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Abstract: This work presents a generalized implementation of the infeasible primal-dual interior
point method (IPM) achieved by the use of non-Archimedean values, i.e., infinite and infinitesi-
mal numbers. The extended version, called here the non-Archimedean IPM (NA-IPM), is proved
to converge in polynomial time to a global optimum and to be able to manage infeasibility and
unboundedness transparently, i.e., without considering them as corner cases: by means of a mild
embedding (addition of two variables and one constraint), the NA-IPM implicitly and transparently
manages their possible presence. Moreover, the new algorithm is able to solve a wider variety of
linear and quadratic optimization problems than its standard counterpart. Among them, the lexico-
graphic multi-objective one deserves particular attention, since the NA-IPM overcomes the issues that
standard techniques (such as scalarization or preemptive approach) have. To support the theoretical
properties of the NA-IPM, the manuscript also shows four linear and quadratic non-Archimedean
programming test cases where the effectiveness of the algorithm is verified. This also stresses that the
NA-IPM is not just a mere symbolic or theoretical algorithm but actually a concrete numerical tool,
paving the way for its use in real-world problems in the near future.

Keywords: quadratic programming; interior point methods; lexicographic multi-objective optimization;
non-standard analysis; infinite/infinitesimal numbers; non-Archimedean scientific computing; fixed-
length representations

MSC: 90C51; 90C20; 90C29

1. Introduction

Convex quadratic programming (QP) is a widely and deeply studied research topic [1],
with plenty of pervasive real-world applications [2]. In spite of the availability of a huge
amount of solving algorithms, one of them manifests a pleasant cross-model efficacy at
the price of minimal changes in the implementation: the interior point method (IPM) and
its variants [3]. Actually, it positively tackles a wide range of optimization tasks, which
range from linear programming to cone programming, passing through convex quadratic
programming and semidefinite programming.

Another important and of optimization that is growing in interest type is lexicographic
multi-objective (linear or nonlinear) programming, which is the task of seeking optimal
values of a set of functions (potentially constrained on the domain space) ranked lexico-
graphically (the first objective has priority over the second, the second over the third, and
so on [4–8]. Common ways to tackle such a problem are scalarization [9] and preemptive
optimization [10] (Chapter 17.7). The scalarization approach transforms the multi-objective
problem into a single objective one by computing a weighted sum of the functions accord-
ing to their priority (the most important one takes a higher weight, the lowest important a
lower weight). Unfortunately, the correct a priori choice of the weights is unknown and
depends on the function’s range and on the optimal solution as well. The lack of any
guarantee of correct convergence is not the only drawback, the choice of too different,
i.e., very high and very small weights, may induce a loss of precision and numerical in-
stabilities. On the contrary, a preemptive approach optimizes one function at a time and
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uses its optimal value as an additional constraint for subsequent tasks. Even if this idea
guarantees convergence to optimality, it is not drawbacks-free either. Indeed, it requires
solving multiple optimization tasks (one for each function) with increasing complexity (the
addition of one constraint after each optimization is completed), which implies wasting
computational resources. Furthermore, the nature of the problem can vary and become
more complicated over time. For instance, in a QP problem, all the optimizations after the
first one shall involve a convex constraint, turning them into quadratically constrained
programming problems. As a result, the optimization needs a different, more complex, and
less performing algorithm than the one it was supposed to be used at the beginning.

The recent literature has started to reconsider lexicographic problems, trying to solve
the issues coming from both scalarization and preemptive approaches leveraging recent
developments in numerical non-Archimedean computations [11–13]. Some results involve
game theory [14,15], evolutionary optimization [16–18], and linear programming tackled by
Simplex-like methods [4,19,20]. Actually, the key idea is to scalarize the problem by adopt-
ing infinite and infinitesimal weights. Such a choice of weights guarantees the satisfaction
of lexicographic ordering during the optimization of the single-objective constrained (and
non-Archimedean) function. In a nutshell, this idea mixes the good properties of preemp-
tive approaches (guarantee of lexicographic ordering satisfaction and convergence to the
problem optimum, if any) and scalarization (transformation of the problem into a scalar
one, solving it leveraging common and well-established techniques). Thus, the idea of this
work is close to the one presented in [4], but this time using an IPM instead of a Simplex
algorithm. Once implemented, the new algorithm, called the NA-IPM (non-Archimedean
interior point method) will be able to solve not only lexicographic multi-objective linear
programming problems but also quadratic ones, and in a polynomial time. Furthermore, by
adding only two variables and one non-Archimedean constraint to the original problem, the
NA-IPM is able to handle infeasibility and unboundedness transparently, i.e., without the
need to cope with them as corner cases within the implementation. This means that ad hoc
routines (such as duality gap norm divergence) or more complex embeddings (e.g., homo-
geneous self-dual model) can be avoided, preventing possible slowing of computations and
the need for different solving algorithms. Lexicographic interpretation apart, the NA-IPM
is also able to tackle a huge variety of linear and quadratic non-Archimedean optimization
problems as well, as opposed to the non-Archimedean extension of the Simplex algorithm
in [4]. Examples of such problems are the non-Archimedean zero-sum games presented
in [14].

In line with the recent literature, this work refers to those algorithms (as well as
models) as fully implemented (described), leveraging standard analysis with the adjective
“standard”. This helps to better distinguish them from their non-Archimedean counterparts
which, in the majority of the cases, are built over non-standard models (from here the
dichotomy). Actually, this is the case of the NA-IPM, which leverages the non-standard
model known as Alpha Theory. Equivalently, one could have used the word “Archimedean”
in place of “standard”, but it is far less common and it may have led to misunderstandings.
It is also worth stressing that the use of a standard or non-standard approach to model
a problem does not imply that the problem itself is inherently standard or non-standard.
Rather, the theory within which a problem is modeled just defines the perimeter of tools one
can use to tackle it and set a limit to the efficacy of the chosen approach as a consequence.
This work proposes a non-standard theory to model some classes of optimization problems
and proposes the NA-IPM as a solving approach, believing that there are scenarios where
its efficacy is higher than the one of standard techniques.

The remainder of the work is structured as follows: Sections 2 and 3 provide the
basic knowledge to understand this work, the first reviews IPM and the theory behind it,
while the second introduces the non-Archimedean model adopted (Benci’s Alpha Theory);
Section 4 presents the NA-IPM, discussing algorithm’s theoretical properties (conver-
gence, complexity, etc.), implementation issues, and handling of infeasibility; Section 5
shows four numerical experiments which highlight the NA-IPM’s effectiveness in linear,
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quadratic, feasible, and infeasible problems. Finally, Section 6 concludes the work with few
summarizing lines.

2. Reviewing the Standard Interior Point Method for Quadratic Programming

Quadratic programming (QP) [21] is the task of solving a problem of the form of
Equation (1) or Equation (2)

min 1
2 xTQx + cTx

s.t. Ax ≤ b
(1)

min 1
2 xTQx + cTx

s.t. Ax = b
x ≥ 0

(2)

where x ∈ Rn is the unknown, Q ∈ Rn×n is symmetric, c ∈ Rn together with Q forms
the cost function, while A ∈ Rm×n and b ∈ Rm are the feasibility constraints, m, n ∈ N.
Whenever Q is also positive semidefinite (Q � 0), the QP problem can be solved with
polynomial complexity [22]; this will be the case study from now on. A very famous
algorithm to solve QP problems is the so-called interior point method (IPM) [3], in any
of its many fashions: primal/primal-dual, feasible/infeasible, predictor–corrector, or not.
The success of IPM has been so wide and great that it pushed [23] to stress its spirit of
unification, which has brought together areas of optimization firmly treated as disjoint.
Among the reasons for its practical success, one is its astonishing efficiency for very large-
scale linear programming problems (where Simplex-like approaches generally get stuck)
[24], the capability to exploit any block-matrix structure in the linear algebra operations
[25], as well as the possibility to easily and massively parallelize its computations achieving
a significant increase in speed (again, the same does not hold for Simplex-like approaches)
[25]. Empirical observations add one more positive feature: even if the best implementation
of IPM is proved to find an ε-accurate solution in O(

√
n| log ε|) iterations, in practice it

performs much better than that, converging in almost a constant number of steps regardless
the problem dimension n [26] (ε is the optimality tolerance).

This work focuses on the predictor–corrector infeasible primal-dual IPM [27], which is
broadly accepted today to be the most efficient one [3]. The next subsection is devoted to
resuming the algorithm in question. The reader already familiar with IPM might find it
overly lengthy, but it is better to recall here the details of IPM standard implementation in
order to more easily introduce its non-Archimedean extension in Section 4.

Description of the Standard IPM Algorithm

First of all, the assumption that the problem is formulated according to (2) holds. If not,
one needs to rewrite the problem by adding some slack variables, one for each constraint,
without penalizing them in the cost function. Presolving techniques [28] for guaranteeing
consistent problem formulations must be applied too. Second, duality theory [29] states
that first-order optimality conditions for QP problems (also known as KKT conditions)
are the ones reported in Equation (3), where λ are the dual variables and s the dual slack
variables (a slight modification which includes an additional parameter µ is provided in
Equation (4) and will be discussed later).

Ax = b
ATλ + s−Qx = c
XS1 = 0
(x, s) ≥ 0

(3)


Ax = b
ATλ + s−Qx = c
XS1 = µ1
(x, s) ≥ 0

(4)
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Third, iterative algorithms based on the Newton–Raphson method [30] find the solu-
tion of systems as the one in (3) (positivity of x and s excluded) starting from a solution
(x0, λ0, s0) and repeatedly solving the linear system in (5) (Equation (6) presents a slight
modification with two additional parameters µ and σ which will be introduced in the next
lines), where rb = Ax − b and rc = ATλ + s − Qx − c, while X and S are the diagonal
matrices obtained by x and s (the iteration apices are omitted for readability reasons). −Q AT I

A 0 0
S 0 X

 ∆x
∆λ
∆s

 =

 −rc
−rb
−XS1

 (5)

 −Q AT I
A 0 0
S 0 X

 ∆x
∆λ
∆s

 =

 −rc
−rb

σµ1− XS1

 (6)

This system is known as Newton’s step equation, and once solved the approximated
solutions of (3) are updated accordingly: (xk+1, λk+1, sk+1) ← (xk + ν∆x, λk + ν∆λ, sk +
ν∆s) with ν ∈ (0, 1] opportunely chosen.

Infeasible primal-dual IPM aims to find optimal primal-dual solutions (x, λ, s) of (3)
by applying a variant of (5) and modifying the search direction as well as the step lengths
so that the non-negativity of x and s is strictly satisfied. To do this, the IPM is designed
as a path-following algorithm, i.e., an algorithm that tries to stay as close as possible to
a specific curve during the optimization [31]. Such a curve, also known as central path, is
uniquely identified by all the duality-gap values µ ∈ (0, x0Ts0

n ], where (x0, λ0, s0) is the
primal-dual starting point. Its role is to keep the intermediate solutions away from the
feasible region’s boundaries as much as possible (from here we get the word “central”).
The points belonging to the central path are those satisfying conditions in Equation (4),
which is a slight modification of (3), for a given value of µ. The uniqueness of the curve is
guaranteed whenever the feasible region admits at least one strictly feasible point, that is a
primal-dual solution such that (x, s) > 0 (the latter is a very weak assumption). Newton’s
step is now computed accordingly with Equation (6), where σµ is the next duality gap to
achieve, σ ∈ (0, 1); furthermore, σµ uniquely identifies the primal-dual point on the central
path to the target. Since Equation (6) approximates (5) more and more closely as µ goes
to zero, if the latter converges to anything as µ ↓ 0 (and it does if the feasible region is
bounded), then IPM eventually converges to an optimal solution of the QP problem.

The predictor–corrector version of IPM splits Newton’s direction computation into
two stages: predictor and corrector. The predictor one solves the system in (5), i.e., it looks
for a solution as optimal as possible, identifying it by the three predictive directions solving
Newton’s step equation, namely ∆xp, ∆λp, and ∆sp. Then, it is the turn of the corrector
stage, which operates a restoration of some of the centrality lost during the predictor stage.
Indeed, pushing all the way towards the optimum may take the temporary solutions too
close to the boundaries, affecting the quality of the convergence due to possible numerical
issues. To cope with that, the corrector stage solves the linear system in (6) with the
constant term [0, 0, σµ1− ∆xp � ∆sp] (� indicates the Hadamard product). In most cases,
the corrector direction badly (but mildly) affects the optimality of the predictor solution,
still guaranteeing an improvement with respect to the previous iterate. Indeed, a good
centrality of the temporary solutions is too crucial for a good and fast convergence to
be ignored. The final optimizing direction is just the sum of the ones found at the two
stages. A final remark: since the arbitrary a priori choice of σ may bias the performance

too much, Mehrotra [24] fruitfully proposed an adaptive setting of it to
(

µnew

µ

)3
, where

µnew = (x+∆x)T(s+∆s)
n .

There are three aspects left to be uncovered to exhaustively present the IPM algorithm
used in this work. They consist of three crucial issues of any iterative algorithm: problem
infeasibility, starting point choice, and algorithm termination. Multiple ways to address
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infeasibility exist, two of the most common are iterates divergence [32] and problem
embedding [33]. The first one leverages some results on convergence [27], which state
that in case of infeasibility the residuals cannot decrease under a positive constant, and,
therefore, the iterates must diverge. To identify this phenomenon, it is enough to check at
each iteration whether the norm of x and s exceeds a certain threshold ω, i.e., ‖(x, s)‖ > ω.
On the contrary, the second one aims to embed the given problem in a larger one for which
a feasible solution always exists (called an augmented solution). Once found, it tells the
user whether the original problem admits a feasible solution (in which case it shall allow
one to retrieve it from the augmented one) or the opposite (also specifying which of the
polyhedra is infeasible: the primal, the dual, or both).

The starting point choice is vital for the quality of the solution, or even for the conver-
gence itself. In the literature, there exist plenty of papers proposing novel ways to initialize
an IPM. In this work, the approach used is the one by Mehrotra [24], which first seeks the
solution of the two least squares problems in Equation (7) and (8) in order to satisfy the
equality constraints, then executes some additional operations to guarantee strict positivity
and well centering (even at the expenses of feasibility). The complete procedure is reported
in Algorithm 1.

min
x

xTx

s.t. Ax = b
(7)

min
λ,s

sTs

s.t. ATλ + s−Qx = c
(8)

Algorithm 1 Starting point computation for IPM.

1: procedure STARTING_POINT(A, b, c, Q)
2: /∗ solution of (7) ∗/
3: x = AT(AAT)−1b
4: /∗ solution of (8) ∗/
5: λ = (AAT)−1 A(c + Qx)
6: s = c + Qx− ATλ
7: /∗ guarantee of positivity ∗/
8: δx = max(− 3

2 min xi, 0)
9: x = x + δx1

10: δs = max(− 3
2 min si, 0)

11: s = s + δs1
12: /∗ increment in centrality and well-balancing ∗/

13: δx = 1
2

xTs
sT1

14: δs =
1
2

xTs
xT1

15: x = x + δx1
16: s = s + δs1
17: return x, λ, s

Finally, the algorithm termination is demanded to three aggregated values, ρ1, ρ2, and
ρ3. They describe the degree of KKT condition (3) satisfaction achieved by the current
iteration. As soon as all three values are under a user-defined tolerance threshold ε ∈ R+,
the algorithm is considered converged. Actually, ρ1 and ρ2 refer to primal and dual
feasibility, respectively, while ρ3 is in charge of the complementary degree of x and s. Their
definition is

ρ1 =
‖Ax− b‖
1 + ‖b‖ , ρ2 =

‖ATλ + s−Qx− c‖
1 + ‖c‖ , ρ3 =

µ

1 + | 12 xTQx + cTx|
. (9)
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A resume of the whole procedure just described can be found in Algorithm 2. The next
section introduces the non-Archimedean tools exploited to implement the more general
interior point algorithm at the core of this manuscript.

Algorithm 2 Predictor–corrector infeasible primal-dual IPM.

1: procedure STANDARD_IPM(A, b, c, Q, ε, ω, max_it)
2: /∗ flag of correct termination ∗/
3: flag = False
4: x, λ, s = starting_point(A, b, c, Q)
5: for i = 1, . . . , max_it do
6: /∗ compute residuals ∗/
7: rb = Ax− b rc = ATλ + s−Qx− c rµ = x� s
8: /∗ compute centrality, n is the length of x ∗/

9: µ =
rT

µ 1
n

10: /∗ compute KKT conditions satisfaction parameters ∗/

11: ρ1 = ‖rb‖
1+‖b‖ ρ2 = ‖rc‖

1+‖c‖ ρ3 = µ

1+| 12 xT Qx+cT x|
12: if ρ1 ≤ ε and ρ2 ≤ ε and ρ3 ≤ ε then
13: /∗ primal-dual feasible optimal solution found ∗/
14: flag = True
15: return x, λ, s, flag
16: /∗ compute predictor directions solving (3) ∗/
17: ∆xp, ∆λp, ∆sp = predict(A, b, c, Q, rb, rc, rµ)
18: /∗ compute predictor step size ∗/

19: νpp = 0.99 min(maxν{ν | x + ν∆xp ≥ 0}, 1)

20: νpd = 0.99 min(maxν{ν | s + ν∆sp ≥ 0}, 1)

21: ν = min(νpp, νpd)
22: /∗ estimate σ ∗/
23: x̃ = x + ν∆xp s̃ = s + ν∆sp

24: µnew = x̃T s̃
n

25: σ = ( µnew

µ )3

26: /∗ compute corrector directions solving the corresponding Newton’s system ∗/
27: ∆xc, ∆λc, ∆sc = corrector(A, b, c, Q, σµ1− ∆xp � ∆sp)
28: /∗ compute new direction ∗/
29: ∆x = ∆xp + ∆xc ∆λ = ∆λp + ∆λc ∆s = ∆sp + ∆sc
30: /∗ compute step size ∗/

31: νp = 0.99 min(maxν{ν | x + ν∆x ≥ 0}, 1)

32: νd = 0.99 min(maxν{ν | s + ν∆s ≥ 0}, 1)
33: ν = min(νp, νd)
34: /∗ compute target primal-dual solution ∗/
35: x = x + ν∆x λ = λ + ν∆λ s = s + ν∆s
36: if ‖(x, s)‖ > ω then
37: /∗ Divergence detected ∗/
38: return x, λ, s, flag
39: return x, λ, s, flag

3. Alpha Theory

This section aims to introduce the non-Archimedean model adopted to generalize the
IPM to the NA-IPM: Benci’s Alpha Theory [34]. Its key ingredient is the infinite number
α, whose definition can be given in multiple ways, as usual in mathematics. In this work,
the axiomatization of Alpha Theory given in [12] is used. The reason for this choice is
that it provides a very plain and application-oriented introduction to the topic, which
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also has the property to stress the numerical nature and immediate applicability of such a
theory to data science problems. Then, the last part of the section is devoted to showing the
strict relation between standard lexicographic QP problems and a particular category of
non-Archimedean QP ones. This fact suggests a straightforward application of the NA-IPM
to lexicographic problems, as testified by the experimental section.

3.1. Background in Brief

The minimal ground for Alpha Theory consists of three axioms, the first of which
introduces a wider field than R, namely E, which actually contains it.

Axiom 1. There exists an ordered field E ⊃ R whose numbers are called Euclidean numbers.

The second one aims at describing better some of the elements in E. Actually, it states
that E contains numbers that are finite (since it contains R), infinite, and infinitesimal
according to the following definition:

Definition 1. Given ξ ∈ E, then

• ξ is infinite⇐⇒ ∀ n ∈ N, |ξ| > n
• ξ is finite⇐⇒ ∃ n ∈ N, 1

n < |ξ| < n
• ξ is infinitesimal⇐⇒ ∀ n ∈ N, |ξ| < 1

n

To do this, it introduces the previously mentioned value α by means of the numerosity
function num, which in some sense can be seen as a particular counting function. For the
sake of rigorousness, let V(N) denote the superstructure on N, namely

V(N) =
∞⋃

i=0

Vi(N),

where (P is the power set)

V0(N) = N, Vi+1(N) = Vi(N) ∪ P(Vi(N));

then set
U := {X ∈ V(N) |X is countable}.

Axiom 2. There exists a function num, num : U → E which satisfies

• if A is finite num(A) = |A| (| · | denotes the cardinality of a set)
• num(A) < num(B) if A ⊂ B
• num(A ∪ B) = num(A) + num(B)− num(A ∩ B)
• num(A× B) = num(A) · num(B)
• α = num(N)

More precisely, Axiom 2 not only introduces the infinite number α but also states that
its manipulation by means of algebraic functions generates other Euclidean numbers. For
instance, the following equivalences hold true in E and each one individuates a specific
number:

α · (α + 2) = α2 + 2α 0 <
1
α
= α−1 < α0 = 1 < α1 = α < (α + 1)

−10.0α2 + 16.0 + 42.0η2

5.0α2 + 7.0
= −2.0 + 6.0η2

where there is the convention to indicate α−1 with η, i.e., η := α−1.
The last axiom introduces the notion of α-limit by means of which any function

f : Rm → R can be extended to a function f ∗ : Em → E satisfying all the first-order
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properties of the former. This is a crucial tool of any non-standard model since it guarantees
the transfer of such properties from f to f ∗. Because of this, it is commonly referred to as
the transfer principle [35].

Axiom 3. Every sequence ϕ : N → Rm has a unique α-limit denoted by limn↑α ϕ(n) which
satisfies the following properties:

1. if ξ ∈ Em, then there exists a sequence ϕ : N→ Rm such that

ξ = lim
n↑α

ϕ(n)

2. if ϕ(n) = n, then
lim
n↑α

ϕ(n) = α

3. if ∃n0 ∈ N such that ∀n ≥ n0, ϕ(n) ≥ ψ(n), then

lim
n↑α

ϕ(n) ≥ lim
n↑α

ψ(n)

4. any sequence ϕ, ψ

lim
n↑α

ϕ(n) + lim
n↑α

ψ(n) = lim
n↑α

(ϕ(n) + ψ(n)),

lim
n↑α

ϕ(n) · lim
n↑α

ψ(n) = lim
n↑α

(ϕ(n) · ψ(n)).

Leveraging Axiom 3, any real-valued function f : Rm → R can be extended to a
function f ∗ : Em → E by setting [12]

f ∗(ξ) = f ∗
(

lim
n↑α

ϕ(n)
)
= lim

n↑α
f (ϕ(n)). (10)

A similar extension is possible for multi-valued functions and sets as well. In the first
case, for any f : Rm → Rq with f (x) = { f1(x), . . . , fq(x)} and fi : Rm → R ∀i = 1, . . . , q,
f ∗ : Em → Eq is defined as f ∗(ξ) = { f ∗1 (ξ), . . . , f ∗q (ξ)} where f ∗i = limn↑α fi ∀i = 1, . . . , q.
In the second case, given a set F, F∗ is defined as F∗ = {limn↑α f | f ∈ F}.

Notice that the use of the word “extension” is fully justified by the fact that f ∗(x) =
f (x) ∀x ∈ R. In the remainder of the work, when no ambiguity is possible, the “∗” will be
omitted, and, therefore, f and f ∗ will be denoted by the same symbol.

Another important implication of Axioms 1-3 is that any ξ ∈ E \ {0} admits the
following representation [34]:

ξ =
∞

∑
i=1

ψiα
gξ (i), ψ1 6= 0, i ∈ N

where ψi ∈ R, gξ : N → R is a monotonic decreasing function. Finally, we give some
definitions which are useful in the remainder of the work.

Definition 2 (Monosemium). ξ ∈ E is called monosemium if and only if ξ = ψαi, ψ ∈ R, i ∈ R.

Definition 3 (Leading monosemium). Given ξ ∈ E, ψ1αgξ (1) is called leading monosemium.

Definition 4 (Leading monosemium function). The leading monosemium function lead_mon :
E→ E is a non-Archimedean function that maps each Euclidean number in its leading monosemium.

Definition 5 (Order of magnitude). The order of magnitude is a functionO : E \ {0} → E \ {0}
such that ∀ξ ∈ E \ {0} O(ξ) = αgξ (1).
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Definition 6 (Smallest order of magnitude). Let one indicate with Elim ⊂ E the set of Eu-
clidean numbers represented by a limited number of monosemia, i.e., Elim := {ξ ∈ E \ {0} | ξ =

∑l
i=1 ψiα

gξ (i), ψ1 6= 0, l ∈ N}. The smallest order of magnitude is a function o : Elim → Elim

such that ∀ξ ∈ Elim o(ξ) = αgξ (l).

A common generalization of the last two functions to vectorial spaces is the following:

∀ξ ∈ En \ {0} O(ξ) = max
i=1, ..., n

O(ξi) ∀ξ ∈ En
lim o(ξ) = min

i=1, ..., n
o(ξi).

Definition 7 (Infinitesimal number). A way to indicate that ξ ∈ E is infinitesimal (equivalent
to the one in Definition 1) is by the inequality O(ξ) < α0, which is usually indicated as ξ ≈ 0.

3.2. How To Handle Lexicographic Optimization

This subsection aims to introduce Proposition 1, which builds a bridge between
standard lexicographic QP problems and non-Archimedean quadratic optimization. First,
let one formally introduce standard and non-Archimedean optimization models. Then, the
result comes straightforwardly.

Definition 8 (Standard optimization problem). An optimization problem of the form

min f (x)

s.t. gi(x) ≤ 0 i = 1, . . . , n,

hj(x) = 0 j = 1, . . . , m

(11)

is said to be standard (or Archimedean) if and only if f , and all gi and hj are real-valued
multivariate functions.

Definition 9 (Non-Archimedean optimization problem). An optimization problem of the form
(11) is said to be non-Archimedean if and only if at least one of the functions f , gi, or hj is non-
Archimedean, i.e., at least one of them has values in Ek (with k ∈ N) or maps the input into values
in E.

In the case of QP problems as (1) and (2), this is equivalent to saying that either x ∈ Ek or at
least one entry of A, b, c or Q is non-Archimedean.

Proposition 1. Consider a lexicographic optimization problem whose objective functions f1, . . . , fn
are real functions, and the priority is induced by the natural order. Then, there exists an equiva-
lent scalar program over the same domain, whose objective function is non-standard and has the
following form:

F(x) = β1 f1(x) + . . . + βn fn(x),

where βi+1
βi
≈ 0, i = 1, . . . , n-1.

Proof. The proof will show that the two programs share the same global maxima. Very
similar considerations hold for local maxima and global and local minima but are omitted
for brevity.

Let Ω be the domain of the two programs, and ω ∈ Ω be a global maximum of
the lexicographic optimization problem, i.e., @ω′ ∈ Ω such that f1(ω

′) > f1(ω), or @i =
2, . . . , n such that f j(ω

′) = f j(ω), j = 1, . . . , i-1, and fi(ω
′) > fi(ω). However, this is true

if and only if @ω′ ∈ Ω such that F(ω′) > F(ω), by the definition of F itself. The latter fact
exactly means that ω is a global maximum for the scalar non-standard program.

The choice of weights {βi}n
i=1 adopted in this work is βi = α1−i, i = 1, . . . , n. As

an example, consider the two-objective lexicographic optimization problem in (12). It
seeks for the point in the unitary cube which minimizes the first objective f1(x) = x2

1 + x2
2.
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In case more than one such point exists, as in this example where the whole segment
S = {x ∈ R3 | x1 = x2 = 0, x3 ∈ [0, 1]} optimizes f1, then such a set of candidate optimal
solutions is refined considering the second objective f2(x) = x3 + x2. It is easy to verify
that f2 selects as optimal only one point in S , namely the origin.

According to Proposition 1, a possible non-Archimedean reformulation of (12) is the
one in (13). Here, the objective function ζ(x) is built by summing the first objective weighed
by β1 = 1 with the second one weighed by β2 = η, i.e., ζ(x) = f1(x) + f2(x)η. Notice that
the request β2

β1
≈ 0 holds since β2

β1
= η

1 = η ≈ 0. Furthermore, it is clear why the origin
also optimizes the second problem. Indeed, as soon as x1 ≥ 0 or x2 ≥ 0 then ζ(x) assumes
positive finite values, while if x3 ≥ 0 then ζ(x) assumes positive infinitesimal values. On
the other hand, in the origin, it holds ζ(x) = 0, which is a value smaller than any other
assumed by the objective function in the previous two cases.

lex min
x∈R3

x2
1 + x2

2, x3 + x2

s.t. 0 ≤ x1 ≤ 1,
0 ≤ x2 ≤ 1,
0 ≤ x3 ≤ 1

(12)

min
x∈R3

x2
1 + x2

2 + (x3 + x2)η

s.t. 0 ≤ x1 ≤ 1,
0 ≤ x2 ≤ 1,
0 ≤ x3 ≤ 1

(13)

4. Non-Archimedean Interior Point Method

This section aims to introduce a non-Archimedean extension of the predictor–corrector
primal-dual infeasible IPM described in Section 2, called by the authors the non-Archimedean
IPM (NA-IPM). Such an algorithm is able to solve non-Archimedean quadratic optimization
problems and, as a corner case, standard QP ones as well. Three immediate and concrete
advantages in leveraging it are: (i) lexicographic QP problems can be solved as they
were unprioritized ones (thanks to Proposition 1); (ii) the problem of infeasibility and
unboundedness disappears; (iii) more general QP optimization problems can be modeled
and solved (Alpha Theory helps in modeling problems that are difficult to model without
it, sometimes it is even impossible).

The algorithm pseudocode is presented in Algorithm 3. To better understand it, the
next three subsections are devoted to discussing some delicate aspects of it and of its
implementation: unboundedness and infeasibility, complexity and convergence properties,
and numerical issues that arise when moving from algorithmic description to software
implementation. Similarly to what happens for standard algorithms, it is important to stress
that many of the proofs in this section assume Euclidean numbers to be represented by finite
sequences of monosemia. Indeed, even if the reference set E defined by Axioms 1–3 admits
numbers represented by infinite sequences, it would not be reasonable to use them in a
machine and to discuss the algorithm’s convergence. The reasons are two: (i) the algorithm
should manage and manipulate an infinite amount of data; (ii) the machine is finite and
cannot store all that information. Notice that, at this stage, the focus is not on variable-
length representations of Euclidean numbers, as they would slow the computations down
[14]. Fixed-length representations, as the ones discussed in [11] are, therefore, preferred,
because they are easier to implement in hardware (i.e., they are more “hardware friendly”),
as recent studies testify [36].



Mathematics 2022, 10, 4536 11 of 34

Algorithm 3 Non-Archimedean predictor–corrector infeasible primal-dual IPM.

1: procedure NA-IPM(A, b, c, Q, ε, max_it)
2: /∗ Notice that the divergence is dealt with the embedding presented in Section 4.1 ∗/
3: /∗ Therefore the flag of correct termination and the threshold ω are useless here ∗/
4: /∗ Notice also that only ε ∈ R+, while A, b, c and Q are Euclidean matrices and vectors ∗/
5: x, λ, s = starting_point(A, b, c, Q)
6: x = lead_mon(x) λ = lead_mon(λ) s = lead_mon(s)
7: for i = 1, . . . , max_it do
8: /∗ compute residuals ∗/
9: rb = Ax− b rc = ATλ + s−Qx− c rµ = x� s

10: /∗ compute centrality, n is the length of x ∗/

11: µ =
rT

µ 1
n

12: /∗ compute KKT conditions satisfaction parameters ∗/

13: ρ1 = ‖Ax−b‖
1O(b)+‖b‖ , ρ2 = ‖ATλ+s−Qx−c‖

1O(c)+‖c‖ , ρ3 = µ

1O( 1
2 xT Qx+cT x)+| 12 xT Qx+cT x|

14: /∗ check convergence on all the (meaningful) monosemia of the aggregated values (Section 4.3) ∗/
15: if all_monosemia(ρ1) ≤ ε and all_monosemia(ρ2) ≤ ε and

all_monosemia(ρ3) ≤ ε then
16: /∗ primal-dual feasible optimal solution found ∗/
17: return x, λ, s
18: /∗ compute predictor directions solving (3) ∗/
19: ∆xp, ∆λp, ∆sp = predict(A, b, c, Q, rb, rc, rµ)
20: /∗ keep only the leading monosemia of the gradients (Section 4.3) ∗/
21: ∆xp = lead_mon(∆xp) ∆λp = lead_mon(∆λp) ∆sp = lead_mon(∆sp)
22: /∗ compute predictor step size ∗/

23: νpp = 0.99 min(maxν{lead_mon(ν) | x + ν∆xp ≥ 0}, 1)

24: νpd = 0.99 min(maxν{lead_mon(ν) | s + ν∆sp ≥ 0}, 1)

25: ν = min(νpp, νpd)
26: /∗ estimate σ ∗/
27: x̃ = x + ν∆xp s̃ = s + ν∆sp

28: µnew = x̃T s̃
n

29: σ = lead_mon(( µnew

µ )3)
30: /∗ compute corrector directions solving the corresponding Newton’s system ∗/
31: ∆xc, ∆λc, ∆sc = corrector(A, b, c, Q, σµ1− ∆xp � ∆sp)
32: /∗ compute new direction ∗/
33: ∆x = ∆xp + ∆xc ∆λ = ∆λp + ∆λc ∆s = ∆sp + ∆sc
34: /∗ keep only the leading monosemia of the gradients (Section 4.3) ∗/
35: ∆x = lead_mon(∆x) ∆λ = lead_mon(∆λ) ∆s = lead_mon(∆s)
36: /∗ compute step size ∗/

37: νp = 0.99 min(maxν{lead_mon(ν) | x + ν∆x ≥ 0}, 1)

38: νd = 0.99 min(maxν{lead_mon(ν) | s + ν∆s ≥ 0}, 1)
39: ν = min(νp, νd)
40: /∗ compute target primal-dual solution ∗/
41: x = x + ν∆x λ = λ + ν∆λ s = s + ν∆s
42: /∗ Add infinitesimal centrality to the close-to-zero entries (Section 4.3) ∗/
43: x, s = update_zero_entries(x, s)
44: return x, λ, s

4.1. Infeasibility and Unboundedness

As stated in Section 2, one can approach the problem of infeasibility and unbounded-
ness in two different ways: divergence detection at run time or problem embedding. While
the first keeps the problem complexity fixed but negatively affects the computation because
of norm divergence polling, the second wastes resources by optimizing a more complex
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problem, which is solved efficiently nevertheless. Therefore, the simpler the embedding is,
the lesser it affects the performance.

One very simple embedding, proposed by [37–40], consists of the following mapping:

A 7→ Ã =

[
A b− A1 0

cT − 1T + 1TQ 0 −1

]
, Q 7→ Q̃ =

[
Q 0
0 0

]
,

b 7→ b̃ =
[
bT −℘1

]T , c 7→ c̃ =
[
cT ℘2 0

]T ,

(14)

where ℘1 and ℘2 are two positive and sufficiently big constants. This embedding adds two
artificial variables (one to the primal and one to the dual problem) and one slack variable (to
the primal). The goal of adding the artificial variables is to guarantee the feasibility of their
corresponding problem, while on their own dual this is equivalent to adding one bounding
hyperplane to prevent any divergence. From duality theory indeed, if the primal problem
is infeasible, then the dual is unbounded and vice versa. Geometrically, the hyperplane
slope is chosen considering a particular conical combination of the constraints and the
constant term vector (the one with all coefficients equal to 1). If there is any polyhedron
unboundedness, the conical combination outputs a diverging direction and generates a
hyperplane orthogonal to it; otherwise, the addition of such constraints has no effect.

On the other hand, the constraint intercept depends on the penalizing weights ℘1
and ℘2, respectively, for the primal and the dual hyperplane. The larger the weight is,
the farther is located the corresponding bound. From the primal perspective instead, ℘1
and ℘2 act as penalizing weights for the artificial variables of the dual and the primal
problem, respectively. The need for this penalization comes from the fact that to make
the optimization consistent, the algorithm must be driven towards feasible points of the
original problem, if any. By construction, the latter always have artificial variables equal
to zero, which means one has to penalize them in the cost function as much as possible
in order to force them to that value. More formally, it can be proved that for sufficiently
large values of ℘1 and ℘2: (i) the enlarged problem is strictly feasible and bounded; (ii) any
solution for the larger problem is also optimal for the embedded one if and only if both the
artificial variables are zero [38].

Unfortunately, this idea is unsustainable when moving from theory to practice, i.e.,
to implementation. Indeed, a good estimate of the weights is difficult to determine a
priori, and the computational performance is sensitive to their values [41]. Trying to find
a solution, Lustig [42] investigated the optimal directions generated by Newton’s step
equation when ℘1 and ℘2 are driven to ∞, proposing a weight-free algorithm based on
these directions. Later, Lustig et al. [43] showed that directions coincide with those of an
infeasible IPM, without solving the unboundedness issue actually. When considering a
set of numbers larger than R as E, however, an approach in the middle between (14) and
the one by Lustig is possible. It consists of the use of infinitely large penalizing weights,
i.e., in a non-Archimedean embedding. This choice has the effect of infinitely penalizing
the artificial variables, while from a dual perspective it locates the bounding hyperplanes
infinitely far from the origin. For instance, in the case of a standard QP problem, it is
enough to set both ℘1 and ℘2 to α, obtaining the following map

b 7→ b̃ =
[
bT −α

]T , c 7→ c̃ =
[
cT α 0

]T .

The idea to infinitely penalize an artificial variable is not completely new, it has already
been successfully used in the I-Big-M method [20], previously proposed by the author of
this work, even if in a discrete context rather than in a continuous one.

Nevertheless, there is still a little detail to take care of. Embedding-based approaches
leverage the milestone theorem of duality to guarantee optimal the solution’s existence
and boundedness. A non-Archimedean version of the duality theorem must hold too,
otherwise, non-Archimedean embeddings end up being theoretically not well founded.
Thanks to the transfer principle, E is free from any issue of this kind, as stated by the
next proposition.
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Proposition 2 (Non-Archimedean Duality). Given an NA-QP maximization problem, suppose
that the primal and dual problems are feasible. Then, if the dual problem has a strictly feasible point,
the optimal primal solution set is nonempty and bounded. Vice versa is true as well.

Proof. The theorem is true thanks to the transfer principle which, roughly speaking, trans-
fers the properties of standard quadratic functions to quadratic non-Archimedean ones.

If a generic non-Archimedean QP problem is considered instead, setting the weights to
α may be insufficient to correctly build the embedding. Actually, their proper choice
depends on the magnitude of the values constituting the problem. Proposition 3 gives
a sufficient estimate of them; before showing it, however, three preliminary results are
necessary. Lemmata 1–3 address them. All these three lemmata make use of the functions
O(·) and o(·) provided in Section 3 as Definition 4 and 5, respectively. In particular,
Lemma 1 provides an upper bound to the magnitude of the entries of the solutions x of a
non-Archimedean linear system Ax ≤ b. This upper bound is expressed as a function of
the magnitude of the entries of both A and b. Furthermore, Lemma 1 considers the case in
which the linear system to solve is the dual feasibility constraint of a QP problem, i.e., it has
the form ATλ− Qx ≤ c with x satisfying Ax ≤ b. Lemmas 2 and 3 generalize Lemma 1
considering corner cases too.

Lemma 1. Let the set of primal-dual optimal solutions Ω be nonempty and bounded. Additionally,
let b, [c, Q] 6= 0, A has full row rank, and its entries are represented by at most l monosemia, i.e.,
Aij = ∑l

h=1(aij)
hαg(h). Then, any (x, λ, s) ∈ Ω satisfies

O(x) ≤ O(x̃) = min
j∈J

O(bj)

o(Aj)
, O(λ) ≤ O(λ̃) = min

i∈I

O([ci, QiO(x̃)])
o([Ai, 1])

,

where J = {j = 1, . . . , m | bj 6= 0} and I = {i = 1, . . . , n | ci 6= 0 ∨ Qi 6= 0}.

Proof. By hypothesis, Ax = b and, therefore, |Ax| = |b| too. Focusing on the j-th constraint,
j ∈ J, it holds

|bj| =
∣∣∣∣∣ l

∑
h=1

(Aj)
hxαg(h)

∣∣∣∣∣ ≥ |(Aj)
l xαg(l)|, (15)

which implies

O(bj) ≥ O(|(Aj)
l xαg(l)|) = o(Aj)O(x) =⇒ O(x) ≤

O(bj)

o(Aj)
=⇒ O(x) ≤ min

j∈J

O(bj)

o(Aj)
. (16)

The proof for the second part of the thesis is very similar:

ATλ + Is = c + Qx =⇒ |AiTλ + si| = |ci + Qix| ≤ |ci|+ |Qix| ≤ |ci|+ |Qiξ|,

where ξ ∈ En is such that |Qix| ≤ |Qiξ| and has the form ξ = ξ0O(x̃), ξ0 ∈ Rn. Now,
following the same guidelines used in (15) and (16), one gets

O(λ) ≤ O([λ, s]) ≤ O([ci, QiO(x̃)])
o([Ai, 1])

∀ i ∈ I =⇒ O(λ) ≤ min
i∈I

O([ci, QiO(x̃)])
o([Ai, 1])

.

Equation (15) may seem analytically trivial, but actually, it underlines a subtle property
of non-Archimedean linear systems: the solution can have entries infinitely larger than
any number involved in the system itself. As an example, the 2-by-2 linear system below
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admits the unique solution x = [α2, α2]. However, each value in the system is finite, i.e.,
the magnitude of each entry of A and b is O(α0) = O(1):[

η2 − 1 1
1 η2 − 1

]
x =

[
1
1

]
Notice that Lemma 1 works perfectly here. Indeed, O(b) = 1 and o(A) = η2 imply

O(x̃) = α2 ≥ O(x).

Lemma 2. Let either the primal problem be unbounded or Ω 6= ∅ be unbounded in the primal
variable. Let also b, c, Q, and A satisfy the same hypothesis as in Lemma 1. Then,

O(x) ≤ O(x̃) = min
j∈J

O(bj)

o(Aj)
, O(λ) ≤ O(λ̃) = min

i∈I

O([ci, QiO(x̃)])
o([Ai, (ci − 1 + QT

i 1), 1])
,

with I and J as in Lemma 1.

Proof. If the primal problem is unbounded, it means that ∃x ∈ En such that Ax = b,
and ∀x such that Ax = b, @λ ∈ Em such that ATλ ≤ c + Qx. Nevertheless, a relaxed
version of Lemma 1 still holds for the primal polyhedron, that is ∃x such that Ax = b and

O(x) ≤ O(x̃) = minj∈J
O(bj)

o(Aj)
(the request for optimality is missing). According to (14), a

feasible bound for the primal polyhedron is (cT− 1T + 1TQ)x− ζ = −℘2, ζ ≥ 0, provided a
suitable choice of ℘2. Indeed, it can happen that a wrong value for ℘2 turns the unbounded
problem into an infeasible one. This aspect shall be discussed in Proposition 3, which
specifies ℘2 as a function of x.

Choice of ℘2 apart, the addition of the bound to the primal polyhedron guarantees
that ∃x′ = (x, ζ) ∈ En+1 such that it is feasible for the bounded primal problem and
∃λ′ ∈ Em+1 such that ATλ + (cT − 1T + 1TQ)Tξ ≤ c + Qx (remember that ξ is the dual
variable associated with the new constraint of the primal problem and that Q̃x′ = Qx).
Following the same reasoning used in Lemma 1, one gets the second part of the thesis

O(λ) ≤ O([λ′, s]) ≤ min
i∈I

O([ci, QiO(x̃)])
o([Ai, (ci − 1 + QT

i 1), 1])
.

The case in which Ω 6= ∅ and unbounded in the primal variable is very similar.
Together with the assumption b, [c, Q] 6= 0, it means that there are plenty of (not strictly)
feasible primal-dual optimal solutions, but there does not exist any with maximum cen-
trality. This fact negatively affects IPMs, since they move towards maximum centrality
solutions. Therefore, an IPM that tries to optimize such a problem will never converge to
any point, even if there are a lot of optimal candidates. To avoid this phenomenon, it is
enough to bound such a set of solutions with the addition of a further constraint to the
primal problem (which has also the effect to guarantee the existence of the strictly feasible
solutions missing in the dual polyhedron). As a result, the very same considerations ap-
plied for problem unboundedness work in this case as well, leading to exactly the result in
the thesis of this lemma.

Lemma 3. Let either the primal problem be infeasible or Ω 6= ∅ be unbounded in the dual variable.
Let also b, c, Q, and A satisfy the same hypothesis as in Lemma 1. Then,

O(x) ≤ O(x̃) = min
j∈J

O(bj)

o([Aj, b− A1])
, O(λ) ≤ O(λ̃) = min

i∈I

O([ci, QiO(x̃)])
o([Ai, 1])

,

with I and J as in Lemma 1.

Proof. In this case @x such that Ax = b but ∀x ∈ En ∃λ ∈ Em such that ATλ ≤ c + Qx.
Enlarging the primal problem in accordance to (14), one has that ∃x′ = (x, ζ) ∈ En+1
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(ζ ≥ 0) such that Ax + (b− A1)ζ = b. In addition, it holds ∃λ such that ATλ ≤ c + Qx,
provided that (b− A1)Tλ ≤ ℘1 for some suitable choice of ℘1 (which shall be discussed
in Proposition 3 as well). By analogous reasoning to the ones used in Lemma 1 and 2, the
thesis immediately comes.

The case in which Ω 6= ∅ and is unbounded on the dual variable works in the same
but symmetric way of the complementary scenario discussed in Lemma 2. Because of this,
it implies the bounds stated in the thesis, while the proof is omitted for brevity.

Proposition 3. Given an NA-QP problem and its embedding as defined in (14), a sufficient
estimate of the penalizing weights is

O(℘2) = O
(

α min
j∈J

O(bj)

o([Aj, b− A1])

)
, O(℘1) = O

(
α min

i∈I

O([ci, QiO(℘2η)])

o([Ai, (ci − 1 + QT
i 1), 1])

)
,

with I and J as in Lemma 1. In case J = ∅ then ℘2 = α, while I = ∅ implies ℘1 = α.

Proof. The extension to the quadratic case of Theorem 2.3 in [38] (proof omitted for brevity)
gives the following sufficient condition for ℘1 and ℘2, which holds true even in a non-
Archimedean context thanks to the transfer principle:

℘1 > (cT − 1T A + 1TQ)Tx, ℘2 > (b− A1)Tλ, (17)

where (x, λ, s) is an optimal primal-dual solution of the original problem,if any. A possible
way to guarantee the satisfaction of Equation (17) is to choose ℘1 and ℘2 such that their
magnitudes are infinitely higher than the right-hand terms of the inequalities. For instance,
one may set

℘1 ≥ α(cT − 1T A + 1TQ)Tx, ℘2 ≥ α(b− A1)Tλ,

or more weakly

O(℘1) ≥ O(α(cT − 1T A + 1TQ)Tx), O(℘2) ≥ O(α(b− A1)Tλ).

In case Ω is nonempty and bounded, Lemma 1 holds and provides an estimate on
the magnitude of both x and λ. In case either the primal problem is unbounded or Ω is
unbounded in the primal variable, Lemma 2 applies: the optimal solution is handcrafted
by bounding the polyhedron, its magnitude is overestimated by x̃, and (17) gives a clue for
a feasible choice of ℘2. Similar considerations hold for the case of either primal problem
infeasibility or Ω unboundedness in the dual variable, where Lemma 3 is used.

Corner cases are the scenarios where either J = ∅ or I = ∅. Since J = ∅ implies b = 0,
the primal problem is either unbounded or with unique feasible (and optimal) point x = 0.
In both cases, it is enough to set O(x̃) = 1. Since 0 is a feasible solution, in the case of
unboundedness it must exist a feasible point with at least one finite entry and no infinite
ones because of continuity. In the other scenario, 0 is the optimal solution and, therefore,
any finite vector is a suitable upper bound for it. Analogous considerations hold for the
case I = ∅, where a sufficient magnitude bound is O(λ̃) = 1.

4.2. Convergence And Complexity

The main theoretical aspects to investigate in an iterative algorithm are convergence
and complexity. Notice that in the case of non-Archimedean algorithms, the complexity
of elementary operations (such as the sum) assumes their execution on non-Archimedean
numbers, rather than on real ones. Since, theoretically, the NA-IPM is just an IPM able to
work with numbers in E, one first result on NA-IPM complexity comes straightforwardly
thanks to the transfer principle. It is worth stressing that, as usual, Theorem 1 assumes
to apply the NA-IPM to an NA-QP problem whose optimal solutions set is non-empty
and bounded.
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Theorem 1 (NA-IPM convergence). The NA-IPM algorithm converges in O(n2| log ε|), where
n ∈ N is the primal space dimension and ε ∈ E+ is the optimality relative tolerance.

Proof. The theorem holds true because of the transfer principle.

In spite of this result being remarkable, it is of no practical utility. Indeed, the relative
tolerance ε may not be a finite value but an infinitesimal one, making the time needed to
converge infinite. However, under proper assumptions, finite time convergence can also
be guaranteed, as stated by Theorem 2. Before showing it, some preliminary results are
needed and are presented as lemmas. In fact, Lemma 4 guarantees optimality improvement
iteration by iteration, Lemma 5 provides a preliminary result used by Lemma 6 which
proves the algorithm convergence on the leading monosemium.

Lemma 4. In the NA-IPM, if σ ∈ R+ then ∃ ν̃ ∈ [0, 1] ⊂ R such that µ(k+1) ≤ (1− 0.1ν̃)µ(k)

and ‖(r(k+1)
b , r(k+1)

c )‖ ≤ (1− 0.1ν̃)‖(r(k)b , r(k)c )‖.

Proof. Applying the transfer principle to Lemma 6.7 in [27], it holds true that

ν̃ = min
(

nσ

C
,

σ(1− γ)

C
,

0.49n
C

, 1
)

, (18)

where C is a positive constant at most finite. Equation (18) immediately implies ν̃ ∈ [0, 1] ⊂
E and O(ν̃) = O(σ). The assumption σ ∈ R+ completes the proof.

Lemma 5. Let d(k) be the right-hand term in (6) at the k-th iteration, and dµ the vector of its last n
entries. If the temporary solution (x(k), λ(k), s(k)) ∈ N−∞(γ, β) (see Lemma 6 for its definition),
then ‖dµ‖ < nµ.

Proof. By definition, ‖dµ‖ =
√

∑n
i=1(σµ− xisi)2. Focusing on the radicand, one has

n

∑
i=1

(σµ− xisi)
2 =

n

∑
i=1

σ2µ2 − 2σµxisi + (xisi)
2 = nσ2µ2 − 2σµ

n

∑
i=1

xisi +
n

∑
i=1

(xisi)
2 =

= nσ2µ2 − 2nσµ2 +
n

∑
i=1

(xisi)
2 < nσ2µ2 − 2nσµ2 + n2µ2,

where the strict inequality comes from the fact that xisi ≥ γµ by hypothesis, which implies
xisi ≤ nµ− γµ(n− 1) < nµ. Considering again the square root, the result comes straight-
forwardly:

‖dµ‖ <
√

nσ2µ2 − 2nσµ2 + n2µ2 = µ
√

nσ2 − 2nσ + n2 ≤ nµ.

Lemma 6. Let (x(0), λ(0), s(0)) be the NA-IPM starting point, and M(0)∆(0) = d(0) be the
compact form for Newton’s step equation (6) at the beginning of the optimization. Let one rewrite
the right-hand term d(k) = (d(k))0 + (d(k))1, where (d(k)i )0 = lead_mon(d(k)i ). Call dr the first

n + m entries of (d(k)i )0 and dµ the last n, i.e., (d(k)i )0 = (dr, dµ). Then, ∃k ∈ N such that

|dri | ≤ εO(‖(r(0)b , r(0)c )‖) and |dµi | < nεO(‖(r(0)b , r(0)c )‖) and the Newton–Raphson method
reaches that iteration in O(n2| log ε|).
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Proof. As usual, the central path neighborhood is

N−∞(γ, β) =
{
(x, λ, s) ∈ E2n+m | (x, s) > 0, xisi ≥ γµ,

∥∥∥(r(k)b , r(k)c

)∥∥∥ ≤
∥∥∥(r(0)b , r(0)c

)∥∥∥
µ(0)

βµ(k), β ≥ 1, β, γ ∈ R+

.

Lemma 4 and µ’s positivity implies that O(µ(k+1)) ≤ O(µ(k)) ∀k ∈ N. The appli-
cation of the transfer principle to Theorem 6.2 in [27] guarantees that ∃k′ ∈ N such that
µ(k′) ≤ εO(µ(0)) holds true and the Newton–Raphson algorithm reaches that iteration
in O(n2| log ε|). Together, Lemma 4 and (x(k), λ(k), s(k)) ∈ N−∞(γ, β) guarantee that ∃k′′

(reached in polynomial time as well) such that ‖(r(k
′′)

b , r(k
′′)

c )‖ ≤ εO(‖(r(0)b , r(0)c )‖) too.
Set k = max(k′, k′′). Then, one has µ(k) ≤ εO(µ(0)) =⇒ lead_mon(µ(k)) ≤ εO(µ(0)) and
‖(r(k)b , r(k)c )‖ ≤ εO(‖(r(0)b , r(0)c )‖) =⇒ lead_mon(‖(r(k)b , r(k)c )‖) ≤ εO(‖(r(0)b , r(0)c )‖). More-

over, by construction it holds ‖d(k)r ‖ ≤ lead_mon(‖(r(k)b , r(k)c )‖) and‖d(k)µ ‖ < nlead_mon(µ(k))
(the latter comes from Lemma 5). Therefore, the following two chains of inequalities
hold true:

|d(k)ri | ≤ ‖d
(k)
r ‖ ≤ lead_mon(‖(r(k)b , r(k)c )‖) ≤ εO(‖(r(0)b , r(0)c )‖),

|d(k)µi | ≤ ‖d
(k)
µ ‖ < nlead_mon(µ(k)) ≤ nεO(µ(0)),

as stated in the thesis.

Corollary 1. Let k satisfy Lemma 6, then either

xi <
√

nεO(xi) ∨ si <
√

nεO(si) ∀ i = 1, . . . , n.

Proof. The result comes straightforwardly from three facts: (i) xisi < nµ ∀i = 1, . . . , n; (ii)
µ ≤ εO(µ(0)); (iii) the leading term of entry of x, s, and λ is never zeroed since the full
optimizing step is never taken (see lines 19-20 and 31-32 in Algorithm 2).

We are now ready to provide the convergence theorem for the NA-IPM.

Theorem 2 (NA-IPM convergence). The NA-IPM converges to the solution of an NA-QP
problem in O(ln2| log ε|), where n ∈ N is the primal space dimension, ε ∈ R+ is the relative
tolerance, and l ∈ N is the number of consecutive monosemia used in the problem optimization.

Proof. For the sake of simplicity, assume to represent all the Euclidean numbers in the NA-
QP problem by means of the same function of powers g : N→ Q. From the approximation
up to l consecutive monosemia, one can rewrite ‖(r(k)b , r(k)c )‖ = ∑l

i=1 r(k)i αg(i) and µ(k) =

∑l
i=1 µ

(k)
i αg(i). Lemma 6 guarantees that ∃ k for which (d(k))0 is ε-satisfied. Now, update

the temporary solution substituting each entry of x and s which satisfies Corollary 1 with
any feasible value one order of magnitude smaller, e.g., xi satisfying Corollary 1 is replaced
with a positive value of the order αg(j+1), where j ∈ N is such that O(xi) = αg(j). Actually,
they are those variables that are not active at the optimal solution, at least considering the
zeroing of (d(k))0 only. Then, recompute d(k), which by construction satisfies ‖d(k)µ ‖ = 0,

‖d(k)r ‖ < εO(‖(r(0)b , r(0)c )‖). All these operations have polynomial complexity and do not
affect the overall result. Updating the right-hand term as d(k) ← d(k) − (d(k))0 and zeroing
the leading term of those entries whose magnitude is stillO(‖(r(0)b , r(0)c )‖). Next, algorithm
iterations are forced to consider the previous (d(k))0 as already fully satisfied. What is
actually happening is that the problem now tolerates an infeasibility error whose norm is
equal to εO(‖(r(0)b , r(0)c )‖). Therefore, one can apply Lemma 6 again to obtain one solution
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which is ε-optimal on the second monosemia of (d(0))0 too, and this result is achieved
with a finite number of iterations and in polynomial complexity. Repeating the update-
optimization procedure for all the l monosemia by means of which (d(0))0 is represented,
one obtains one ε-optimal solution on all of them. Since each of the l ε-satisfactions is
achieved in O(n2| log ε|), then the whole algorithm converges in O(ln2| log ε|).

The next proposition highlights a particular property of the NA-IPM when solving
lexicographic QP problems. Actually, it happens that every time µ decreases by one order
of magnitude, then one objective is ε-optimized.

Proposition 4. Consider an NA-QP problem generated from a standard lexicographic one in
accordance with Theorem 1 and βi = α1−i ∀i = 1, . . . , l. Then, each of the l objectives is ε-
optimized in polynomial time and when the i-th one is ε-optimized the magnitude of µ decreases
from O(α1−i) to O(α−i) in the next iteration.

Proof. Assume to start the algorithm with a sufficiently good and well-centered solution,
as the one produced by Algorithm 1, then, O(‖(r(0)b , r(0)c )‖) = O(µ(0)) = O(α0). Since

x(k) ∈ R+ by construction, one can interpret each monosemia in r(k)c as the satisfaction of
the corresponding objective function at the k-th iteration, that is if r(k)c = ∑l

i=1 rci α
1−i then

the first objective lacks rc1 to be fully optimized, the second one lacks rc2 , and so on. Because
of Lemma 6, in polynomial time, (di)

0 is ε-optimized, that is, the KKT conditions (3) are
ε-satisfied. In fact, this means that primal-dual feasibility is close to finite satisfaction and
centrality is finitely close to zero. There is a further interpretation nevertheless. Interpreting
the KKT conditions from a primal perspective their ε-satisfaction testifies that: (i) the primal
solution if feasible (indeed, the primal is a standard polyhedron and, therefore, is enough to
consider the leading terms of x only, getting rid of the infinitesimal infeasibility rb2 ); (ii) the
objective function is finitely ε-optimized (which means that the first objective is ε-optimized
since the original problem was a lexicographic one and the high-priority objective is the
only one associated with finite values of the non-Archimedean objective function); (iii) the
approximated solution is very close to the optimal surface of the first objective, roughly
speaking it is ε-finitely close. Moreover, the fact that ‖dµ‖ = 0 after the updating procedure
used in Theorem 2 implies that the magnitude of µ will be one order of magnitude smaller
in the next iteration, i.e., it will decrease from O(α0) to O(α−1). Since what was just said
holds for all the l monosemia (read priority levels of, i.e., objectives in the lexicographic
cost function), the proposition is proved true.

4.3. Numerical Considerations and Implementation Issues

The whole field E cannot be used in practice since it is too big to fit in a machine.
However, the algorithmic field Ê presented below is enough to represent and solve many
real-world problems:

Ê =

{
ξ ∈ E

∣∣∣∣∣ ξ =
l

∑
i=1

ψiα
g(i), l ∈ N, ψi ∈ R

}
∪ {0},

where g : N → Z is a monotone decreasing function and the term “algorithmic field”
refers to finite approximations of theoretical fields realized by computers [12]. Similarly
to IEEE-754 floating point numbers, which is the standard encoding for real numbers
within a machine, a finite dimension encoding for Euclidean numbers in Ê is needed. In
[11,12], the bounded algorithmic number (BAN) representation is presented as a sufficiently
flexible and informative encoding to cope with this task. The BAN format is a fixed-length
approximation of a Euclidean number. An example of BAN is α−1(2.4 + 3.9η − 2.89η2),
where the “precision” in this context is given by the degree of the polynomial in η plus 1
(three in this case). The BAN encoding with degree three is indicated as BAN3.
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The second detail to take care of when attempting to do numerical computations with
Euclidean numbers is the effect of lower-magnitude monosemia on them. For instance,
consider a two-objective lexicographic QP whose first objective is degenerate with respect
to some entries of x. When solving the problem by means of the NA-IPM, the following
phenomenon (which can also be proved theoretically) occurs: the information of the
optimizing direction for the secondary objective is stored as an infinitesimal gradient in
the solution of Newton’s step Equation (6). As an example, assume that x ∈ R3 and the
entries x2 and x3 are degenerate with respect to the first objective. Then, at each iteration
the infinitesimal monosemium in the optimizing direction of x1 assumes a negligible
value, while for x2 and x3 this is not true: it is significant and grows exponentially in
time. In fact, the infinitesimal gradient represents the optimizing direction which must
be followed along the optimal (and degenerate) surface of the first objective in order to
also reach optimality for the second one. However, such infinitesimal directions do not
significantly contribute to the optimization, since the major role is played by the finite
entries of the gradient. Therefore, the effect of this infinitesimal information in the gradient
only generates numerical instabilities. As soon as the first objective is ε-optimized, i.e., the
first objective surface is reached, the optimizing direction still assumes finite values but this
time oriented in order to optimize the second objective keeping the first one fixed, while all
the infinitesimal monosemia of the gradient assume negligible values. Roughly speaking,
it happens as a sort of “gradient promotion” as a result of the change in the objective to
optimize. To cope with the issue of noisy and unstable infinitesimal entries in the gradient,
two details need to be implemented: (i) after the computation of the gradients (both the
predictor and the corrector step), only the leading term of each entry must be preserved,
zeroing the remaining monosemia; (ii) after having computed the starting point according
to Algorithm 1, again only the leading term of each entry of x, s, and λ must be preserved.
These variations do not affect convergence nor the generality of the discussion since the
leading terms of the primal-dual solution are the only ones that impact the zeroing of
(d(k))0.

The choice of dealing with only the leading terms of the gradients comes in handy to
solve another issue during the computations: a good choice for the value to assign to the
zeroed entries of x and s during the updating phase discussed in Theorem 2. Actually, it
is enough to add one monosemium whose magnitude is such that the following equality
holds true: O(xisi) = O(µ)η. For instance, assume again a two-objective lexicographic
QP scenario after having completed the optimization of the first one. It holds true that
O(µ) = α0 and either xi or si are smaller than nεα0, say xi. Then, the updating phase of
Theorem 2 sets xi to a value having magnitude one order smaller. A reasonable approach is
to set xi equal to a monosemium, say ξ, such thatO(ξsi) = O(µ)η = η. SinceO(si) is finite
because of Corollary 1, one has O(ξ) = η. The naive choice is ξ = η, but it may be not the
best one. Indeed, this approach does not guarantee the generation of a temporary solution
with the highest possible centrality, i.e., xisi = µ′, where µ′ is the centrality measure after
the update. To do it, the value to opt for must be ξi =

µ′

zi
, where zi = max(xi, si) and µ′ is a

monosemium one order of magnitude smaller than µ and sufficiently (but arbitrarily) far
from zero.

Another numerical issue to care about is the computation accuracy due to the number
of monosemia used. As a practical example, consider the task to invert the matrix A re-
ported below. Since its entries have magnitudes from α to η, one may think BAN3 encoding
is enough to properly compute an approximation of its inverse, which is reported below as
A−1

3 . However, the product AA−1
3 testifies the presence of an error whose magnitude is η2,

quite close to o(A) = η. Depending on the application, such noise could negatively affect
further computations and the final result. Therefore, a good practice is to foresee some ad-
ditional slots in the non-Archimedean number encoding. For instance, adopting the BAN5
standard, the approximated inverse A−1

5 manifests an error with magnitude η4 (see matrix
AA−1

5 ), definitely a safer choice even if at the expense of extra computational effort.
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A =

 α −α 2η
2α η −α
η 2α −α

, A−1
3 =

0.25α− 0.125η −0.12α + 0.5η 0.12α
0.25α− 0.125η −0.12α 0.12α + 0.5η

0.50α −0.25α− 0.125η 0.25α + 0.125η

,

A−1
5 =

0.25α− 0.125η + 0.0625η3 −0.12α + 0.5η − 0.0312η3 0.12α− 0.219η3

0.25α− 0.125η + 0.0625η3 −0.12α− 0.281η3 0.12α + 0.5η + 0.0312η3

0.5α −0.25α− 0.125η − 0.0625η3 0.25α + 0.125η + 0.0625η3



AA−1
3 =

1 −0.25η2 0.25η2

0 1 0
0 0 1

, AA−1
5 =

1 −0.12η4 0.12η4

0 1 0
0 0 1


Finally, the last detail concerns terminal conditions. In the standard IPM, execution

stops when the three convergence measures ρ1, ρ2, and ρ3 in (9) are smaller than the
threshold ε. However, in a non-Archimedean context optimality means to be ε-optimal on
each of the l monosemia in the objective function, i.e., to satisfy the KKT condition (3) on
the first l monosemia in b and c and µ. This means that the terminal condition needs to be
modified in order to cope with such a convergence definition. The convergence measures
need to be redefined as

ρ1 =
‖Ax− b‖
O(b) + ‖b‖ , ρ2 =

‖ATλ + s−Qx− c‖
O(c) + ‖c‖ ,

ρ3 =
µ

O( 1
2 xTQx + cTx) + | 12 xTQx + cTx|

,
(19)

with the convention O(0) = α0 = 1. In this way, one has the guarantee that ρ1, ρ2, and ρ3
are finite values when close to optimality. To better clarify this concept, consider the case in
which b has only infinitesimal entries. This implies that the norm of b is infinitesimal too.
In case the convergence measures in (9) are used, the denominator of ρ1 is a finite number.
Therefore, any finite approximation of b, i.e., any primal solution x such that ‖Ax − b‖,
is finite induces a finite value for ρ1. This is definitely a bad behavior since it is natural
to expect that: (i) the convergence measures are finite numbers only if the optimization
is close to optimality; (ii) their leading monosemium is smaller than ε when the leading
monosemium of the residual norm (‖Ax− b‖ in this case) is small as well. However, this is
not the case in the current example as ρ1 assumes finite values for approximation errors
of b which are infinitely larger than its norm. Using the definitions in (19) instead, the
issue is solved since now finite approximations of b are mapped into infinite values of
ρ1, while infinitesimal errors are mapped into finite ones. In fact, the introduction of the
magnitude of the constant term vectors in the definitions avoids the bias which would have
been introduced by an a priori choice of the magnitude of the constant term added to the
denominator of the convergence measures.

Then, feasibility on the primal problem is ε-achieved when the absolute value of
the first lb monosemia in ρ1 are smaller than ε, i.e., assuming b = ∑lb

i=1 biαg(i) and ρ1 =

∑l
i=1 ρi

1α1−i, a sufficient level of optimality is reached when |ρi
1| < ε ∀i = 1, . . . , lb, l ≥ lb.

Similar considerations hold for c and µ as well.

5. Numerical Experiments

This section presents four problems by means of which the efficacy of the NA-IPM is
tested. The first, the third, and the fourth are lexicographic ones, while the second involves
non-Archimedean numbers also in the constant term b. They are listed in increasing order
of difficulty, from LP to QP problems, from two to three objective functions, passing through
unboundedness tackling. In all the experiments, ε is set to 10−8, a de facto standard choice.
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5.1. Experiment 1: Two-Objective LP

The first experiment uses a benchmark already exploited to evaluate the efficacy of
non-Archimedean optimizers [4,20]. In [4], for instance, the algorithm used was a non-
Archimedean version of the Simplex method, able to deal with non-Archimedean cost
functions and standard constraints. On the contrary, here the adopted algorithm is a non-
Archimedean generalization of the primal-dual IPM, which is intrinsically implemented to
cope with non-Archimedean functions both at the level of cost function and constraints.
Another difference is the fact that Simplex-like algorithms are discrete ones, while IPMs are
continuous procedures.

The problem formulation is in Equation (20). Geometrically, the first and most im-
portant objective c = [8, 12]T identifies as optimal the whole segment linking the point
(0, 70) to (30, 50), highlighted in red in Figure 1. When considering also the second objec-
tive d = [14, 10]T , only one point of this segment turns out to be truly optimal: the vertex
ξ2 = (30, 50). A red star indicates it in Figure 2. Equation (21) reports the non-Archimedean
representation of the problem: the two objectives are scalarized into one single cost function
by a weighting sum: the first one is left as is while the second is scaled down by the factor
η, testifying to the precedence (read importance) relation between the two (recall from
Section 3 that η is an infinitesimal value, defined as the reciprocal of α).

lex max
x

8x1 + 12x2, 14x1 + 10x2

s.t. 2x1 + x2 ≤ 120,
2x1 + 3x2 ≤ 210,
4x1 + 3x2 ≤ 270,

x1 + 2x2 ≥ 60,
x1, x2 ≥ 0

(20)

max
x

(8 + 14η)x1 + (12 + 10η)x2

s.t. 2x1 + x2 ≤ 120,
2x1 + 3x2 ≤ 210,
4x1 + 3x2 ≤ 270,

x1 + 2x2 ≥ 60,
x1, x2 ≥ 0

(21)

Figure 1. The optimal segment for the primary objective is in red; ξ1 is the optimal point a standard
IPM would approach.
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Figure 2. ξ2 is the only optimal solution when both objectives are considered.

As already stressed, any IPM favors solutions with higher centrality and the NA-
IPM is not an exception. This aspect becomes particularly evident in the case of multiple
optimal solutions since the optimizing algorithm converges to the analytic center of the
optimal surface. Proposition 4 implicitly states that in lexicographic problems the NA-IPM
primarily optimizes the first objective, then the second one, and so on. Since in (20) the
optimal region for the first objective is a segment, in the first place the NA-IPM moves
towards its midpoint ξ1 = (15, 60), marked by a magenta square in Figure 1. Eventually,
the first cost function is ε-optimized and the secondary objective starts to mainly condition
the optimization, moving the temporary solution towards ξ2 until termination conditions
are satisfied. This change in leadership is testified when the centrality measure turns from
finite to infinitesimal, as discussed in Theorem 2, Proposition 4, and Section 4.3. With
reference to Table 1, one can appreciate this phenomenon between lines 5 and 6. At line 5,
the current solution is very close to ξ1, actually (18.45, 57.70), while µ has assumed for the
last time a (very small) finite value. These facts testify that the first objective is ε-satisfied,
therefore, in the next step, the algorithm will move towards ξ2 and show an infinitesimal
centrality measure, as confirmed by line 6 where the target point is (29.88, 50.08). Moreover,
the improvement in the objective function from step 5 to step 6 is infinitesimal, which
further stresses that the algorithm has already reached the first objective ε-satisfaction and
it is moving along its degenerate surface. Similar numerical confirmations come from the
other experiments and are highlighted in boldface in the associated tables.



Mathematics 2022, 10, 4536 23 of 34

Table 1. Iterations of the NA-IPM solving the problem in (20).

Iter µ ∈ R x ∈ R2 f (x) ∈ E

0 273.00
[
98.80 40.51

]
−1276.48− 1790.00η

1 38.64
[
26.94 43.47

]
−737.22− 812.00η

2 2.97
[
18.53 57.56

]
−838.97− 835.00η

3 0.03
[
18.45 57.70

]
−839.99− 835.00η

4 29.81× 10−4
[
18.45 57.70

]
−840.00− 835.00η

5 2.82× 10−6
[
18.45 57.70

]
−840.00− 835.00η

6 12.82η
[
29.88 50.08

]
−840.00− 919.00η

7 0.14η
[
30.00 50.00

]
−840.00− 920.00η

8 1.40× 10−3η
[
30.00 50.00

]
−840.00− 920.00η

9 1.41× 10−5η
[
30.00 50.00

]
−840.00− 920.00η

10 4.30× 10−8η
[
30.00 50.00

]
−840.00− 920.00η

5.2. Experiment 2: Unbounded Problem

The second experiment aims to numerically show the efficacy of the mild embedding
shown in Section 4.1 to cope with infeasibility and unboundedness. As an example, con-
sider the 2D unbounded problem described in Equation (22) and drawn in Figure 3, which
is already analytically reported in normal form as in (2) for the sake of clarity. To mitigate
the issues coming from the iterates divergence, one can resort to the embedding described
in Equation (14), obtaining the strictly feasible and bounded problem in (23). Proposition 3
recommends the use of penalizing weights such that O(℘1) = O(℘2) = O(α); the choice
has been ℘1 = ℘2 = α.

max
x

x1 + x2

s.t. −2x1 + x2 + x3= 2
x1 − 2x2 + x4= 1

x≥ 0
x∈ R4

(22)

max
x

x1 + x2 − αx5

s.t. −2x1 + x2 + x3 + 2x5= 2
x1 − 2x2 + x4 + x5= 1
−x3 − x4 − x6= −α

x≥ 0
x∈ E6

(23)
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Figure 3. Example of an unbounded primal polyhedron.

Table 2 reports the iterations made by the NA-IPM to solve such an extended problem.
As expected, the algorithm converges in a finite number of steps, and the optimal point lies
on the bounding hyperplane −x3 − x4 − x6 = −x1 − x2 − 3− x6 = −α located infinitely
far from the origin. Formally, what gives a clue about the unboundedness of the problem is
the dual variable λ3, see Proposition 3. If the problem is bounded then it must be zero in the
optimal solution, while it is equal to 1. In this specific case, however, there is another and
more significant indicator: the magnitude of x1 and x2. Since the problem was a standard
one before the embeddng, if its solution exists it must be finite. In the optimal point found
by the NA-IPM instead, x1 and x2 are infinite, which tells the user the original problem was
unbounded. It may be right to say that, in the current problem, the additional constraint
introduced by Equation (14) is equivalent to the constraint x1 + x2 ≤ α (more precisely
to x1 + x2 ≤ α− 3), which would probably have been the first choice of anyone at first
looking at Figure 3.

Table 2. Iterations of the NA-IPM solving the problem in (22).

iter µ ∈ E x ∈ E2 f (x) ∈ E

0 0.20α2 [
0.46α 0.51α

]
0.25α2 − 0.96α

1 0.03α2 [
0.30α 0.32α

]
1.55× 10−3α2 − 0.62α

2 0.02α2 [
0.31α 0.32α

]
2.55× 10−5α2 − 0.64α

3 2.03× 10−5α2
[
0.31α 0.32α

]
2.55× 10−7α2 − 0.64α

4 2.03× 10−7α2
[
0.31α 0.32α

]
−0.64α

5 7.40× 10−10α2
[
0.31α 0.32α

]
−0.64α

6 0.01α
[
0.46α− 1.45 0.47α− 1.15

]
−0.92α + 3.28

7 2.54× 10−4α
[
0.49α− 1.63 0.50α− 1.33

]
−1.00α + 3.01

8 2.55× 10−6α
[
0.49α− 1.65 0.51α− 1.35

]
−1.00α + 3.00

9 2.55× 10−8α
[
0.49α− 1.65 0.51α− 1.35

]
−1.00α + 3.00

10 1.99× 10−9
[
0.49α− 1.65 0.51α− 1.35

]
−1.00α + 3.00

The other side of the coin is the problem described in Equation (24) and drawn in
Figure 4. In this case, the primal problem is infeasible, which means that now the dual
is unbounded. Leveraging Proposition 3 again, the enlarged problem becomes the one
in Equation (25). Running the NA-IPM in this extended problem, one appreciates that x5
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is equal to α in the optimal solution, i.e., it is nonzero and the original primal problem is
infeasible. As before, another indicator of the primal problem infeasibility is the magnitude
of λ1 and λ2, which testifies to the dual problem unboundedness. In particular, they are
equal to λ1 = −0.18α + 0.27, λ2 = −0.09α− 0.36. The algorithm iterations are not reported
for brevity.

max
x

x1 + x2

s.t. 2x1 − x2 + x3= −2
−x1 + 2x2 + x4= −1

x≥ 0

(24)

max
x

x1 + x2 − αx5

s.t. 2x1 − x2 + x3 − 4x5= −2
−x1 + 2x2 + x4 − 3x5= −1

−x3 − x4 − x6= −α
x≥ 0

(25)

Figure 4. Example of an empty primal polyhedron.

All in all, applying the embedding in (14), the existence of optimal primal-dual so-
lutions is guaranteed and an implementation of the NA-IPM, which does not repeatedly
check for infeasibility can be used, helping the performance a lot.

5.3. Experiment 3: Two-Objective QP

The problem faced in this subsection is nonlinear in the first objective and linear in
the second one. Its formal construction is reported in Appendix A, while its standard
description is in Equation (26) and its non-Archimedean one is in Equation (27):

lex min
x

1
2 xTQx + qTx, cTx

s.t. −x1 + x2 + x3≤ 1
−x1 − x2 + x3≤ 1

x1 − x2 + x3≤ 1
x1 + x2 + x3≤ 3

x3≥ 0

(26)
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min
x

1
2 xTQηx + (c + qη)Tx

s.t. −x1 + x2 + x3≤ 1
−x1 − x2 + x3≤ 1

x1 − x2 + x3≤ 1
x1 + x2 + x3≤ 3

x3≥ 0

(27)

Q =

 10 −2 4
−2 10 4

4 4 4

, q =

−16
−16
−16

, c =

−1
−1

0

.

The primal feasible region is a right square pyramid of height one, see Figure 5. Its
basis lies on the x1x2 plane and has its center at (1, 1, 0) and vertices in (1, 0, 0), (0, 1, 0),
(1, 2, 0), and (2, 1, 0). Moving to the cost function, the first objective penalizes points far
from the line L = (t, t, −2t + 4), t ∈ R, i.e., the axis of the cylinder in Figure 6. The optimal
region, highlighted in green in both the figures, is the height of the furthest-from-origin
face of the pyramid, identified by the intersection of the latter with the cylinder of radius

1√
3

and L as the axis. Finally, the second objective selects from the whole apothem the point

as close as possible to the x1x2 plane, namely ξ2 = ( 1
2 , 1

2 , 0).

Figure 5. The segment in green is the optimal region for the first objective and ξ1 is its middle point.
The starred one, ξ2, is the global optimum instead.

Figure 6. Cost functions: the primary is the distance from the oblique line, each infinite cylinder is a
level surface; the secondary maximizes the sum of x1 and x2.
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Before reaching the global optimum, the NA-IPM passes close to the midpoint of
the first objective optimal region. In the current problem, it is ξ1 = ( 5

4 , 5
4 , 1

2 ), which is
approached since iteration 3, as can be seen in Table 3. Then, starting from iteration 6, it
goes towards ξ2 since the algorithm perceives the first objective as fully optimized, as one
can deduce from the change in magnitude of µ.

Table 3. Iterations of the NA-IPM solving the problem in (27).

iter µ ∈ R x ∈ R3 f (x) ∈ E

0 3.37
[
1.46 1.46 1.46

]
−31.72− 2.92η

1 1.23
[
1.26 1.26 0.66

]
−30.64− 2.52η

2 0.11
[
1.27 1.27 0.39

]
−29.71− 2.54η

3 2.12× 10−3
[
1.30 1.30 0.39

]
−29.99− 2.60η

4 2.12× 10−5
[
1.30 1.30 0.39

]
−30.00− 2.61η

5 2.12× 10−7
[
1.30 1.30 0.39

]
−30.00− 2.61η

6 0.15η
[
1.38 1.38 0.24

]
−30.00− 2.76η

7 0.06η
[
1.50 1.50 0.00

]
−30.00− 3.00η

8 1.14× 10−3η
[
1.50 1.50 0.00

]
−30.00− 3.00η

9 1.14× 10−5η
[
1.50 1.50 0.00

]
−30.00− 3.00η

10 1.14× 10−7η
[
1.50 1.50 0.00

]
−30.00− 3.00η

5.4. Experiment 4: Three-Objective QP

The last test problem involves three distinct objective functions. Again, the step-by-
step construction is reported in the appendix (Appendix B to be precise), while its standard
and non-Archimedean descriptions are the ones in Equations (28) and (29), respectively:

lex min
x

cTx, 1
2 xTQx + qTx, 1

2 xT Px + pTx

s.t. −x1 + x2 + x3≤ 1
−x1 − x2 + x3≤ 1

x1 − x2 + x3≤ 1
x1 + x2 + x3≤ 3

x3≥ 0

(28)

min
x

1
2 xT(Qη + Pη2)x + (c + qη + pη2)Tx

s.t. −x1 + x2 + x3≤ 1
−x1 − x2 + x3≤ 1

x1 − x2 + x3≤ 1
x1 + x2 + x3≤ 3

x3≥ 0

(29)

where

c =

−1
−1
−1

, Q =

2 2 0
2 2 0
0 0 4

, q =

−5
−5

0

, P =

4 0 0
0 4 0
0 0 0

, p =

−5
−3

2

. (30)

The feasible region is the same pyramid as in the previous problem, Section 5.3. This
time, however, there are three objectives and only the first one is linear (see Figure 7). The
latter promotes as optimal the whole farthest-from-origin face of the pyramid, the green one
in Figure 8. The second objective is again a penalization for the distance from a line, which



Mathematics 2022, 10, 4536 28 of 34

in this case is L = (t, −t + 5
2 , 0), t ∈ R. Of the original triangle, the only optimal surface

for the second objective is the segment linking ( 23
12 , 11

12 , 1
6 ) and ( 11

12 , 23
12 , 1

6 ), highlighted in
magenta in both the figures. The third objective selects just one point of that segment:
ξ3 = ( 5

3 , 7
6 , 1

6 ). It consists of a potential function with the shape of an infinite paraboloid,
centered on ( 5

4 , 3
4 , 0) and growing linearly along #»x3.

Figure 7. Cost functions: the primary objective is the vector c; the secondary one is the distance
from the black line on the x1x2 axis (the cylinder is a level surface); the tertiary one is the infinite
paraboloid centered on ( 5

4 , 3
4 , 0).

Figure 8. The surface in green is the optimal region of the first objective (ξ1 is its midpoint); the
segment in magenta is the also optimal region for the second objective (ξ2 is its midpoint); ξ3 is the
global optimum.

As one can imagine, the NA-IPM passes close to two more points before reaching
ξ3. The first of those is the center of the green triangle, i.e., ξ1 = ( 5

4 , 5
4 , 1

2 ). Then, it goes
towards ξ2 = ( 8

3 , 8
3 , 1

6 ), which would have been one of the global optima (but the unique
one with maximum centrality) if the problem had had just two objectives rather than three.
Indeed, it is the midpoint of the second objective optimal segment along the green triangle.
Table 4 identifies this switch in the optimizing direction at iterations 5–6, when µ becomes
infinitesimal of the first order. Eventually, the third objective takes the stage and brings the
optimization away from ξ2, pointing in the direction of ξ3. This happens at iterations 10–11,
when the magnitude of µ decreases again, making it infinitesimal of the second order. Such
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a value of µ testifies to the completion of both the first and second objective optimization,
leaving space for the third.

Table 4. Iterations of the NA-IPM solving the problem in (28).

iter µ ∈ R x ∈ R3 f (x) ∈ E

0 0.53
[
1.46 1.46 1.46

]
−4.38− 3.64η − 6.08η2

1 0.21
[
1.32 1.32 0.74

]
−3.37− 10.27η − 5.08η2

2 0.02
[
1.30 1.30 0.40

]
−3.01− 11.83η − 4.44η2

3 1.60× 10−4
[
1.30 1.30 0.40

]
−3.00− 11.84η − 4.44η2

4 1.60× 10−6
[
1.30 1.30 0.40

]
−3.00− 11.84η − 4.44η2

5 1.61× 10−8
[
1.30 1.30 0.40

]
−3.00− 11.84η− 4.44η2

6 0.06η
[
1.38 1.38 0.25

]
−3.00− 12.13η− 3.92η2

7 2.21× 10−3η
[
1.41 1.41 0.17

]
−3.00− 12.17η − 3.66η2

8 2.46× 10−5η
[
1.42 1.42 0.17

]
−3.00− 12.17η − 3.64η2

9 2.48× 10−7η
[
1.42 1.42 0.17

]
−3.00− 12.17η − 3.64η2

10 1.62× 10−9η
[
1.42 1.42 0.17

]
−3.00− 12.17η− 3.64η2

11 0.14η2 [
1.54 1.29 0.17

]
−3.00− 12.17η− 3.82η2

12 0.01η2 [
1.65 1.19 0.17

]
−3.00− 12.17η − 3.89η2

13 1.63× 10−4η2
[
1.67 1.17 0.17

]
−3.00− 12.17η − 3.89η2

14 1.78× 10−6η2
[
1.67 1.17 0.17

]
−3.00− 12.17η − 3.89η2

15 1.59× 10−8η2
[
1.67 1.17 0.17

]
−3.00− 12.17η − 3.89η2

5.5. An Informal Comparison With The Scalarization Approach

A typical standard approach to tackle (deterministic) lexicographic optimization
problems is the scalarization method [18]. In terms of effectiveness, it is not able to
guarantee equivalence between the original problem and the scalarized one, even if it
converges to a solution significantly faster. More important, the choice of the scalarization
parameters always requires a trial-and-error process to achieve good tuning: even in the
case of a weighted combination of the objectives, the motto “the smaller the better” can
be applied. Table 5 shows this fact quantitatively, using the benchmark in Section 5.4 as a
reference problem.

Table 5. The approximation error of the optimal lexicographic point ξ3 does not monotonically
decrease when reducing the scalarization weight w on problem (28).

w 10−1 10−2 10−3 10−4 10−5

Error 6.59× 10−3 6.78× 10−4 8.17× 10−5 1.46× 10−1 3.29× 10−1

The study replaces the non-Archimedean weight η in (29) with a standard one (w),
and solves the problem using the Matlab quadrprog routine. The evidence highlights how
values of w that are too large or too small introduce a bias in the optimization which nega-
tively affects the computations. Actually, the error made by the solving algorithm, i.e., the
norm of the discrepancy between the theoretically optimal point ξ3 and the solution found,
is not acceptable even when w decreases too much. Furthermore, the scalarization ap-
proach is always problem-dependent, which means it cannot constitute a general-purpose
solving paradigm.
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6. Conclusions

This paper builds upon a theoretical and practical achievement that happened in the
last years concerning the solution of the lexicographic multi-objective linear programming
problem. Indeed, in [4], it has been demonstrated that a non-Archimedean version of the
Simplex algorithm is able to solve that problem, in an elegant and powerful way. The aim
of this work was to verify whether or not a non-Archimedean version of an interior point
algorithm (called the NA-IPM by the authors) is able to deliver a solution to the same class
of problems and go beyond it. This paper answers affirmatively, and this is interesting for
situations where an interior point method is known to perform better than Simplex, such
as in high-dimensional problems. With this NA-IPM at hand, it was natural to verify if it
was able to solve a convex lexicographic multi-objective quadratic programming problem,
and again the answer is positive.

The proposed implementation of the NA-IPM shows a polynomial complexity, and its
implementation guarantees to converge in finite time. The new algorithm also enjoys a very
light embedding which gets rid of the issues related to infeasibility and unboundedness.
As a practical application, this paper considered and discussed lexicographic optimization
problems as well as infeasible/unbounded ones, testing the NA-IPM on four linear and
quadratic programming examples, and achieving the expected results. paves the way
to more difficult ones, such as lexicographic multi-objective semi-definite programming
problems, which are left as a future study. It should also be noted that the NA-IPM can
be used to solve other families of problems involving infinitesimal/infinite numbers, as
testified by Section 5.2. The study of its performances on harder examples is left for a future
study as well.
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Appendix A. Cost Function Construction in Experiment 3

This appendix shows the construction of the cost function in problem (27). The second
objective discussion is omitted since it is linear and, therefore, trivial.

The idea is to make the apothem of the farthest-from-origin face of the pyramid
optimal for the first objective. This segment belongs to the line G = (t, t, −2y + 3), t ∈ R.
A possible cost function is the one that penalizes the distance from a line L parallel to G.
In addition, L must satisfy the property that no point in the primal feasible region (the
pyramid) is closer to it than G. A feasible choice is the translation of G along #»x3, say L =

G + [0, 0, 1] = (t, t, −2t + 4), t ∈ R. In this case, the line versor is v = (− 1√
6
, − 1√

6
,
√

2√
3
).

The distance d of any point x ∈ R3 from L comes from the following equation

d = x1 − (vTx1)v, (A1)

where x1 = x − x0 and x0 is any point on L, i.e., x0 ∈ L. A few lines to explain the
equation follow. The translation x− x0 brings the system origin to x0, which allows one
to consistently execute the projection of the point of interest (identified by x1 in the new
reference system) along L. To do this, first, one computes the norm of the projection by the
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inner product vTx1, then one constructs the projection by multiplying such norm by the
line reference direction, that is its versor v. Since the projection of x1 on L is parallel to it by
definition, the difference between x1 and such a projection must be orthogonal to it, i.e., it
is the distance of x from L in the coordinate system with origin in x0.

In problem (27), x0 is arbitrarily chosen as the vector [2, 2, 0]T ; therefore, the distance is:

d =

x1 − 2
x2 − 2

x3

−(− 1√
6
(x1 + x2 − 4) +

√
3√
3

x3

)
− 1√

6
− 1√

6√
2√
3

 =
1
6

 5x1 + x2 + 2x3 − 8
−x1 + 5x2 + 2x3 − 8
2x1 + 2x2 + 2x3 − 8

.

To model the problem as a QP task, one can use the squared norm of the distance d
as a cost function. After having done the calculations, its expression is (up to a multiplica-
tive factor)

‖d‖2 = 30x2
1 + 30x2

2 + 12x2
3 − 12x1x2 + 24x1x3 + 24x2x3 − 96x1 − 96x2 − 96x3 + k, (A2)

where k is a constant with no impact on the optimization and, therefore, it shall not be
considered furthermore. Dividing (A2) by 6, one gets exactly the matrix Q and the vector q
in (27) (we remind the reader that Q is divided by 2 in the cost function and, therefore, the
diagonal entries must be doubled).

The optimal solution of the whole problem x must lie on the pyramid face apothem
due to the first objective function, i.e., x = (t, t, −2t + 3) for some t ∈ [1, 3

2 ]. The second
objective, namely c in (27), forces x (read t) to possess another property: it must also solve
the following scalar optimization problem t:

max
t

2t

s.t. t ∈
[

1,
3
2

]
whose optimal solution is t = 3

2 . Therefore, the optimal solution of the whole problem is
x = [ 3

2 , 3
2 , 0]T , which coincides with ξ2 in Section 5.3.

Appendix B. Cost Function Construction in Experiment 4

This appendix shows the construction of the cost function in problem (28). It consists
of three different objectives, the first is linear while the other two are quadratic. Let us
disclose them in order.

The first objective indicates as the optimal surface the whole farthest-from-origin
face of the pyramidal feasible region. To select it, the cost vector c must be orthogonal
to the plane π the triangular face belongs to. Actually, that plane is identified by the
equation x1 + x2 + x3 = 3, as testified by the fourth constraint in (28). Basic notions in
linear algebra say that the normal direction to a plane is exactly the span of the vector
filled with its coefficients, i.e., [1, 1, 1]T . Since the problem is a minimization one and the
constraint is lesser than or equal to one, then the normal vector must be reversed, that is
c = [−1, −1, −1]T , exactly as in (30).

Of such an optimal face, the second objective selects just a segment parallel to the
basis. To do it, the distance from a straight line is used, similarly to what is done in
Appendix A. Actually, the reference line must be parallel to both the basis and the face;
L = (t, −t + 5

2 , 0), t ∈ R is a feasible choice. Indeed, it is parallel to the x1x2 plane (read
the pyramid basis) since it is constant on x3, while it is parallel to the face because it is
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parallel to its basis B = (t, −t + 3, 0), t ∈ R. Using (A1), the distance equation in this
case becomes:

d =

x1 − 7
4

x2 − 3
4

x3

− 1√
2
(1− x1 + x2)

−
1√
2

1√
2

0

 =
1
2

x1 + x2 − 5
2

x1 + x2 − 5
2

2x3

,

where x0 = [ 7
4 , 3

4 , 0]T and v = [− 1√
2
, 1√

2
, 0]T . The squared norm of the distance is now

(up to a multiplicative factor)

‖d‖2 = x2
1 + x2

2 + 2x2
3 + 2x1x2 − 5x1 − 5x2 + k (A3)

which originates Q and q of (30).
To analytically identify the optimal region for the second objective, let one project

the problem on the x1 = x2 plane and then retrieve the whole surface, leveraging the fact
that such surface is a segment parallel to L. Applying the condition x1 = x2 = t, the
pyramid face collapses to its apothem, whose equation is G = (t, t, −2t + 3), t ∈ [1, 3

2 ]
(see Appendix A). Since the optimal region must belong to π, to retrieve it one has to
substitute the equation of G into (A3), to differentiate with respect to t and to impose the
optimality condition:

x ∈ G =⇒ ‖d‖2 = 12t2 − 34t + k, t ∈
[

1,
3
2

]
,

d‖d‖2

dt
= 24t− 34 = 0 =⇒ t =

17
12
∈
[

1,
3
2

]
.

Therefore, the optimal surface for the second objective is a line parallel to L and
passing through ξ = [ 17

12 , 17
12 , 1

6 ]
T (by construction it already belongs to π). Basic linear

algebra considerations say that this request is equivalent to constraining the sought region
to the line S = (t, −t + 17

6 , 1
6 ). To identify the values of t for which S belongs to the

triangular face, one needs to intersect S with the pyramid edges E0 = (t, 1, −t + 2) and
E1 = (1, t, −t + 2). The intersecting points are located at t = 11

6 and t = 1, respectively.
Therefore, the optimal region for the second objective is S = (t, −t + 17

6 , 1
6 ), t ∈ [1, 11

6 ],
henceforth indicated by S .

The third objective is a potential function. By arbitrary choice, it is an infinite
paraboloid centered in [ 5

4 , 3
4 , 0]T and growing linearly along #»x3, i.e., its equation is (scaled

up for practical reasons by a factor 2)

h(x) = 2

((
x1 −

5
4

)2
+

(
x2 −

3
4

)2
+ x3

)
= 2x2

1 + 2x2
2 − 5x1 − 3x2 + 2x3 + k (A4)

which coincides with P and p of (30).
The optimal point x of the whole problem is the point of S (optimal surface identified

by the second objective) which minimizes (A4). Since x ∈ S , it has the form x = (t, −t +
17
6 , 1

6 ), t ∈ [1, 11
6 ]. Substituting this parametric description into (A4) and applying the first

order optimality condition, one gets

x ∈ S =⇒ h(t) = 4t2 − 40
3

t + k, t ∈ [1, 11
6 ]

dh
dt

= 8t− 40
3

= 0 =⇒ t =
5
3
∈ [1, 11

6 ].

Therefore, x = [ 5
3 , 7

6 , 1
6 ]

T .
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