its associated
energy spectral density (right panel) for a fixed value of t ∈ R. We observe that the Fourier
transform preserves the hyperbolic secant profile, albeit with different heights and widths
between the spatial and wavenumber domains.

Definition 4 (Soliton energy). The integral of the soliton power is called the soliton energy, and
it satisfies Parseval’s theorem in the spatial-wavenumber domains [57]:

E =
∫ ∞

−∞
|q(x, t)|2 dx =

1
2π

∫ ∞

−∞
|q̂(k, t)|2 dk. (13)

This soliton energy is also called the number of quanta, with the integral on the left-
hand side of (13) being identical to the first integral of motion, a conserved quantity in
the NLS integrable system [36]. Higher-order conserved quantities exist, and in particular,
the second and third integrals of motion correspond to the momentum and Hamiltonian,
respectively [23,58–61].

The definition of the integral of the energy spectral density seems to be absent in
the literature since it equals the soliton energy, which can be calculated through either
q(x, t) or q̂(k, t). Indeed, the relationship between these two quantities is encapsulated by
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a fundamental property of Fourier transforms known as Parseval’s theorem (13), which
states that the soliton energy equals the area under the square of the magnitude of the
Fourier transform of the soliton profile divided by 2π. If one wishes to define the latter, the
total energy spectrum is not a bad option.

Proposition 3. The fundamental bright soliton satisfies Parseval’s theorem (13) in the spatial-
wavenumber domains [62].

Proof. On the one hand, the expression for the soliton energy (13) is given by
∫ ∞

−∞
|q(x, t)|2 dx =

∫ ∞

−∞
sech 2x dx = lim

c→∞

∫ c

−c
sech 2x dx = lim

c→∞
tanh x

∣∣∣
c

−c

= lim
c→∞

[tanh c− tanh(−c)] = [1− (−1)] = 2.

On the other hand, the right-hand side of (13) calculates

1
2π

∫ ∞

−∞
|q̂(k, t)|2 dk =

1
2π

∫ ∞

−∞
π2 sech 2

(π

2
k
)

dk =
π

2
lim

d→∞

∫ d

−d
sech 2

(π

2
k
)

dk

= lim
d→∞

tanh
(π

2
k
)∣∣∣∣∣

d

−d

= lim
d→∞

[
tanh

(π

2
d
)
− tanh

(
−π

2
d
)]

= [1− (−1)] = 2.

Since we verify that both sides equal two, we complete the proof.

3.1. Root-Mean-Squared Width

Definition 5 (Mean/centroid). Let q(x, t) and q̂(k, t) be a complex-valued soliton amplitude and
its associated spatial Fourier spectrum, respectively. Then, the soliton mean or centroid is defined by

x̄ =

∫ ∞

−∞
x|q(x, t)|2 dx

∫ ∞

−∞
|q(x, t)|2 dx

=
1
E

∫ ∞

−∞
x|q(x, t)|2 dx,

whereas the (spatial) spectrum centroid or mean is defined as follows:

k̄ =

∫ ∞

−∞
k|q̂(k, t)|2 dk

∫ ∞

−∞
|q̂(k, t)|2 dk

=
1

2πE

∫ ∞

−∞
k|q̂(k, t)|2 dk,

where E is the soliton energy given by (13). We can consider x̄ and k̄ as the centers of gravity of the
energy distribution in the spatial and wavenumber domains, respectively.

Definition 6 (Power-root-mean-squared soliton width and spectral bandwidth). Let q(x, t)
and q̂(k, t) be a complex-valued soliton amplitude and its associated spatial Fourier spectrum,
respectively. The power-root-mean-squared soliton width σx ≥ 0, also called the soliton standard
deviation or soliton radius of gyration, is defined as follows:

σ2
x =

1
E

∫ ∞

−∞
(x− x̄)2|q(x, t)|2 dx,

whereas the (spatial) power-root-mean-squared spectral bandwidth σk ≥ 0 is defined by

σ2
k =

1
2πE

∫ ∞

−∞

(
k− k̄

)2|q̂(k, t)|2 dk.
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In both instances, x̄ and k̄ denote the soliton and spectrum centroids mentioned earlier in Definition 5,
respectively. We can think of σx and σk as the soliton and its associated Fourier spectrum “spreads”
in their respective domains, respectively.

Proposition 4. The product of the power-root-mean-squared soliton width with its associated
spectral bandwidth satisfies the (spatial) stretch-bandwidth reciprocity relationship, also called the
space-wavenumber uncertainty relationship [56,63]:

σx σk ≥
1
2

.

Proof. Since x|q(x, t)|2 = x sech 2x and k|q̂(k, t)|2 = π2 k sech 2(π
2 k
)

are both odd functions
with respect to the length x and wavenumber k, respectively, then the numerators of both the
soliton’s and spectrum’s means vanish, i.e., x̄ = 0 = k̄. From Proposition 3, we calculated
the denominators of σ2

x and σ2
k as 2 and 4π, respectively. It then remains to evaluate their

numerators. The former reads
∫ ∞

−∞
(x− x̄)2|q(x, t)|2 dx =

∫ ∞

−∞
x2 sech 2x dx = lim

c→∞

∫ c

−c
x2 sech 2x dx

= lim
c→∞

{
Li2
(
−e−2x

)
+ x2(tanh x− 1)− 2x ln

(
1 + e−2x

)} ∣∣∣∣∣

c

−c

=
π2

6
.

Thus, the soliton variance σ2
x and its power-root-mean-squared width σx are given by

σ2
x =

π2

12
and σx =

π

2
√

3
.

Similarly, we evaluate the latter and find that
∫ ∞

−∞

(
k− k̄

)2|q̂(k, t)|2 dk =
∫ ∞

−∞
π2 k2 sech 2

(π

2
k
)

dk = π2 lim
d→∞

∫ d

−d
k2 sech 2

(π

2
k
)

dk

=
1
π

lim
d→∞

{
8 Li2

(
−e−πk

)
+ π2k2

[
tanh

(π

2
k
)
− 2
]
− 8πk ln

(
1 + e−πk

)} ∣∣∣∣∣

d

−d

=
4π

3
.

It follows that the spectrum variance σ2
k and its power-root-mean-squared spectral band-

width σk are given as follows:

σ2
k =

1
3

and σk =
1√
3

.

In both instances, Li2(z) denotes the dilogarithm Spence function, defined as

Li2(z) = −
∫ z

0

ln(1− u)
u

du or Li2(z) =
∫ z

1

ln t
1− t

dt, z ∈ C.

Hence, the product of the two widths yields

σx σk =
π

6
≥ 1

2
,

which satisfies the stretch-bandwidth reciprocity relationship and completes the proof.
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It can also be verified that the equality in the stretch-bandwidth reciprocity relationship
is satisfied for the Gaussian pulse profile. In other words, the Gaussian function possesses
the minimum permissible value of the stretch-bandwidth product, i.e., the minimum
uncertainty in the context of Heisenberg’s uncertainty principle in quantum mechanics.

Also often called Weyl–Heisenberg’s uncertainty principle, it implies that q(x, t) and
q̂(k, t) cannot both be concentrated around the centroid, i.e., dilating and compressing
spatially correspond to compressing and dilating the wavenumber, respectively [64,65].
The proof found in the literature usually assumes that both the soliton and its spectrum
are centered at x̄ = 0 and k̄ = 0, respectively, since translations and modulations do
not affect their spreads. Additionally, we also assumed that |q(x, t)|2 decays faster than
1/x as |x| → ∞. The proof of the principle employs Parseval’s theorem to ∂q/∂x and the
Cauchy–Schwarz inequality [66–69].

3.2. Other Width Measurements
3.2.1. Full-Width at Half-Maximum

Definition 7 (Full width at half-maximum). The full-width at half-maximum (FWHM) is a
measurement parameter used to describe the width of a “bump” on a soliton profile or its associated
Fourier spectrum. The value is given by the distance between points on the curve for which the
soliton (or its spectrum) reaches half its maximum value [56,70].

For the bright soliton and its associated Fourier spectrum, we obtain the following
quantities:

∆x(1)FWHM = 2 sech−1
(

1
2

)
= 2 cosh−1 2 = 2 ln

(
2 +
√

3
)
≈ 2.6339,

∆k(1)FWHM =
4
π

sech−1
(

1
2

)
=

4
π

cosh−1 2 =
4
π

ln
(

2 +
√

3
)
≈ 1.6768.

Remark 1. The readers should be careful when encountering the FWHM, as its definition may
differ in the literature, particularly in optical applications. The FHWM of a wave profile, respectively
wave signal or wave pulse, is twice the width, respectively elapsed duration, between the points
where the wave power or intensity takes half of the peak value, as explicitly stated in [71,72], but
implicitly demonstrated in [73].

Employing this definition for the FWHM to the bright soliton and its associated Fourier
spectrum, we obtain the following values instead:

∆x(2)FWHM = 2 sech−1
(

1√
2

)
= 2 cosh−1

√
2 = 2 ln

(
1 +
√

2
)
≈ 1.7627,

∆k(2)FWHM =
4
π

sech−1
(

1√
2

)
=

4
π

cosh−1
√

2 =
4
π

ln
(

1 +
√

2
)
≈ 1.1222.

The superscripts (1) and (2) denote the FWHM calculations that are taken with respect to
the soliton and its power, respectively. For detailed applications of the FWHM, see [74–78].

3.2.2. Power-Equivalent Width

Definition 8 (Power-equivalent width). The soliton power-equivalent width ∆xPEW is the
soliton energy E divided by the peak signal power:

∆xPEW =
∫ ∞

−∞

|q(x, t)|2

|q(x0, t)|2
dx,

where x0 is the soliton’s peak.
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Similarly, the power-equivalent bandwidth ∆kPEW is defined by

∆kPEW =
∫ ∞

−∞

|q̂(k, t)|2

|q̂(k0, t)|2
dk,

where k0 is the Fourier spectrum’s peak.

For the bright soliton and its associated Fourier spectrum, we acquire the follow-
ing values:

∆xPEW = 2, and ∆kPEW =
1
π

.

3.3. Discussion

The measurement quantity “root mean square” (RMS) can be encountered in various
fields and encompasses a wide range of applications. In the context of data analysis and
statistics, where the data are discrete and consist of a set of numbers, the RMS is defined as
the square root of the arithmetic mean of the squares of the dataset. Let {x1, x2, . . . , xn} be
a set of n ∈ N values, then the (discrete) RMS is defined by [79]:

xRMS =

√
1
n

n

∑
k=1

x2
k . (14)

The RMS is also known as the quadratic mean [80,81]. It is one among the four kinds
of well-known means—the others being arithmetic mean, geometric mean, and harmonic
mean—for which inequalities among these means often appear in many mathematical
competitions, as well as being applied in many areas of science and engineering [82–87].
When comparing forecasting errors of different models for a particular dataset, scientists
often employ the root-mean-squared deviation (RMSD) or root-mean-squared error (RMSE).
This quantity also represents the square root of the second sample moment of the differences
between predicted (by a model or an estimator) and observed values [88]. Although the
RMSD and RMSE are used for different purposes, their formulas might be similar. The
RMSD or standard deviation σ for discrete data is given by

σ =

√
1
n

n

∑
k=1

(xk − µ)2 =
√

xRMS − µ2, where µ =
1
n

n

∑
k=1

xk, (15)

denoting the average or arithmetic mean of the dataset. Observe that xRMS in (14) reduces
to, or is identical to, σ in (15) when µ = 0, cf. [89,90]. The standard deviation σ is the result
of squaring the differences between the individual values and the mean of the values,
whereas the RMS is the result of squaring the individual values (without subtracting the
mean). The former is a measure of the variation in the measures, while the latter is a sort of
average of the measures.

In electronics, optics, acoustics, and related fields, one of the main objects is a col-
lection of temporally dependent wave signals or wave pulses. The waveforms of these
signals are often composed of a continuous set of data, albeit the shapes are generally not
smooth. Hence, it is plainly natural to switch from summation to integral when defining
the RMS for continuously varying functions. Depending on whether we are interested in
the measurement over limited or infinite intervals, the RMS can be defined in terms of an
integral of the squares of the wave signal function. Let f (t) be an integrable function, then
the (continuous) RMS for f (t) over the interval T1 ≤ t ≤ T2 and over all time t ∈ R are
given as follows, respectively:
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fRMS =

√
1

T2 − T1

∫ T2

T1

[ f (t)]2 dt, T1 < T2, and

f ∞
RMS = lim

T→∞

√
1

2T

∫ T

−T
[ f (t)]2 dt.

Our definitions of the soliton’s centroid and radius of gyration (Definitions 5 and 6)
are closely related to the quantitative measurement of moments that are commonly used
in probability theory, inferential statistical analysis, and various branches of physics. Let
n ∈ N0, the nth moment of the corresponding soliton q(x, t)—or any wave packet—be
defined as the expectation value of xn normalized by its energy E, which can also be
expressed as an inner product in the complex domain [91,92]:

〈xn〉 = 〈q, xnq〉
〈q, q〉 =

1
E

∫ ∞

−∞
q∗(x, t) xn q(x, t) dx =

1
E

∫ ∞

−∞
xn|q(x, t)|2 dx,

where the asterisk denotes the complex conjugate of the wave function and the energy E is
the relevant integral in (13). Some authors often normalize this energy by simply taking
E = 1 without losing any generality.

In theory, although there are an infinite number of moments, only the first few lower
moments are well studied in the literature. The zeroth-moment 〈x0〉 equals the definition of
the soliton energy E (13) in this review article, but it can also indicate the total probability
of finding the soliton particle somewhere. The first-moment 〈x1〉 is associated with the
soliton’s location, where we defined it earlier as the soliton’s centroid (Definition 5). This
makes sense because the centroid determines the position of the wave packet in the spatial
domain. Furthermore, since generally, a soliton spreads and shrinks as it travels in space
or evolves in time, we need another quantity to measure its width. Thus, by combining
both the first and second moments, we could determine the soliton’s width, as stated in
Definition 6. The soliton’s width can also be referred to as its radius of gyration because
it is the RMS distance of the surface of the soliton from its centroid. What we refer to as
the “width” in Definition 6 is actually only the half-width of the soliton and its associated
spectrum, hence the term soliton or spectrum “standard deviation” or “radius of gyration”.
The full-width of the soliton and its associated spectrum should be twice those quantities,
i.e., 2σx and 2σk, respectively.

In terms of moment notation, the soliton’s radius of gyration can be expressed
as follows:

σx =

√
〈(x− 〈x〉)2〉 =

√
〈x2〉 − 〈x〉2. (16)

We observe that this expression for σx in the continuous case (16) is analogous to the stan-
dard deviation σ in the discrete case (15). The term for the second moment 〈x2〉 corresponds
to the RMS, whereas the square of the first moment 〈x〉2 matches the mean square µ2. Hence,
designating σx as the RMS, such as in [56,93], might confuse some readers. However, some
authors could argue that such a designation is totally acceptable because for symmetric
real-valued function q(x, t) in the spatial domain, such as our bright soliton, 〈x〉 = 0, and
thus, both the standard deviation and RMS are identical.

In applications, particularly in the field of nonlinear fiber optics, there was some
interest in seeking analytical expressions, and their best approximations, for the RMS width
of wave pulses propagating in nonlinear and dispersive fibers. For our fundamental bright
soliton, the RMS width is exact and constant, up to a parameter scaling that appears from
the gauge transformation. The balancing effects of the pulse broadening group velocity dis-
persion and the amplitude increase of nonlinearity cause this stable formation of the bright
soliton. In practice, however, dispersion effects cause the broadening (or compressing) of
short pulses during their travel along optical fiber communication systems. There are three
types of dispersion that are known in the literature. The material dispersion is associated
with the frequency dependence of the material index. The waveguide dispersion is caused
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by the frequency dependence of the mode propagation constant. The intermode disper-
sion appears because of the difference between the group velocity of various modes [36].
Furthermore, an exact solution of a particular nonlinear evolution equation is not always
known, and the RMS width is not always constant. Scientists often employ various optical
pulse shapes as inputs and investigate how these pulses deform as they propagate along an
optical fiber. In addition to a rectangular pulse, the most common well-studied shapes are
Gaussian [93,94], super-Gaussian [95,96], hyperbolic secant [97], and squared hyperbolic
secant [98].

The RMS width informs about and provides an estimate of how these pulses deform—
in optics, it usually depends on the (spatial) propagation variable—and thus, it is an
advantageous measurement for assessing any potential limitations in the performance
of fiber transmission systems. When normalizing the RMS width with the initial pulse
width, some authors may take either the RMS initial width or the FWHM in their numer-
ical computations, which is just a matter of convenience [99,100]. Although we propose
the stretch-bandwidth reciprocity relationship using the RMS soliton width or standard
deviation, some authors employed the FWHM instead [98]. Furthermore, Sorokin et al.
argued that measuring both the RMS width and the FWHM is essential in understanding
the properties of optical ultrafast pulses, not only in characterizing the central part of the
pulse, but also in probing the influence of the pulse wings toward its propagation [73].

4. Conclusions

In this article, we considered the spatial Fourier spectrum for the bright soliton solution
of the NLS equation. Deriving the analytical expression of the spectrum requires performing
integration in the complex plane. Interestingly, the bright soliton has a similar characteristic
of hyperbolic secant profiles in both the spatial and wavenumber domains. Furthermore,
this associated Fourier spectrum admits an infinite series expression, which can be derived
by employing Mittag–Leffler’s expansion theorem. Conversely, this convergent series
can be reduced to a closed form by utilizing Cauchy’s residue theorem that involves
summation. We also briefly reviewed some fundamental characteristics of the bright soliton
and its associated Fourier spectrum; we confirmed that it satisfies the stretch-bandwidth
uncertainty principle. Other measurements that admit a wide range of applications, such
as the full-width at half-maximum and the power-equivalent widths, were also presented.
The dynamics of the fundamental bright soliton is a topic of ongoing interest, thanks to its
applications in optical telecommunication systems and nonlinear fiber optics.

A similar mathematical analysis of another comparably well-known solution, i.e., the
dark soliton from the defocusing NLS equation, will be a natural extension of this work.
Additionally, other families of double-periodic and stationary-periodic solutions, which are
usually expressed in terms of Jacobi elliptic functions, seem to receive less attention in the
literature than the fundamental soliton or solitons on a nonvanishing background. A further
investigation of those exact analytical solutions might provide a better understanding of
all solution families of the NLS equation, not only in the spatial and temporal domains,
but also in the wavenumber and frequency domains. This gained insight will definitely
be useful for any applications that involve nonlinear wave phenomena in general and the
NLS equation with its analytical solutions in particular.
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