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Abstract: In this work we asymptotically and numerically studied the interaction of large amplitude
solitary waves with an external periodic force using the forced extended Korteweg-de Vries equation
(feKdV). Regarding these interactions, we found three types of regimes depending on the amplitude
of the solitary wave and how its speed and the speed of the external force are related. A solitary wave
can remain steady when its crest and the crest of the external force are in phase, it can bounce back
and forth remaining close to its initial position when its speed and the external force speed are near
resonant, or it can move away from its initial position without reversing its direction. Additionally,
we verified that the numerical results agreed qualitatively well within the asymptotic approximation
theory for external broad forces.
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1. Introduction

Solitary wave interactions with an external force is a topic of great interest that has been
studied extensively over the last decades. The external force typically models a localized
topography or a moving source that propagates along the free surface wave [1]. The main
framework considered to study such interactions, and perhaps also the simplest, is the
forced Korteweg-de Vries equation (fKdV) [2–8]. However, in recent years these interactions
have been investigated in different frameworks such as the Euler equations [9], the forced
modified Korteweg-de Vries equation (mKdV) [10] and the non-integrable forced Whitham
equation [11,12]. An interesting phenomenon that occurs during these interactions is called
trapped waves, which are described as waves that bounce back and forth at the external
force remaining trapped for large times. This phenomenon occurs when the speed of the
solitary wave and the external force are almost in resonance.

A complete asymptotic study on trapped waves for the fKdV equation was done
by Grimshaw and collaborators for a localized external force [13,14]. Three types of
regimes were identified in the asymptotic framework. A solitary wave can bounce back
and forth at the external force remaining trapped for large times, it can pass over the
external force without reversing its direction, or it remains steady at the external force.
Besides, in these works, the authors found that the results within the developed asymptotic
framework agreed well with the numerical predictions. Regarding an external periodic
force, differently from the localized external force, radiation is spontaneously generated
all over the domain. This raises a natural problem, which is to describe what waves
are actually produced due to the interaction between the solitary wave and the external
force or just radiation due to a non-localized external force. In order to address this issue,

Mathematics 2022, 10, 4538. https://doi.org/10.3390/math10234538 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10234538
https://doi.org/10.3390/math10234538
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-5637-7454
https://orcid.org/0000-0002-5092-0302
https://doi.org/10.3390/math10234538
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10234538?type=check_update&version=1


Mathematics 2022, 10, 4538 2 of 11

Malomed [15] proposed a change of variables to separate these two types of generated
waves and investigated the emission of radiation of solitons in the presence of an external
periodic force in the fKdV equation framework asymptotically. He showed that the external
force does not capture the solitons. In fact, under the action of the radiative losses, a soliton
that was moving slower than the external force is further decelerated, while the one which
was faster is accelerated. Numerical results confirming his findings were reported later by
Grimshaw et al. [16].

Although the fKdV is widely used as a first approximation to study many nonlinear
phenomena, when solitons have a larger amplitude or the nonlinearity is more dominant in
the wave propagation phenomenon, nonlinear terms of higher-order have to be considered.
In that case, the forced extended KdV equation (eKdV) or the forced Gardner equation
gives rise. This equation incorporates a quadratic and cubic nonlinearity. Among the
problems that can be investigated in this framework, we mention internal waves in two-
layer fluids. In this particular case, the sign of the cubic term depends on the oceanic
stratification. Although the eKdV equation is integrable, the nonlinear dynamics are more
complicated than the fKdV equation and the sign of cubic nonlinearity plays a fundamental
role in the qualitative behavior of the solutions. For instance, the eKdV equation is more
interesting than the fKdV equation in the sense that it describes various types of wave
solutions—not just solitons. The eKdV admits as solutions, for instance, solitons of both
polarities, breathers (traveling oscillating moving wave packets) and dissipationless shock
waves. Focusing on trapped waves, Grimshaw and Pelinovsky [17] derived a second-order
nonlinear dynamical system for the amplitude and the crest position of the soliton to
study the interaction of the soliton and a localized external force. Besides, conditions for
capturing or repulsion of a soliton by an external force were obtained. However, to the best
of our knowledge there are no articles with the forced eKdV studying trapped waves in the
presence of a external periodic wave field.

In this article, differently from the mentioned works above, we focus on the interaction
of solitary waves with a periodic external force in the forced eKdV equation framework.

The outline of the present article is as follows. In Section 2 we introduce the forced
eKdV equation. The asymptotic and numerical results are presented in Section 3. The dis-
cussion and conclusions in are presented in Sections 4 and 5, respectively.

2. The Forced Extended Korteweg-de Vries Equation

We consider the extended Korteweg-de Vries equation in the canonical form with an
external force term as the model to study the trapped waves

Ut + 6UUx + U2Ux + Uxxx = ε fx(x + ∆t), (1)

where U(x, t) is the surface wave profile, f (x + ∆t) is the external periodic force that
travels with constant speed ∆, and ε > 0 is a small parameter. It is convenient to rewrite
Equation (1) in the external force moving frame. Therefore,

Ut + ∆Ux + 6UUx + U2Ux + Uxxx = ε fx(x). (2)

This equation conserves mass (M(t)), with

dM
dt

= 0, where M(t) =
∫ ∞

−∞
U(x, t)dx, (3)

and the rate of change of momentum (P(t)) is balanced by the external force as

dP
dt

=
∫ ∞

−∞
U(x, t)

d f (x)
dx

dx, where P(t) =
1
2

∫ ∞

−∞
U2(x, t)dx. (4)

In the absence of an external force, the eKdV admits two families of solitary waves as
solutions [18], which are given by the expressions
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U(x, t) =
γ2

1 + B cosh(γ(x− ct))
, where c = ∆ + γ2, B2 = 1 +

γ2

6
. (5)

Here we only analyze elevation solitary waves (B > 0), whose amplitude is

a =
γ2

1 + B
= 6(B− 1). (6)

The external periodic force is modeled by the function

f (x) = A sin(qx), (7)

where A is its amplitude and q is the wave number. Since the perturbation f is not localized,
it produces radiation all over the domain, even far away from where most of the energy
of the solitary wave is localized. Although it does not affect the asymptotic study at the
lowest orders, it can be troublesome for the numerical study. For this reason, we use a
similar trick as done by Malomed [15]. Inserting into Equation (2)

U(x, t) = u(x, t) + εu0(x),

where
u0(x) =

A
∆− q2 sin(qx)

is the solution of the linearized feKdV Equation (2), we have that u(x, t) satisfies

ut + 6uux + u2ux + uxxx = −6ε(u0u)x − ε(u2u0)x +O(ε2).

Consequently, at first approximation, we obtain the new equation

ut + 6uux + u2ux + uxxx = −6ε(u0u)x − ε(u2u0)x, (8)

where the perturbation is now localized along the free surface u(x, t).

3. Results
3.1. Asymptotic Theory

In this section we introduce the asymptotic theory that allows to turn the study of the
partial differential Equation (2) into a dynamical system. This idea has been used in different
contexts [13,14]; in particular for the interest reader we mention the recent works of Frassu
and Viglialoro [19] and Frassu et al. [20], where the authors analyze dynamical systems
modeling chemotaxis mechanisms formulated through partial differential equations.

Asymptotic results on the interaction of a solitary wave with an external force were
first reported by Grimshaw and Pelinovsky [17]. For the sake of completeness, we recall
their main results assuming that f (X)→ 0 as |X| → ∞. For a weak external force (ε� 1),
we seek for a slowly time-varying solitary wave with expansion

U(x, t) = U0(ξ, t) + εU1 + · · · ,

ξ = x− X(t),
(9)

where X(t) is the position of the crest of the wave. At first order, the wave profile is given by

U(ξ, t) =
γ2

1 + B cosh(γξ)
,

dX
dt

= c = ∆ + γ2.

(10)
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In particular, the amplitude variation as a function of time can be obtained from the
first-order momentum Equation (4)

P0(t) =
1
2

∫ ∞

−∞
U2

0(ξ, t)dξ, (11)

and its rate of change at first-order, which is given by

dP0

dt
=

∫ ∞

−∞
U0(x− X(t))

d f (x)
dx

dx. (12)

Notice that P0 is a function of γ(t), thus the dynamical system (10)–(12) describes the
amplitude and the position of the crest of the solitary wave solution. Assuming a broad
external force, the momentum equations reads

dP0

dt
= M0

d f (X)

dX
, where M0 =

∫ ∞

−∞
U0(ξ, t)dξ. (13)

Moreover, in the weak-amplitude solitary wave regime (a� 1), the quantities M0, P0,
γ can be obtained in explicit form

M0 = 2
√

2a1/2, P0 =
2
√

2
3

a3/2, γ2 = 2a. (14)

Therefore, the dynamical system for the amplitude and position of the crest is

dX
dt

= ∆ + 2a.

da
dt

= 2
d f (X)

dX
.

(15)

From Equation (15) we have that the position of the crest of a solitary wave is described
by the oscillator

d2X
dt2 = 4

d f (X)

dX
. (16)

Here, we formally consider the periodic external force to be as the one defined in
Equation (7). In fact, if the external force is broad in comparison with the soliton length,
the asymptotic theory is valid for any function f (X)—not only with vanishing ends. It
works for periodic external forces with small values of q. It can be shown that the equilib-
rium points of this dynamical system are x = π/2q + kπ, where k is an integer. Centers
occur aligned with the crests of the external force while saddles are aligned with the troughs
of the external force. Consequently, as we change the sign of A, the centers become saddles
and vice-versa. It is worth to mention that centers and saddles represent solitary waves
that remain steady for all times, a closed orbit represents a trapped solitary wave, and a
non-closed orbit corresponds to a solitary wave that propagates without reversing its direc-
tion. Therefore, a phase-portrait of the dynamical system (15) qualitatively describes the
behavior of the solitary wave and the external force interaction except for small corrections
(order O(ε)).

Solutions of the dynamical system (15) are represented by streamlines i.e., solutions
are the level curves of the stream function H(X, a), which is given by

H(X, a) = −2 f (X) + ∆a + a2. (17)

Figure 1 displays the typical phase portraits of the dynamical system (15). We recall
that a closed orbit illustrates a solitary wave that is trapped with no radiation due to its
interaction with the external force while a non-closed orbit represents a solitary wave that
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propagates without reversing its direction. It is worth to mention that in Figure 1 (left) each
center is aligned with a crest of the external force while in Figure 1 (right) each center is
aligned with a trough of the external force. Although the asymptotic results presented here
are limited to the weak-amplitude case, as it follows from Grimshaw and Pelinovsky [17],
qualitative results still hold for arbitrary amplitudes of the solitary waves and we do not
reproduce them here.
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Figure 1. Phase portraits for the dynamical system (15) for ∆ = −1. Circles correspond to centers
and crosses to saddles of the dynamical system (15).

3.2. Numerical Results

Equation (8) is solved numerically in a periodic computational domain [−L, L] with a
uniform grid with N points using a Fourier pseudospectral method with an integrating
factor [21]. The computational domain is taken large enough in order to prevent effects of
the spatial periodicity. The time evolution is calculated through the Runge–Kutta fourth-
order method with time step ∆t. Typical computations are performed using N = 212

Fourier modes L = 512 and ∆t = 10−3 in MATLAB. In order to verify the accuracy of the
numerical solutions, simulations are compared using a different number of Fourier modes
(213 and 214), and the results are the same. A study of the resolution of a similar numerical
method can be found in Ref. [7].

In order to compare the numerical solutions with the asymptotic predictions, we verify
whether the equilibrium points of a dynamical system (15) represent qualitative solutions
of Equation (8). In other words, we verify if a point near a saddle point represents a solitary
wave that travels without reversing its direction and if a center point corresponds to a
trapped solitary wave. Since there is a long list of parameters to be considered in the
study of the interaction between a solitary wave and the external force (7), we fix a few
parameters, namely, ε = 0.01, A = −1, γ = 1 and q = (π/L)n, where n is an integer,
which represents the number of waves in the interval [−L, L]. Thus, large values of n
represent high frequencies while small values of n represent low frequencies. Notice that
with these choices of parameters, the initial solitary wave has amplitude (a), as defined
in Equation (6). Additionally, the initial solitary waves are chosen to be with their crests
located at x = x0, where x0 = ±π/2q. We recall that according to the dynamical system
(15), choosing ∆ = −2a and the position of crest x0 = +π/2q, we have a saddle, and by
choosing ∆ = −2a and the position of crest x0 = −π/2q, we obtain a center.

Firstly, we consider the simplest case—the saddle points. To this end, we run a large
number of simulations and observe that the solitary waves move past the external force
without changing their directions. However, reflection is observed as a solitary wave
pass over multiple bumps. The reflection decreases as the frequency of the external force
increases, which causes a change in the amplitude of the solitary waves. This typical
behavior is illustrated in Figure 2 for different values of the parameter n. Details of the
variations in the amplitude of the solitary wave for the case n = 120 are given in Figure 3.
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Notice that the amplitude of the solitary wave oscillates as it passes over each bump of the
external force (see Figure 3 (left)). Additionally, the solitary wave speed keeps oscillating
in time due to the interaction with the external force as displayed in Figure 3 (right). This
dynamic is qualitatively represented by the non-closed orbits of the dynamical system (15),
see Figure 1 (left). In fact, the fully numerical simulations and the dynamical system agree
quantitatively well for small times. To see this, we recall that the asymptotic theory is
obtained by truncating the terms of Equation (9) at order O(ε) which is the same order of
the amplitude variations depicted in Figure 3 (left).

Figure 2. Solitary wave solutions over the periodic forcing. Parameters: ∆ = −2a, x0 = +π/2q,
A = −1.
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Figure 3. Left: the space amplitude vs. crest position. Right: the crest position along the time.
The parameters are the same as in Figure 2 with n = 120.
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Now, we investigate if the center points of the dynamical system (15) define trapped
waves for Equation (8). So, we let q vary and compare the numerical results within the
asymptotic framework. For large values of n, a solitary wave barely feels the external
force, consequently the solitary wave remains almost steady, resembling the equilibrium
center point of the dynamical system (15). As we decrease the values of n, for instance
n = 120, 60, 30, 15 the solitary wave bounces back and forth close to its initial position
for large times with little radiation being emanated. These results are in agreement with
the ones predicted by the asymptotic theory and are illustrated in Figure 4. We observe
that large values of the parameter n lead to small oscillations of the crest-position of the
solitary wave, i.e., the larger n is the closest the solitary wave remains to its initial position.
In Figure 5 (left) we display the amplitude vs. crest of the solitary wave position and
its crest position along time is shown in Figure 5 (right) for n = 60. Notice that the
amplitude dynamics in the amplitude vs. crest position phase resembles an unstable spiral.
Meanwhile, we observe that the crest position oscillates by increasing in time. This indicates
that the solitary wave might move away from its initial position. It worth to mention that it
does not contradict the predictions of the asymptotic theory since both theories are only
expected to agree well at small times. It is noteworthy that for small perturbations of
∆ = −2a, the solitary waves still remain trapped close to their initial positions for large
times. In particular, it shows that the asymptotic theory for a broad external force in the
weak-amplitude solitary wave regime gives good results qualitatively.
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400

200
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0

10 300 20

0

0.5

Figure 4. Solitary wave solutions over the periodic forcing. Parameters: ∆ = −2a, x0 = −π/2q,
A = −1.

When n is small, numerical results differ from the asymptotic theory. In fact, the asymp-
totic method breaks for small values of q. It occurs because for too small values of q the
forcing is proportional to ε2. Therefore, the solitary waves are not affected by the external
force. Figure 6 displays the evolution of two solitary waves for small values of n. Notice
that the solitary wave propagates to the left without reversing its direction. Moreover,
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the change in amplitude of these solitary waves is small (see Figure 7 (left)) and the solitary
wave speed is almost constant, as depicted in Figure 7 (right). Initially, the amplitude
of the solitary wave is adjusted to the external force and later it changes only slightly.
Consequently, the solitary wave travels almost as a classical solitary wave solution of the
unforced problem (1).
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Figure 5. Left: the space amplitude vs. crest position. Right: the crest position along the time.
The parameters are the same as in Figure 4 with n = 60.
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Figure 6. Solitary wave solutions over the periodic forcing. Parameters: ∆ = −2a, x0 = −π/2q,
A = −1.
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Figure 7. Left: the space amplitude vs. crest position. Right: the crest position along the time.
The parameters are the same as in Figure 6 with n = 1.
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It is worth to mention that similar results are observed for positive choices of the
amplitude of the external force (A). To illustrate this, we limit ourselves to show Figure 8.
As we compare the respective panels of Figures 4 and 8 we see that they are all the same
unless translations.
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Figure 8. Solitary wave solutions over the periodic forcing. Parameters: ∆ = −2a, x0 = π/2q, A = 1.

4. Discussion

The results presented here complement the series of studies that have been done in the
literature for localized external forces. This work can be extended to several other equations
such as the forced mKdV equation, Schamel equation and even to the non-integrable family
of Whitham equations, which has been a trend in the past few years, especially from a
theoretical point of view. Although we have considered only spatial periodic external fields,
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time-dependent fields can also be considered and the dynamics should be more interesting.
Additionally, even though we did not focus on the applicability of the results discussed in
this article, it can be interpreted not only in water waves theory, but also in other branches
of physics for example, surface waves in electric normal fields and atmospheric waves and
elastic waves in solids, which makes our study to be urgent.

5. Conclusions

In this paper, we have asymptotically and numerically investigated the interaction
between solitary waves and an external periodic force within the feKdV equation. We
found that a solitary wave can remain steady if its amplitude and crest position are chosen
accordingly, as it can bounce back and forth close to its initial position or it can simply move
away from its initial positions. These results agree qualitatively within the asymptotic
theory considering a broad external force when compared with the length of the solitary
wave. However, when the wavenumber of the periodic forcing is too small, the asymptotic
fails because solitary waves are trapped longer within the eKdV equation.
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