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Abstract: In 2009, Noor and Waseem studied an important third-order iterative method. The conver-
gence order is obtained using Taylor expansion and assumptions on the derivatives of order up to
four. In this paper, we have obtained convergence order three for this method using assumptions
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1. Introduction

Due to its wide application in various fields, such as Engineering [1], Applied sci-
ences [2,3], Mathematics [4], Medicine and Scientific computing [5,6], finding a solution of
the nonlinear equation

F(x) = 0, (1)

is an important problem in computational mathematics. Here, F : Ω ⊂ T → T1 is a Fréchet
differentiable operator between Banach spaces T and T1 and Ω is an open convex set. Since
a closed form solution for (1) is difficult to obtain (in general), iterative methods are usually
employed to approximate the solution x∗ of (1). While studying iterative methods, the order
of convergence is an important concern. In this paper, we consider the iterative method
studied in [7] by Noor and Waseem. The method in [7] is defined for n = 0, 1, 2, . . . by

yn = xn − F′(xn)
−1F(xn)

xn+1 = xn − 4A−1
n F(xn), (2)

where An = 3F′( 2xn+yn
3 ) + F′(yn).

Noor and Waseem in [7] obtained a convergence order three for (2) using Taylor
expansion. The analysis in [7] uses assumptions on the derivatives of F of order up to four.

Recall [4,8] that an iterative method is of order p > 0 if

‖xn+1 − x∗‖ ≤ c‖xn − x∗‖p,

where c is called an asymptotic error constant or rate of convergence.
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Observe that the assumption on the derivative of F up to order four reduces the appli-
cability of the method to the problems involving operator, whose higher order derivatives
are not bounded. For example, let f : [− 1

2 , 3
2 ] be defined by

f (x) =
{ 1

20 (x4logx2 + x6 − x5) i f x 6= 0
0 i f x = 0.

Then, we obtain by this definition

f ′(x) =
1

20
(2x3 + 4x3logx2 + 6x5 − 5x4)

f ′′(x) =
1

20
(14x2 + 12x2logx2 + 30x4 − 20x3)

f ′′′(x) =
1

20
(52x + 24xlogx2 + 120x3 − 60x2)

f IV(x) =
1

20
(24logx2 + 360x2 − 120x + 100).

Note that the fourth derivative of the function f is not bounded.
Later, in [9], the convergence of method (2) is proved using the assumptions only on

the first derivative of F. However, the order of convergence is not obtained in [9].
Since the order of convergence is an important matter, our goal in this paper is to obtain

the convergence order of (2), without using higher-order derivatives. In this direction, we
obtain the convergence order three for (2) using assumptions on the derivatives of F of
order up to two. Indeed, this is a considerable achievement. Note that, we are not using
Taylor series expansion in our studies. Our new idea can be used to study and obtain
convergence order of the other similar methods as well [1,2,6,10–14]. It is envisioned to
study such similar methods in the future, since our technique does not depend on the
method but only on the inverses of the linear operators involved.

Further, we extended the order of method (2) to five and six using the Cordero et al. [1,3]
technique. The new methods are defined for n = 0, 1, 2, . . . as follows:

yn = xn − F′(xn)
−1F(xn)

zn = xn − 4A−1
n F(xn)

xn+1 = zn − F′(yn)
−1F(zn) (3)

and

yn = xn − F′(xn)
−1F(xn)

zn = xn − 4A−1
n F(xn)

xn+1 = zn − F′(zn)
−1F(zn), (4)

where An = 3F′( 2xn+yn
3 ) + F′(yn).

The rest of the paper is organized as follows. In Sections 2–4, we provide the con-
vergence analysis of the methods in (2), (3) and (4), respectively. Numerical examples are
provided in Section 5. The dynamics of the methods (2), (3) and (4) are given in Section 6.
Finally, the paper ends with the conclusions in Section 7.

2. Convergence Analysis of (2)

For our convergence analysis, we introduce some functions and scalars. Let L >
0, L1 > 0 and L2 > 0 be the given parameters. Let the functions ϕ, ϕ1, hi, i = 1, 2 :
[0, 1

L ) −→ R be defined by

ϕ(t) =
L

2(1− Lt)
,
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ϕ1(t) =
L
2
(1 +

L
2(1− Lt)

t),

and let h1(t) = ϕ(t)t − 1, h2(t) = ϕ1(t)t − 1. Then, hi, i = 1, 2 are nondecreasing and
continuous functions. Further, hi(0) = −1 < 0 and lim

t−→ 1
L
− hi(t) = +∞. Therefore, there

exist smallest zeros r1, r2 ∈ (0, 1
L ) for the equations hi(t) = 0.

Let the functions ϕ2, h3 : [0, r2) −→ R be defined by

ϕ2(t) =
1

12(1− ϕ1(t)t)
((6L1 + L2t)ϕ(t) + L2),

and h3(t) = ϕ2(t)t2 − 1. Then, h3 is a nondecreasing and continuous function, h3(0) =
−1 < 0 and limt−→r−2

h3(t) = +∞. Therefore, h3 has the smallest zero r3 ∈ (0, r2).
Let

r = min{r1, r3}. (5)

Then, for all t ∈ [0, r), we have

0 ≤ ϕ(t)t < 1, (6)

0 ≤ ϕ1(t)t < 1, (7)

and
0 ≤ ϕ2(t)t2 < 1. (8)

Throughout the paper, B(x∗, ρ) = {x ∈ T : ‖x − x0‖ < ρ} and B̄(x∗, ρ) = {x ∈ T :
‖x− x0‖ ≤ ρ} for some ρ > 0.

Our analysis is based on the following assumptions:
(a1) x∗ is a simple solution of (1) and F′(x∗)−1 ∈ L(T1, T);
(a2) ‖F′(x∗)−1(F′(x)− F′(y))‖ ≤ L‖x− y‖ ∀x, y ∈ B(x∗, r);
(a3) ‖F′(x∗)−1(F′′(u)− F′′(v))‖ ≤ L2‖u− v‖ ∀u, v ∈ B(x∗, r);
(a4) ‖F′(x∗)−1F′′(y)‖ ≤ L1 ∀y ∈ B(x∗, r);
(a5) ‖F′(u)−1(F′(u)− F′(v))‖ ≤ L3‖u− v‖ ∀u, v ∈ B(x∗, r).

Theorem 1. Suppose the conditions (a1)–(a4) hold. Then, the sequence {xn} defined by (2),
starting from x0 ∈ B(x∗, r)− {x∗} is well defined and remains in B̄(x∗, r) for n = 0, 1, 2, . . . and
converges to a solution x∗ of (1). Moreover, we have the following estimates

‖yn − x∗‖ ≤ ϕ(r)‖xn − x∗‖2 (9)

and
‖xn+1 − x∗‖ ≤ ϕ2(r)‖xn − x∗‖3. (10)

Proof. The proof is by induction. Suppose x ∈ B(x∗, r). Then by (a2), we have

‖F′(x∗)−1(F′(x)− F′(x∗))‖ ≤ L‖x− x∗‖ ≤ Lr < 1.

By the Banach Lemma on invertible operators [4], we have

‖F′(x)−1F′(x∗)‖ ≤ 1
1− L‖x− x∗‖ . (11)

Using the Mean Value Theorem, we have

F(x0) = F(x0)− F(x∗) =
∫ 1

0
F′(x∗ + t(x0 − x∗))dt(x0 − x∗). (12)
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Next, since y0 = x0 − F′(x0)
−1F(x0), we have

‖y0 − x∗‖ = ‖x0 − x∗ − F′(x0)
−1F(x0)‖

=

∥∥∥∥(x0 − x∗)− F′(x0)
−1
∫ 1

0
F′(x∗ + t(x0 − x∗))dt(x0 − x∗)

∥∥∥∥
=

∥∥∥∥(∫ 1

0
F′(x0)

−1(F′(x0)− F′(x∗ + t(x0 − x∗)))dt
)
(x0 − x∗)

∥∥∥∥
≤

∫ 1

0
‖F′(x0)

−1(F′(x0)− F′(x∗ + t(x0 − x∗)))‖dt‖x0 − x∗‖

=
∫ 1

0
‖F′(x0)

−1F′(x∗)F′(x∗)−1(F′(x0)− F′(x∗ + t(x0 − x∗)))dt‖‖x0 − x∗‖.

Thus, by (11) and (a2), we obtain

‖y0 − x∗‖ ≤ L
2(1− L‖x0 − x∗‖)‖x0 − x∗‖2

≤ ϕ(‖x0 − x∗‖)‖x0 − x∗‖2 < ‖x0 − x∗‖ < r. (13)

Then, the iteratation y0 ∈ B(x∗, r) and (9) holds for n = 0.
Next, we shall prove A−1

0 is well defined. Note that

4F′(x∗)− A0 = 3(F′(x∗)− F′(
2x0 + y0

3
))− (F′(y0)− F′(x∗)).

Hence, by (a2) we get

‖(4F′(x∗))−1(A0 − 4F′(x∗))‖ ≤ 1
4

[
3‖F′(x∗)−1(F′(

2x0 + y0

3
)− F′(x∗))‖

+‖F′(x∗)−1(F′(y0)− F′(x∗))‖
]

≤ L
4

[
3‖2x0 + y0

3
− x∗‖+ ‖y0 − x∗‖

]
≤ L

4
[(2‖x0 − x∗‖+ ‖y0 − x∗‖) + ‖y0 − x∗‖]

≤ L
4
[2 +

2L
2(1− L‖x0 − x∗‖)‖x0 − x∗‖]‖x0 − x∗‖

≤ L
2
[1 +

L
2(1− L‖x0 − x∗‖)‖x0 − x∗‖]‖x0 − x∗‖

≤ ϕ1(‖x0 − x∗‖)‖x0 − x∗‖ < 1.

Therefore,

‖A−1
0 F′(x∗)‖ ≤ 1

4(1− ϕ1(‖x0 − x∗‖)‖x0 − x∗‖) . (14)

Let

G0 = F′′
(

x∗ + t(x0 − x∗) + θ

(
2x0 + y0

3
− x∗ − t(x0 − x∗)

))
and

H0 = F′′(x∗ + t(x0 − x∗) + θ(y0 − x∗ − t(x0 − x∗))).
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Then, by (2) and (12), we have

x1 − x∗ = x0 − x∗ − 4A−1
0

∫ 1

0
F′(x∗ + t(x0 − x∗))dt(x0 − x∗)

= A−1
0

[
A0 − 4

∫ 1

0
F′(x∗ + t(x0 − x∗))dt

]
(x0 − x∗)

= A−1
0

[∫ 1

0
3F′(

2x0 + y0

3
) + F′(y0)− 4

∫ 1

0
F′(x∗ + t(x0 − x∗))dt

]
(x0 − x∗)

= A−1
0 [
∫ 1

0
3
(

F′(
2x0 + y0

3
)− F′(x∗ + t(x0 − x∗))

)
dt

+
∫ 1

0

(
F′(y0)− F′(x∗ + t(x0 − x∗))

)
dt](x0 − x∗).

Then, by the Mean Value Theorem for second derivatives, we can write in turn that

x1 − x∗ = 3A−1
0 [
∫ 1

0

∫ 1

0
F′′
(

x∗ + t(x0 − x∗) + θ

(
2x0 + y0

3
− x∗ − t(x0 − x∗)

))
dθ

×
(

2x0 + y0
3

− x∗ − t(x0 − x∗)
)

dt

+
∫ 1

0

∫ 1

0
F′′(x∗ + t(x0 − x∗) + θ(y0 − x∗ − t(x0 − x∗)))dθ

(y0 − x∗ − t(x0 − x∗))dt](x0 − x∗)

= [3A−1
0

∫ 1

0

∫ 1

0
G0dθ

(
2x0 + y0

3
− x∗ − t(x0 − x∗)

)
dt

+A−1
0

∫ 1

0

∫ 1

0
H0dθ(y0 − x∗ − t(x0 − x∗))dt](x0 − x∗)

= [A−1
0

∫ 1

0

∫ 1

0
G0dθ(2x0 + y0 − 3x∗ − 3t(x0 − x∗))dt

+A−1
0

∫ 1

0

∫ 1

0
H0dθ(y0 − x∗ − t(xn − x∗))dt](x0 − x∗)

= A−1
0 [
∫ 1

0

∫ 1

0
G0dθ(y0 − x∗)dt +

∫ 1

0

∫ 1

0
G0(2− 3t)(x0 − x∗)dt

+
∫ 1

0

∫ 1

0
H0dθ(y0 − x∗)dt−

∫ 1

0

∫ 1

0
H0dθt(x0 − x∗)dt](x0 − x∗)

=

[
A−1

0

∫ 1

0

∫ 1

0
G0dθ(y0 − x∗)dt + A−1

0

∫ 1

0

∫ 1

0
H0dθ(y0 − x∗)dt

]
(x0 − x∗)

+[A−1
0

∫ 1

0

∫ 1

0
G0dθ(2− 4t)(x0 − x∗)dt + A−1

0

∫ 1

0

∫ 1

0
G0dθt(x0 − x∗)dt

−A−1
0

∫ 1

0

∫ 1

0
H0dθt(x0 − x∗)dt](x0 − x∗)

= Γ1 + A−1
0

∫ 1

0

∫ 1

0
G0dθ(2− 4t)dt(x0 − x∗)2 + Γ2 + Γ3, (15)

where

Γ1 :=
[

A−1
0

∫ 1

0

∫ 1

0
G0dθ(y0 − x∗)dt

]
(x0 − x∗),

Γ2 :=
[

A−1
0

∫ 1

0

∫ 1

0
H0dθ(y0 − x∗)dt

]
(x0 − x∗)

and

Γ3 :=
[

A−1
0

∫ 1

0

∫ 1

0
(G0 − H0)dθtdt

]
(x0 − x∗)2.
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Observe that by (14) and (a4), we have

‖Γ1‖ = ‖
[

A−1
0 F′(x∗)

∫ 1
0

∫ 1
0 F′(x∗)−1G0dθ(y0 − x∗)dt

]
(x0 − x∗)‖

≤ L1
4(1−ϕ1(‖x0−x∗‖)‖x0−x∗‖)‖y0 − x∗‖‖x0 − x∗‖. (16)

Similarly, we obtain

‖Γ2‖ ≤ L1
4(1−ϕ1(‖x0−x∗‖)‖x0−x∗‖)‖y0 − x∗‖‖x0 − x∗‖. (17)

To compute the second term in (15), we observe that

‖
∫ 1

0

∫ 1

0
A−1

0 G0dθ(2− 4t)dt(x0 − x∗)2‖

≤
∥∥∥∥max

t∈[0,1]

∫ 1

0
‖A−1

0 G0dθ‖
∫ 1

0
(2− 4t)dt(x0 − x∗)2

∥∥∥∥ (18)

= 0.

Notice that

G0 − H0 = F′′(X)− F′′(Y), (19)

where

X =

(
x∗ + t(x0 − x∗) + θ

(
2x0 + y0

3
− x∗ − t(x0 − x∗)

))
,

Y = (x∗ + t(x0 − x∗) + θ(y0 − x∗ − t(x0 − x∗))).

Note that again

X−Y =
2θ

3
[x0 − x∗ − (y0 − x∗)] (20)

and hence by (14) and (a3), we have

‖Γ3‖ = ‖
[

A−1
0 F′(x∗)

∫ 1

0

∫ 1

0
F′(x∗)−1(G0 − H0)dθtdt

]
(x0 − x∗)2‖

≤ L2

4(1− ϕ1(‖x0 − x∗‖)‖x0 − x∗‖)

∫ 1

0

∫ 1

0
‖X−Y‖dθdt‖x0 − x∗‖2

≤ L2

12(1− ϕ1(‖x0 − x∗‖)‖x0 − x∗‖) [1 + ϕ(‖x0 − x∗‖)‖x0 − x∗‖]‖x0 − x∗‖3.

(21)

Combining (15)–(21), we get

‖x1 − x∗‖ ≤ ϕ2(r)‖x0 − x∗‖3.

Then, since ϕ2(r)r2 < 1, we have ‖x1 − x∗‖ < ‖x0 − x∗‖ < r, so the iteratate x1 ∈
B(x∗, r).

Replacing x0, y0 and x1 in the earlier estimates by xn, yn and xn+1, respectively, com-
pletes the induction for (9) and (10).

Remark 1. We have obtained the order of convergence three for the method (2) without using Taylor
expansion and making assumptions only on derivatives of F up to order two. Thus, our analysis
extends the applicability of the method (2).
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3. Convergence Analysis of (3)

Let ϕ3, h4 : [0, r2) −→ R be defined by

ϕ3(t) = L3(ϕ(t) +
1
2

ϕ2(t)t)ϕ2(t)

and h4(t) = ϕ3(t)t4 − 1. Then, h4(0) = −1 and h4(t) −→ +∞ as t −→ r−2 . Therefore, h4
has the smallest zero r4 ∈ (0, r2).

Let
R = min{r, r4}. (22)

Then, for t ∈ [0, R), we have

0 ≤ ϕ3(t)t4 < 1.

We have the following theorem for method (3).

Theorem 2. Suppose the conditions (a1)–(a5) hold. Then, the sequence {xn} defined by (3),
starting from x0 ∈ B(x∗, R)− {x∗} is well defined and remains in B̄(x∗, R) for n = 0, 1, 2, . . .
and converges to a solution x∗ of (1). Moreover, we have the following estimates

‖yn − x∗‖ ≤ ϕ(R)‖xn − x∗‖2, (23)

‖zn − x∗‖ ≤ ϕ2(R)‖xn − x∗‖3 (24)

and
‖xn+1 − x∗‖ ≤ ϕ3(R)‖xn − x∗‖5. (25)

Proof. Observe that by taking r = R and xn+1 = zn in Theorem 1, we have

‖zn − x∗‖ ≤ ϕ2(‖xn − x∗‖)‖xn − x∗‖3 (26)

and the iterate zn ∈ B(x∗, R). Note that

xn+1 − x∗ = zn − x∗ − F′(yn)
−1F(zn)

= F′(yn)
−1
∫ 1

0
[F′(yn)− F′(x∗ + t(zn − x∗))]dt(zn − x∗)

=
∫ 1

0
F′(yn)

−1[F′(yn)− F′(x∗ + t(zn − x∗))]dt(zn − x∗).

Thus, by (a5), we have

‖xn+1 − x∗‖ ≤ L3(‖yn − x∗‖+ 1
2
‖zn − x∗‖)‖zn − x∗‖

≤ L3(ϕ(‖xn − x∗‖)‖xn − x∗‖2

+
1
2

ϕ2(‖xn − x∗‖)‖xn − x∗‖3)ϕ2(‖xn − x∗‖)‖xn − x∗‖3

≤ L3(ϕ(‖xn − x∗‖)

+
1
2

ϕ2(‖xn − x∗‖)‖xn − x∗‖)ϕ2(‖xn − x∗‖)‖xn − x∗‖5

≤ ϕ3(R)‖xn − x∗‖5.
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4. Convergence Analysis of (4)

Let ϕ4, h5 : [0, r2) −→ R be defined by

ϕ4(t) =
L3

2
(ϕ2(t))2

and h5(t) = ϕ4(t)t5 − 1. Then, h5(0) = −1 and h5(t) −→ +∞ as t −→ r−2 . Therefore, h5
has a smallest zero r5 ∈ (0, r2).

Let
R1 = min{r, r5}. (27)

Then, for t ∈ [0, R1), we have

0 ≤ ϕ4(t)t5 < 1.

We have the following theorem for method (4).

Theorem 3. Suppose conditions (a1)–(a5) hold. Then, the sequence {xn} defined by (4), starting
from x0 ∈ B(x∗, R1) − {x∗} is well defined and remains in B̄(x∗, R1) for n = 0, 1, 2, . . . and
converges to a solution x∗ of (1). Moreover, we have the following estimates

‖yn − x∗‖ ≤ ϕ(R1)‖xn − x∗‖2, (28)

‖zn − x∗‖ ≤ ϕ2(R1)‖xn − x∗‖3 (29)

and
‖xn+1 − x∗‖ ≤ ϕ4(R1)‖xn − x∗‖6. (30)

Proof. Notice that (28) and (29) follows as in Theorem 2. Further,

xn+1 − x∗ = zn − x∗ − F′(zn)
−1F(zn)

= F′(zn)
−1
∫ 1

0
[F′(zn)− F′(x∗ + t(zn − x∗))]dt(zn − x∗)

=
∫ 1

0
F′(zn)

−1[F′(zn)− F′(x∗ + t(zn − x∗))]dt(zn − x∗).

Hence, by (a5), we have

‖xn+1 − x∗‖ ≤ L3

2
‖zn − x∗‖2

≤ L3

2
(ϕ2(‖xn − x∗‖))2‖xn − x∗‖6

≤ ϕ4(R1)‖xn − x∗‖6.

We complete this section by providing a result for the uniqueness of the solution x∗,
that applies to all the methods given in this paper.

Proposition 1. Suppose:
(1) There exist a simple solution x∗ ∈ B(x∗, ρ) of the equation (1) for some ρ > 0 and a parameter
K > 0 such that

‖F′(x∗)−1(F′(x∗)− F′(x))‖ ≤ K‖x∗ − x‖ (31)

for each x ∈ B(x∗, ρ).
(2) There exists ρ1 ≥ ρ such that

ρ1 <
2
K

. (32)
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Set S = B̄(x∗, ρ1) ∩Ω. Then, Equation (1) is uniquely solvable at x∗ in the region S.

Proof. Let γ ∈ S be a solution of Equation (1). Define the linear operator M as M =∫ 1
0 F′(x∗ + τ(γ− x∗))dτ. By applying the conditions (31) and (32), we obtain in turn that

‖F′(x∗)−1(M− F′(x∗))‖ ≤ K
∫ 1

0
τ‖x∗ − γ‖dτ

≤ K
2

ρ1 < 1.

That is, the linear operator M is invertible. Then, the identity

γ− x∗ = M−1(F(γ)− F(x∗)) = M−1(0) = 0

leads to the conclusion that γ = x∗.

Remark 2. The efficiency index EI and the informational efficiency IE are defined as EI = o
1
m [15]

and IE = o
m [14], respectively, where o is the order of convergence and m is the number of functions

(and derivatives). The EI and IE of the methods (2), (3) and (4) are 31/4 = 1.316, 3
4 = 0.75; 51/5 =

1.3797, 5
5 = 1 and 61/6 = 1.348, 6/6 = 1, respectively.

5. Examples

Three examples are presented in this section.

Example 1. Let T = T1 = R3, D = B̄(0, 1), x∗ = (0, 0, 1)Tr. Define the function F on D for
w = (x, y, z)Tr by

F(w) = (sinx,
y2

5
+ y, z)Tr.

Then, the Fréchet-derivatives are given by

F′(w) =

 cosx 0 0
0 2y

5 + 1 0
0 0 1


and

F′′(w) =

 −sinx 0 0 0 0 0 0 0 0
0 0 0 0 2

5 0 0 0 0
0 0 0 0 0 0 0 0 0

.

The conditions (a1)–(a5) are validated if L = L2 = L3 = 1 and L1 = 2
5 . Then, the parameters are:

r1 = 0.6667, r2 = 0.7639, r = R1 = r3 = 0.6588, R = r4 = 0.6260, r5 = 0.7469.

Example 2. Let T = T1 = C[0, 1], the space of continuous functions defined on [0, 1] and be
equipped with the max norm. Let D = B(0, 1). Define the function F on D by

F(ϕ)(x) = ϕ(x)− 5
∫ 1

0
xθϕ(θ)3dθ. (33)

We have that

F′(ϕ(ξ))(x) = ξ(x)− 15
∫ 1

0
xθϕ(θ)2ξ(θ)dθ, for each ξ ∈ D.
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Then, we get that for x∗ = 0, the conditions (a1)-(a5) hold, provided L = L3 = 15 and L2 = 8.5
and L1 = 31. Then the parameters are:

r1 = 0.0444, r2 = 0.0509, r = R1 = r3 = 0.0380, R = r4 = 0.0378, r5 = 0.0457.

Example 3. Getting back to the motivational example at the introduction of this paper, we have
L = 45.9234 = L1, L2 = 125.7312, L3 = 100.6338. Then the parameters are:

r = R1 = r1 = r3 = 0.0145, r2 = 0.0166, R = r4 = 0.0125, r5 = 0.0156.

In the next example, we compare method (3) with the fifth-order iterative method
studied in [16]. Furthermore, we provide the iterates for the methods (2) and (3).

Example 4. Consider the system of equations

3x2
1x2 + x2 = 1

x4
1 + x1x3

2 = 1.

Note that the solutions are (−1, 0.2), (−0.4,−1.3) and (0.9, 0.3). We approximate the solution
(0.9, 0.3) using the methods (2), (3) (4) and the fifth-order method considered in [16], with the
initial point (2,−1). The obtained results are provided in Tables 1 and 2.

Table 1. Method (3).

k Fifth Order Method in [16] Method (3)
xk = (xk

1 , xk
2) xk = (xk

1 , xk
2)

0 (2.000000000000000000,−1.000000000000000000) (2.000000000000000000,−1.000000000000000000)

1 (1.082281042482679530, 0.123366196386319406) (0.97999747117802393781, 0.31079296183420979104)

2 (0.992837748938471569, 0.306361894605406281) (0.99252009675815366929, 0.30661919359513767346)

3 (0.992779994851123249, 0.306440446511020432) (0.99277988170910103082, 0.30644055554978738564)

4 (0.992779994851123249, 0.306440446511020432) (0.99277999485110035582, 0.30644044651104612730)

Table 2. Method (2) and Method (4).

k Method (2) Method (4)
xk = (xk

1 , xk
2) xk = (xk

1 , xk
2)

0 (2.000000000000000000,−1.000000000000000000) (2.000000000000000000,−1.000000000000000000)

1 (1.019623593558109941, 0.265386054724064790) (1.03759994297628344028, 0.26149549469920185806)

2 (0.992853658605661104, 0.306346433846240717) (0.99619799193796287894, 0.30257508692302936825)

3 (0.992779994852644009, 0.306440446509150976) (0.99277999575683006927, 0.30644044541552573068)

4 (0.992853658605661104, 0.306346433846240717) (0.0.99277999485112322641, 0.3064404465110204256)

5 (0.992779994852644009, 0.306440446509150976) (0.0.99277999485112322641, 0.3064404465110204256)

6. Basins of Attractions

In this section, we study the basin of attraction and Julia sets corresponding to methods
(2), (3) and (4). Recall that the collection of all initial points from which the iterative method
converges to a solution of a given equation are called the basins of attraction or Fatou sets,
of an iterative method [11]. The complement of the Fatou set is known as a Julia set. We
provide the basins of attraction associated with the roots of the following three systems of
equations.
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Example 5.
{

x3 − y = 0
y3 − x = 0

with solutions { (−1,−1), (0, 0), (1, 1)}.

Example 6.
{

3x2y− y3 = 0
x3 − 3xy2 − 1 = 0

with solutions { (− 1
2 ,−

√
3

2 ), (− 1
2 ,
√

3
2 ), (1, 0)}.

Example 7.
{

x2 + y2 − 4 = 0
3x2 + 7y2 − 16 = 0

with solutions { (
√

3, 1), (−
√

3, 1), (
√

3,−1), (−
√

3,−1)}.

For generating the basin of attraction associated with each root of a given system
of nonlinear equations, we consider the rectangular region R = {(x, y) ∈ R2 : −2 ≤
x ≤ 2,−2 ≤ y ≤ 2}, which contains all the roots of test problems. We consider an
equidistant grid of 401× 401 points in R and choose these points as the initial guess x0,
for the methods (2), (3) and (4). A fixed tolerance 10−8 and a maximum of 50 iterations are
used for all the cases. A color is being assigned to each attracting basin corresponding to
each root. If we do not obtain the desired tolerance with the fixed iterations, we do not
continue and we decide that the iterative method starting at x0 does not converge to any of
the roots and assign black color to those points. In this way, we distinguish the basins of
attraction by their respective colors for distinct roots of each method.

Figures 1–6 demonstrates the basin of attraction corresponding to each root of above
Examples (Examples 5–7) for the methods (2), (3) and (4). The Julia set (black region), which
contains all the initial points from which the iterative method does not converge to any of
the roots, can easily be observed in the figure.

The figures presented in this work were created on a 16-core 64 bit Windows machine
with Intel Core i7-10700 CPU @ 2.90GHz using MATLAB programming language.

Figure 1. Dynamical plane of the methods (2) with basins of attraction for the Example 5.
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Figure 2. Dynamical plane of the methods (3) (left) and (4) (right) with basins of attraction for the
Example 5.

Figure 3. Dynamical plane of the methods (2) with basins of attraction for Example 6.

Figure 4. Dynamical plane of the methods (3) (left) and (4) (right) with basins of attraction for
Example 6.
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Figure 5. Dynamical plane of method (2) with basins of attraction for Example 7.

Figure 6. Dynamical plane of the methods (3) (left) and (4) (right) with basins of attraction for
Example 7.

Remark 3. Figures 1–6 above, clearly show that method (4) has a larger basin of attraction compared
to method (2) and method (3).

7. Conclusions

A process is developed to determine the convergence order of method (2), method (3)
and method (4). The analysis involves only the first and second derivative in contrast to
the earlier works using the fourth derivative [7]. Moreover, computable error distances are
also provided, which are not given before [7]. Hence, the applicability of these methods is
extended. The new process does not depend on these methods. Therefore, it can also be
used to extend the usage of other methods of higher order using inverses of linear operators.
This is our future topic of research.
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