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Abstract: Modern statistical learning techniques often include learning ensembles, for which the com-
bination of multiple separate prediction procedures (ensemble components) can improve prediction
accuracy. Although ensemble approaches are widely used, work remains to improve our understand-
ing of the theoretical underpinnings of aspects such as identifiability and relative convergence rates of
the ensemble components. By considering ensemble learning for two learning ensemble components
as a double penalty model, we provide a framework to better understand the relative convergence
and identifiability of the two components. In addition, with appropriate conditions the framework
provides convergence guarantees for a form of residual stacking when iterating between the two
components as a cyclic coordinate ascent procedure. We conduct numerical experiments on three
synthetic simulations and two real world datasets to illustrate the performance of our approach, and
justify our theory.
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1. Introduction

Ensemble learning [1] uses multiple learning algorithms together to produce an im-
proved prediction rule. Early work on ensemble learning [2] emphasized diversity of
ensemble learning components [3], while much subsequent literature concerned collections
of weak or strong learners [4]. Aggregation methods such as bagging [5] are technically
ensemble methods, but the components are all of similar kind, and this paper is largely
concerned with ensembles over different kinds of “strong learners”.

One practical approach to ensemble learning is to perform stacked ensemble ap-
proaches sequentially, using the residuals from one model as the input for the next [6]. This
approach has been used in kaggle competitions [7], with the potential convenience that
different analysts can analyze the data separately in succession. This approach has a connec-
tion to boosting, in that (pseudo)residuals focus attention on the poorly-fit observations [8].

For a researcher intending to fit multiple learning models, the practice of starting
with an “interpretable” or low-dimensional model favors parsimony in explaining the
relationship of predictors to outcome. Much of machine learning development has fo-
cused on prediction accuracy as a primary criterion [9]. However, recent commentary
has emphasized interpretability of models, both to understand underlying relationships
and to improve generalizability [10]. Part of the difficulty in moving forward with an
emphasis on interpretability is the lack of guiding theory. Although explainable AI, in-
cluding SHAP [11] and LIME [12], has gained lots of attention from the machine learning
community, such deep learning based models require large size of dataset, and a thor-
ough theoretical development is lacking. In addition, the concept of “interpretability” can
be subjective.
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In this paper, we study a double penalty model that can be viewed as a special in-
stance of ensemble learning, although it is apparent that extensions beyond two ensemble
components can be made by successive grouping of learners. We use the model to for-
malize theoretical questions concerning consistency and identifiability, which are partly
determined by the concept of function separability. Practical considerations include the
development of iterative fitting algorithms for the two components, which may be valuable
even when separability cannot be established.

Although not our main focus, our model may be of assistance in understanding inher-
ent tradeoffs in model interpretability, if the prediction rule is divided into interpretable
and uninterpretable portions/functions, as defined by the investigator. We emphasize that,
in our framework, high interpretability may come at the cost of prediction accuracy, but a
modest loss in accuracy may be worth the gain in interpretability.

2. A Double Penalty Model and a Fitting Algorithm

Consider a function of interest h, which can be expressed by

h(x) = f ∗(x) + g∗(x), ∀x ∈ Ω, (1)

where f ∗ ∈ F and g∗ ∈ G are two unknown functions with known function classes F and
G, respectively, and Ω is a compact and convex region. Following the motivation for this
work, we suppose that the function class F consists of functions that are “easy to interpret”,
for example, linear functions. We further suppose that G is judged to be uninterpretable,
for example, the output from a random forest procedure. Suppose we observe data (xi, yi),
i = 1, . . . , n with yi = h(xi) + εi, where xi ∈ Ω and εi’s are i.i.d. random error with mean
zero and finite variance. The goal of this work is to specify or estimate f ∗ and g∗.

Obviously, it is not necessary that f ∗ and g∗ are unique, or can be statistically identified.
For example, for any function h1, the summation of f ∗ + h1 and g∗ − h1 is also equal to
h. Regardless of the identifiability of f ∗ and g∗, we propose the following double penalty
model for fitting. In the rest of this work, we define the empirical inner product as
〈 f , g〉n = n−1 ∑n

i=1 f (xi)g(xi), and the empirical norm ‖ f ‖2
n = 〈 f , f 〉n. The double penalty

model is defined by

( f̂ , ĝ) = argmin
f∈F ,g∈G

‖y− f − g‖2
n + L f ( f ) + Lg(g), (2)

where L f and Lg are convex penalty functions on f and g, and f̂ and ĝ are estimators of f ∗

and g∗, respectively. Under some circumstances, if f ∗ and g∗ can be statistically identified,
by using appropriate penalty functions L f and Lg, we can obtain consistent estimators f̂
and ĝ of f ∗ and g∗, respectively. Even if f ∗ and g∗ are nonidentifiable, by using the two
penalty functions L f and Lg, the relative contributions of the “easy to interpret” part and
“hard to interpret” to a final prediction rule can be controlled.

Directly solving (2) may be difficult, because L f ( f ) and Lg(g) may be partly con-
founded. Here we describe an iterative algorithm to solve the optimization problem in (2).

In Algorithm 1, for each iteration, two separated optimization problems (4) and (3)
are solved with respect to f and g, respectively. The idea of Algorithm 1 is similar to the
coordinate descent method, which minimizes the objective function with respect to each
coordinate direction at a time. Such an idea has been widely used in practice, for example,
backfitting algorithm in the generalized additive model, and the method of alternating
projections [13]. The minimization in Equations (3) and (4) ensures that the function

‖y− fm − gm‖2
n + L f ( fm) + Lg(gm)

decreases as m increases. One can stop Algorithm 1 after reaching a fixed number of
iterations or no further improvement of function values can be made.
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Algorithm 1 Iterative algorithm

Input: Data (xi, yi), i = 1, . . . , n, function classes F and G, and functions L f and Lg. Set
m = 1. Let f0 = argmin f∈F 1/n ∑n

i=1(yi − f (xi))
2 + L f ( f ).

While Stopping criteria are not satisfied do
Solve

gm = argmin
g∈G

‖y− fm−1 − g‖2
n + Lg(g), and (3)

fm = argmin
f∈F

‖y− f − gm‖2
n + L f ( f ). (4)

Set m = m + 1.
return fm and gm.

Remark 1. The model (1) is not the same as additive models [14]. In the additive model, the
functions f ∗ and g∗ have different covariates (thus f ∗ and g∗ are identifiable), while in (1), f ∗

and g∗ share the same covariates. Therefore, additional efforts need to be made on addressing the
identifiability issue. A more similar model is as in [15], where f ∗ and g∗ are two realizations
of Gaussian processes, with one capturing the global information and the other capturing the
local fluctuations.

The convergence of Algorithm 1 is ensured if L f or Lg is strongly convex. Let ‖ · ‖ be a
(semi-)norm of a Hilbert space. A function L is said to be strongly convex with respect to
(semi-)norm ‖ · ‖ if there exists a parameter γ > 0 such that for any x, y in the domain and
t ∈ [0, 1],

L(tx + (1− t)y) ≤ tL(x) + (1− t)L(y)− 1
2

γt(1− t)‖x− y‖2.

As a simple example, ‖ · ‖2 is strongly convex for any norm ‖ · ‖. If L f or Lg is strongly
convex, Algorithm 1 converges, as stated in the following theorem.

Theorem 1. Suppose L f or Lg is strongly convex with respect to the empirical norm with parameter
γ > 0. We have

‖ fm − f̂ ‖n + ‖gm − ĝ‖n ≤
(

2
2 + γ

)m−1
(‖ f1 − f̂ ‖n + ‖g1 − ĝ‖n),

and (L f ( fm), Lg(gm)) → (L f ( f̂ ), Lg(ĝ)), as m goes to infinity (The proof can be found in
Appendix A).

From Theorem 1, it can be seen that Algorithm 1 can achieve a linear convergence if L f
or Lg is strongly convex, regardless of the identifiability of f ∗ and g∗. We only require one
penalty function to be strongly convex. The convergence rate depends on the parameter
γ, which measures the convexity of a function. If the penalty function is more convex,
i.e., γ is larger, then the convergence of Algorithm 1 is faster. The strong convexity of the
penalty function L f or Lg can be easily fulfilled, because the square of norm of any Hilbert
space is strongly convex. For example, the penalty functions in the ridge regression and
the neural networks with fixed number of neuron are strongly convex with respect to the
empirical norm.

An Example

We demonstrate Theorem 1 and the double penalty model by considering regres-
sion with an L1 penalty on the coefficients for f and an L2 penalty on the coefficients
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for g. Thus, the form is the familiar elastic net [16], which we here re-characterize as a
mix of LASSO regression (more interpretable because coefficients are sparse) and less-
interpretable ridge regression. Although extremely fast elastic net algorithms have been
developed [17], the conditions of Theorem 1 hold, and we illustrate using the diabetes
dataset [18] with 442 observations and 64 predictors, including interactions. The glmnet
package (v 4.0-2) [19] was used in successive LASSO and ridge steps, as in Algorithm 1.
Figure 1 left panel shows the convergence of ‖ fm − f̂ ‖n + ‖gm − ĝ‖n (root mean squared
error) for λ f = 0.032, λg = 1 (the results from a minimum grid search, although any pair
will do). The right panel shows various root mean squared minima (RMSE and root mean
squared variation) over {λ f , λg} using 10-fold cross-validation. The results suggest choices
of λ f , λg that can nearly achieve the overall minimum RMSE, while placing the bulk of
variation/explanatory variation on the more interpretable f .

Figure 1. Left panel: Convergence of fm, gm using Algorithm 1 for the diabetes dataset. Right panel:
For each curve, the label shows which portion ( f or g has been subjected to minimization, and the
x-axis corresponds to the other λ not minimized. The LASSO portion of the elastic net example
achieves nearly the same minimum RMSE as the full elastic net for these data, which would be
favored in terms of interpretability

3. Separable Function Classes

Suppose f ∗ and g∗ can be statistically specified. It can be seen that F ∩ G ⊂ {0},
for otherwise f ∗ + w ∈ F and g∗ − w ∈ G would be another decomposition of h for any
w ∈ F ∩ G. For example, we can consider A be a function class that h lies in, F be a subset
of A, and G = F⊥ be F ’s orthogonal complement in A. Nevertheless, we consider a more
general case in the sense defined here. We define F and G as L2-separable if there exists
θ1 ∈ [0, 1) such that for any functions f ∈ F and g ∈ G,

|〈 f , g〉2| ≤ θ1‖ f ‖L2‖g‖L2 , (5)

where ‖ f ‖L2 denotes the L2 norm of a function f ∈ L2(Ω), and 〈 f , g〉2 denotes the inner
product of functions f , g ∈ L2(Ω). Roughly speaking, the minimal angle of F and G is
strictly bounded away from zero. If two function classes are L2-separable, then f ∗ and g∗

are unique, as stated in the following lemma.

Lemma 1. Suppose (5) is true for any functions f ∈ F and g ∈ G, then f ∗ and g∗ are unique, up
to a difference on a measure zero set (The proof can be found in Appendix B).

3.1. A Separable Additive Model with the Same Covariates

Suppose two function classes F ⊂ Hν1(Ω), and G ⊂ Hν2(Ω), where Hν(Ω) is the
Sobolev space with known smoothness ν. We assume that F and G are bounded, i.e., there
exist constants R1 and R2 such that ‖ f ‖Hν1 (Ω) ≤ R1 and ‖g‖Hν2 (Ω) ≤ R2, for all f ∈ F and
g ∈ G, respectively. Typically, the “easy to interpret” part F has a higher smoothness, thus
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we assume ν1 ≥ ν2. In order to estimate f ∗ and g∗, we employ the idea from kernel ridge
regression.

Let Ψν be the (isotropic) Matérn family [20], defined by

Ψν(s, t) =
(2
√

ν′φ‖s− t‖)ν′

Γ(ν′)2ν′−1 Kν′(2
√

ν′φ‖s− t‖), (6)

where Kν′ is the modified Bessel function of the second kind, ν′ = ν− p/2, and φ is the
range parameter. We useNΨν(Ω) to denote the reproducing kernel Hilbert space generated
by Ψν, and ‖ · ‖NΨν (Ω) to denote the norm of NΨν(Ω). By Corollary 10.48 in [21], Hν(Ω)

coincides with NΨν(Ω). We use the solution to

min
f∈F ,g∈G

‖y− f − g‖2
n + λ1‖ f ‖2

NΨν1
(Ω) + λ2‖g‖2

NΨν2
(Ω) (7)

to estimate f ∗ and g∗, and the corresponding estimators are denoted by f̂ and ĝ, respectively.
Note that if G only contains zero function, then (7) reduces to kernel ridge regression. We
further require that (5) holds such that f ∗ and g∗ are identifiable.

First, we consider the consistency of f̂ and ĝ, which is provided in the follow-
ing theorem.

Theorem 2. Suppose xi’s are uniformly distributed on Ω, and the noise εi’s are i.i.d. sub-Gaussian,
i.e., satisfying K2E exp(|εi|2/K2)− 1 ≤ σ2

0 for some constants K and σ2
0 , and all i = 1, . . . , n. If

max(λ1, λ2) = OP(n−2ν2/(2ν2+p)), we have (The proof can be found in Appendix C)

‖ĝ− g∗‖2
L2
+ ‖ f̂ − f ∗‖2

L2
= OP(n

− 2ν2
2ν2+p ).

Remark 2. Note that in Theorem 2, we only require upper bounds on max(λ1, λ2), which is
because F and G are bounded. In particular, we can set max(λ1, λ2) = 0. However, if λ1 and λ2
are large, it is more likely that f̃m ∈ F and g̃m ∈ G, which allows us to solve (7) efficiently.

Remark 3. Because f ∗ and g∗ share the same covariates, the convergence speed of f̂ − f ∗ is slower

than the optimal rate OP(n
− 2ν1

2ν1+p ). We cannot confirm whether the rate in Theorem 2 is optimal
for f̂ .

In order to solve the optimization problem in (7), we apply Algorithm 1. In each
iteration of Algorithm 1, gm and fm are solved by

gm = argmin
g∈G

‖y− fm−1 − g‖2
n + λ2‖g‖2

NΨν2
(Ω),

fm = argmin
f∈F

‖y− f − gm‖2
n + λ1‖ f ‖2

NΨν1
(Ω),

which have explicit forms as

gm = g̃m =r1(·)T(K1 + nλ1)
−1(Y− fm−1(X)), (8)

fm = f̃m =r2(·)T(K2 + nλ2)
−1(Y− gm(X)), (9)

if g̃m ∈ G and f̃m ∈ F , where

rl(x) =(Ψνl (x, x1), . . . , Ψνl (x, xn))
T ,

fm−1(X) =( fm−1(x1), . . . , fm−1(xn))
T ,

gm(X) =(gm(x1), . . . , gm(xn))
T ,



Mathematics 2022, 10, 4532 6 of 23

Kl = (Ψνl (xj, xk))jk for l = 1, 2, and Y = (y1, . . . , yn)T . The explicit forms allow us to solve
(17) efficiently.

By Theorem 1, the convergence of Algorithm 1 can be guaranteed. However, if the
two function classes separate well, we can achieve a faster convergence, as shown in the
following theorem.

Theorem 3. Suppose two function classes F ⊂ Hν1(Ω) and G ⊂ Hν2(Ω) are L2-separable
satisfying (5), and xi’s are uniformly distributed on Ω. For n ≥ N, with probability at least

1− C1 exp(−n
2ν2−p
2ν2+p ), we have either

‖ fm − f̂ ‖n + ‖gm+1 − ĝ‖n ≤ C2n−
2ν2

2ν2+p ,

or

‖ fm − f̂ ‖n + ‖gm − ĝ‖n ≤
(

θ1 + C3n
− 2ν2−p

2(2ν2+p)

)2m−6

(‖ f1 − f̂ ‖n + ‖g1 − ĝ‖n),

where N and Ci’s are constants only depending on F , G and Ω (The proof can be found in
Appendix D).

In the proof of Theorem 3, the key step is to show that with high probability, (5) implies
that the separability holds with respect to the empirical norm, i.e.,

|〈 f , g〉n| ≤ θ2‖ f ‖n‖g‖n, (10)

with some θ2 close to θ1. It can be seen that in Theorem 3, if F and G are separable with
respect to the L2 norm, Algorithm 1 achieves a linear convergence. The parameter θ1
determines the convergence speed. If θ1 is small, then the convergence of Algorithm 1
is fast, and a few iterations are enough. By Theorems 2 and 3, it can be seen that the
approximation error (the difference between the optimal solution and numerical solution)
can be much smaller than the statistical error, which is typical. In particular, we can
conclude that the solution obtained by Algorithm 1 satisfies

‖ fm − f ∗‖L2(Ω) + ‖gm+1 − g∗‖L2(Ω) ≤ C4n−
ν2

2ν2+p ,

where we apply Lemma 5.16 of [22], which ensures the asymptotic equivalence of L2 norm
and the empirical norm of ‖ fm − f ∗‖n .

3.2. Finite Dimensional Function Classes

As a special case of the model in Section 3.1, suppose two function classes F and G
have finite dimensions. To be specific, suppose

F =

{
f =

d1

∑
k=1

αkφk : αk ∈ R, ‖ f ‖L2 ≤ R f

}
,G =

{
g =

d2

∑
j=1

β j ϕj : βk ∈ R, ‖g‖L2 ≤ Rg

}
,

where φk, ϕj’s are known functions defined on a compact set Ω, and R f and Rg are known
constants. Furthermore, assume F and G are L2-separable. Since the dimension of each
function class is finite, we can use the least squares method to estimate f ∗ and g∗, i.e.,

( f̂ , ĝ) = argmin
f∈F ,g∈G

‖y− f − g‖2
n. (11)

By applying standard arguments in the theory of Vapnik-Chervonenkis subgraph class [22],
the consistency of f̂ and ĝ holds. We do not present detailed discussion for the conciseness
of this paper.
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Although the exact solution to the optimization problem in (11) is available, we can
still use Algorithm 1 to solve it. By comparing the exact solution with numeric solution
obtained by Algorithm 1, we can study the convergence rate of Algorithm 1 via numer-
ical simulations. The detailed numerical studies of the convergence rate is provided in
Section 5.1.

4. Non-Separable Function Classes

In Section 3, we consider the case that F and G are L2-separable, which implies f ∗

and g∗ are statistically identifiable. However, in many practical cases, F and G are not
L2-separable. Such examples include F as a linear function class and G as the function
space generated by a neural network. If F and G are not L2-separable, then f ∗ and
g∗ are not statistically identifiable. To see this, note that there exist two sequences of
functions { f ′j } ⊂ F and {g′j} ⊂ G such that ‖ f ′j − g′j‖L2 → 0. This implies that ( f ∗, g∗) and
( f ∗ − f ′j , g∗ + g′j) are not statistically identifiable, which implies that we cannot consistently
estimate f ∗ and g∗.

Although F and G can be not L2-separable, we can still use (2) to specify f ∗ and g∗.
We propose choosing F with simple structure and to be “easy to interpret”, and choosing
G to be flexible to improve the prediction accuracy. The tradeoff between interpretation
and prediction accuracy can be adjusted by applying different penalty functions L f and
Lg. If L f is large, then (2) forces f ∗ to be small and g∗ to be large, which indicates that the
model is more flexible, but is less interpretable. On the other hand, if Lg is large, then the
model is more interpretable, but may reduce the power of prediction.

Another way is to make F and G separable. Specifically, suppose F ,G ⊂ Hν(Ω),
where ν > p/2 and p is the dimension. Then we construct a new function class G ′ such
that G ′ = G ∩ F⊥, where F⊥ is the perpendicular component of F in Hν(Ω). Although
in general, it is not easy to find F⊥ (F⊥ may also be empty), in some cases, it is possible
to build F⊥, for example, F is of finite dimension. In the next subsection, we provide a
specific example of building the perpendicular component of F and study the convergence
property of its corresponding double penalty model.

A Generalization of Partially Linear Models

In this subsection, we consider a generalization of partially linear models. The re-
sponses in a typical partially linear model can be expressed as

y = xT β + g(t) + ε. (12)

In the partially linear models (12), β ∈ Rp is a vector of regression coefficients associated
with x, g is an unknown function of t with some known smoothness, which is usually
a one dimensional scalar, and ε is a random noise. The partially linear model (12) can
be estimated by the partial spline estimator [23,24], partial residual estimator [25,26], or
SCAD-penalized regression [27].

In this work, we consider a more general model. Suppose we observe data yi on
xi ∈ Ω = [0, 1]p for i = 1, . . . , n, where

yi = xT
i β∗ + g∗(xi) + εi, (13)

and εi’s are i.i.d. random errors with mean zero and finite variance. We assume that the
function g∗ ∈ Hν(Ω), where Hν(Ω) is the Sobolev space with known smoothness ν. This
is a standard assumption in nonparametric regression, see [22,28] for example. It is natural
to define the two function classes by

F =
{

f (x) = xT β : β ∈ Rp, ‖β‖2 ≤ R1, x ∈ Ω
}

and G = {h ∈ Hν(Ω) : ‖h‖Hν(Ω) ≤ R2}, where ‖ · ‖2 denotes the Euclidean distance, and
R1, R2 are known constants. In practice, we can choose a sufficient large R1, R2 such that F
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and G are large enough. Note that in (13), the linear part and nonlinear part share the same
covariates, which is different with (12). It can be seen that β∗ and g∗ are non-identifiable
because F ⊂ G. Furthermore, F is more interpretable compared with G because it is linear.

In order to uniquely identify β∗ and g∗, we need to restrict function class G such
that F and G are separable. This can be done by applying a newly developed approach,
employing the projected kernel [29]. Let ek, k = 1, . . . , p be an orthonormal basis of F . Then
F can be defined as a linear span of the basis {e1, . . . , ep}, and the projection of a function
w ∈ G on F is given by

PFw =
p

∑
k=1
〈w, ek〉2ek. (14)

The perpendicular component is

P⊥Fw = w−PFw. (15)

By (14) and (15), we can split G into two perpendicular classes as F and F⊥, where
F⊥ = {w1 = P⊥Fw, w ∈ G}. Let h = xT β∗ + g∗(x), where g∗ ∈ F⊥. Since F and F⊥
are perpendicular, they are L2-separable. By Lemma 1, β∗ and g∗ are unique. However,
in practice it is usually difficult to find a function g∗ ∈ F⊥ directly. We propose using
projected kernel ridge regression, which depends on the reproducing kernel Hilbert space
generated by the projected kernel.

The reproducing kernel Hilbert space generated by the projected kernel can be defined
in the following way. Define the linear operators P (1)

F and P (2)
F : L2(Ω×Ω)→ L2(Ω×Ω) as

P (1)
F (u)(x, y) =

p

∑
k=1

ek(x)
∫

Ω
u(s, y)ek(s)ds,

P (2)
F (u)(x, y) =

p

∑
k=1

ek(y)
∫

Ω
u(x, t)ek(t)dt,

for u ∈ L2(Ω×Ω). The projected kernel of Ψ can be defined by

ΨF = Ψ−P (1)
F Ψ−P (2)

F Ψ + P (1)
F P

(2)
F Ψ. (16)

The function class F⊥ then is equivalent to the reproducing kernel Hilbert space gener-
ated by ΨF , denoted by NΨF (Ω), and the norm is denoted by ‖ · ‖NΨF (Ω). For detailed
discussion and properties of ΨF and NΨF (Ω), we refer to [29].

By using the projected kernel of Ψ, the double penalty model is

(β̂, ĝ) = argmin
β∈Rp ,g∈NΨF (Ω)

‖y− xT β− g‖2
n + λ‖g‖2

NΨF (Ω), (17)

where (β̂, ĝ) are estimators of (β∗, g∗). In practice, we can use generalized cross validation
(GCV) to choose the tuning parameter λ [29,30]. If the tuning parameter λ is chosen
properly, we can show that (β̂, ĝ) are consistent, as stated in the following theorem. In the
rest of this paper, we use the following notation. For two positive sequences an and bn, we
write an � bn if, for some constants C, C′ > 0, C ≤ an/bn ≤ C′.

Theorem 4. Suppose xi’s are uniformly distributed on Ω, and the noise εi’s are i.i.d. sub-Gaussian,
i.e., satisfying K2E exp(|εi|2/K2)− 1 ≤ σ2

0 for some constants K and σ2
0 , and all i = 1, . . . , n. If

λ � n−2ν/(2ν+p), we have

‖ĝ− g∗‖2
L2

= OP(n
− 2ν

2ν+p ), ‖β̂− β∗‖2
2 = OP(n

− 2ν
2ν+p ).
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Theorem 4 is a direct result of Theorem 3, thus the proof is omitted. Theorem 4 shows
that the double penalty model (17) can provide consistent estimators of β∗ and g∗, and
the convergence rate of ‖ĝ− g∗‖L2 is known to be optimal [31]. The convergence rate of
‖β̂ − β∗‖2 in Theorem 4 is slower than the convergence rate n−1/2 in the linear model.
We conjecture that this is because the convergence rate is influenced by the estimation of
g∗, which may introduce extra error because functions in NΨF (Ω) and F have the same
input space.

In order to solve the optimization problem in (17), we apply Algorithm 1. By Theorem 1,
the convergence of Algorithm 1 can be guaranteed. In each iteration of Algorithm 1, gm
and fm are solved by

gm = argmin
g∈NΨF (Ω)

‖y− xT βm−1 − g‖2
n + λ‖g‖2

NΨF (Ω),

βm = argmin
β∈Rp

‖y− xT β− gm‖2
n,

which have explicit forms as

gm(x) =r(x)T(K + nλ)−1(Y− XT βm−1),

βm =(XTX)−1XT(Y− gm(X)),

where

r(x) =(ΨF (x, x1), . . . , ΨF (x, xn))
T ,

gm(X) =(gm(x1), . . . , gm(xn))
T ,

and K = (ΨF (xj, xk))jk. The explicit forms allow us to solve (17) efficiently. Further-
more, because F and NΨF (Ω) are orthogonal, Theorem 3 implies that a few iterations of
Algorithm 1 are sufficient to obtain a good numeric solution.

5. Numerical Examples
5.1. Convergence Rate of Algorithm 1

In this subsection, we report numerical studies on the convergence rate of Algorithm 1,
and verify that the convergence rate in Theorem 3 is sharp. We consider two finite function
classes such that the analytic solution of (11) is available, as stated in Section 3.2. By
comparing the numeric solution and the analytic solution, we can verify the convergence
rate is sharp.

We consider two function classesF = { f | f (x) = α1x, α1 ∈ [0, 10]} and G = {g|g(x) =
α2 sin(θx), α2 ∈ [0, 10]}, where x ∈ [0, 1], θ is a known parameter which controls the degree
of separation of two function classes, i.e., the parameter θ1 in Lemma 1. It is easy to verify
that for f ∈ F and g ∈ G,∣∣∣∣ ∫ 1

0
f (x)g(x)dx

∣∣∣∣ ≤ ψ(θ)‖ f ‖L2([0,1])‖g‖L2([0,1]),

where

ψ(θ) =
2
√

3θ| sin(θ)− θ cos(θ)|
θ2
√

2θ − sin(2θ)
.

Suppose the underlying function h(x) = β∗1x + β∗2 sin(θx) with (β∗1, β∗2) = (1, 3). Let
(β̂1, β̂2) be the solution to (11), and (β1,m, β2,m) be the values obtained at mth iteration of
Algorithm 1. By Theorem 3,

‖(β1,m − β̂1)x‖n + ‖(β2,m − β̂2) sin(θx)‖n ≤ C
(

θ1 + C5n
− 2ν2−p

2(2ν2+p)

)2m−6

, (18)
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where C = ‖(β1,1 − β̂1)x‖2 + ‖(β2,1 − β̂2) sin(θx)‖2. By taking logarithms on both sides of
(18), we have

log(‖(β1,m − β̂1)x‖n + ‖(β2,m − β̂2) sin(θx)‖n)

≤ log

(
C
(

θ1 + C5n
− 2ν2−p

2(2ν2+p)

)2m−6
)

≈2 log(ψ(θ))m + log(Cψ(θ)−6). (19)

If the convergence rate in Theorem 3 is sharp, then log(‖(β1,m − β̂1)x‖n + ‖(β2,m − β̂2)
sin(θx)‖n) is an approximate linear function with respect to m and the slope is close to
2 log(ψ(θ)).

In our simulation studies, we choose θ = 2, 3, 3.5, 4. We choose the noise ε ∼ N(0, 0.1),
where N(0, 0.1) is a normal distribution with mean zero and variance 0.1. The algorithm
stops if the left hand side of (18) is less than 10−6. We choose 50 uniformly distributed
points as training points. We run 100 simulations and take the average of the regression
coefficient and the number of iterations needed for each θ. The results are shown in Table 1.

Table 1. The simulation results when the sample size is fixed. The last column show the absolute differ-
ence between the third column and the fourth column, given by |2 log(ψ(θ))− Regression coefficient|.

θ ψ(θ) 2 log(ψ(θ)) Regression Coefficient Iteration Numbers Absolute Difference

2 0.978 −0.045 −0.050 491.55 0.006
3 0.828 −0.378 −0.419 59.02 0.040

3.5 0.615 −0.973 −1.121 22.34 0.148
4 0.304 −2.383 −2.624 10 0.241

Theorem 3 shows that the approximation in (19) is more accurate when the sample
size is larger. We conduct numerical studies using sample sizes 20, 50, 100, 150, 200. We
choose θ = 3. The results are presented in Table 2.

Table 2. The simulation results under different sample sizes. The last column shows the abso-
lute difference between 2 log(ψ(3)) and regression coefficients, given by |2 log(ψ(θ))− Regres-
sion coefficient|.

Sample Size Regression Coefficient Iteration Numbers Absolute Difference

20 −0.110 225.05 0.269
50 −0.410 60.26 0.0315

100 −0.404 61 0.0260
150 −0.363 68 0.0148
200 −0.381 65 0.00244

From Tables 1 and 2, we find that the absolute difference increases as θ increases and
sample size decreases. When ψ(θ) decreases, the iteration number decreases, which implies
the convergence of Algorithm 1 becomes faster. These results corroborate our theory. The
regression coefficients are close to our theoretical assertion 2 log(ψ(θ)), which indicates
that the convergence rate in Theorem 3 is sharp.

5.2. Prediction of Double Penalty Model

To study the prediction performance of double penalty model, we consider two exam-
ples, with L2-separable function classes and non-L2-separable function classes, respectively.
In these examples, we would like to stress that we only show the double penalty model can
provide relatively accurate estimator with a large part attributing to the “interpretable” part.
Since accuracy is not the only goal of our estimator, models that may have extremely high
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prediction accuracy but may hard to interpret is not preferred in our case. Furthermore,
the definition of “interpretable” can be subjective and depends on the user. Therefore,
we choose our subjective “interpretable” model in these examples and only show the
prediction performance of our model.

Example 1. Consider function [32]

h(x) =
sin(10πx)

2x
+ (x− 1)4, x ∈ [0.5, 2.5].

Let F = { f (x) = β1x + β2, β2
1 + β2

2 ≤ 100}, and G be the reproducing kernel Hilbert space
generated by the projected kernel. The projected kernel is calculated as in (16), where Ψ is as in
(6) with ν = 3.5 and φ = 1. We use 20 uniformly distributed points from [0.5, 2.5] as training
points, and let ε ∼ N(0, 0.1). For each simulation, we calculate the mean squared prediction error,
which is approximated by calculating the mean squared prediction error on 201 evenly spaced points.
We run 100 simulations, and the average mean squared prediction error is 0.016. In this example,
the iteration number needed in Algorithm 1 is less than three because the two function classes are
orthogonal, which corroborates the results in Theorem 3.

Figure 2 shows that the linear part can capture the trend. However, it can be seen from the
figure that the difference between the true function and the linear part is still large. Therefore, a
nonlinear part is needed to make good predictions. It also indicates that the function in this example
is not easy to interpret.

0.5 1.0 1.5 2.0 2.5

−
1

0
1

2
3

4
5

x

y

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

True function
Predicted curve
Linear part
Nonlinear part

Figure 2. One simulation result of Example 1 in Section 5.2. Each dot represents an observation on
randomly sampled point.

Example 2. Consider a modified function of [33]

h(x) =
2√

∑5
i=1(xi − 0.5)2 + 1

+
0.5√

∑5
i=1(xi − 0.7)2 + 1

,

for xi ∈ [0, 1]. We use F = { f (x) = βT
1 x + β2, ‖β1‖2

2 + β2
2 ≤ 10, 000, x ∈ [0, 1]5}, and G as the

reproducing kernel Hilbert space generated by Ψ, where Ψ is as in (6) with ν = 3.5 and φ = 1.
Note that F and G are not L2-separable because F ⊂ G.

The double penalty model is

min
β∈F ,g∈NΨ([0,1]5)

‖y− xT β− g‖2
n + λ‖g‖2

NΨ([0,1]5), (20)

and the solution is denoted by (β̂, ĝ). We choose nλ = 1, 0.1, 0.01, where n = 50 is the sample size.
The noise ε ∼ N(0, σ2), where σ2 is chosen to be 0.1 and 0.01. The iteration numbers are fixed
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in each simulation, with values 1, 2, 3, 4, 5. We choose maximin Latin hypercube design [34] with
sample size 50 as the training set. We run 100 simulations for each case and calculated the mean
squared prediction error on the testing set, which is the first 1000 points of the Halton sequence [35].

Tables 3 and 4 show the simulation results when the variance of noise is 0.1 and 0.01, respec-
tively. We run simulations with iteration numbers 1, 2, 3, 4, 5 for each nλ, and we find the results
are not of much difference. For the briefness, we only present the full simulation results of nλ = 1
to show the similarity, and present the results with 5 iterations for other values of nλ. In Tables 3
and 4, we calculate the mean squared prediction error on the training set and the testing set. We
also calculate the L2 norm of f̂ and ĝ as in (20), which is approximated by the empirical norm using
the first 1000 points of the Halton sequence.

Table 3. Simulation results when ε ∼ N(0, 0.1). The third column shows the mean squared prediction
error on the training points. The fourth column shows the mean squared prediction error on the
testing points. The fifth column and the last column show the approximated L2 norm of f̂ and ĝ as in
(20), respectively.

nλ Iteration Number Training Error Prediction Error Linear L2 Nonlinear L2

1 1 0.02951 0.01714 1.5336 0.0034
2 0.02950 0.01712 1.5312 0.0054
3 0.02949 0.01711 1.5288 0.0076
4 0.02947 0.01710 1.5265 0.0097
5 0.02946 0.01709 1.5242 0.0119

0.1 5 0.02404 0.01400 1.5264 0.02224

0.001 5 0.0043 0.0059 1.5285 0.1331

1× 10−9 5 3.860× 10−12 0.03388 1.5324 0.2174

Table 4. Simulation results when ε ∼ N(0, 0.01). The third column shows the mean squared
prediction error on the training points. The fourth column shows the mean squared prediction error
on the testing points. The fifth column and the last column show the approximated L2 norm of f̂ and
ĝ as in (20), respectively.

nλ Iteration Number Training Error Prediction Error Linear L2 Nonlinear L2

1 1 0.01812 0.01759 1.5316 0.002998
2 0.01811 0.01757 1.5294 0.004763
3 0.01810 0.01755 1.5274 0.006664
4 0.01809 0.01754 1.5253 0.008581
5 0.01808 0.01753 1.5234 0.010481

0.1 5 0.01336 0.01387 1.5203 0.017585

0.001 5 0.00071 0.00088 1.5287 0.120022

From Tables 3 and 4, we can obtain the following results: (i) The prediction error in all cases
are small, which suggests that the double penalty model can make accurate predictions. (ii) If we
increase nλ, the training error decreases. The prediction error decreases when nλ is relatively large,
and becomes large when nλ is too small. (iii) One iteration in Algorithm 1 is sufficient to obtain
a good solution of (20). (iv) The training error of the case with smaller σ2 is smaller. If nλ is
chosen properly, the prediction error of the case with smaller σ2 is small. However, there is not much
difference in the prediction error under the cases σ2 = 0.1 and 0.01 when nλ is large. (v) For all
values of nλ, the L2 norm of the linear function f̂ does not vary a lot. The L2 norm of ĝ, on the
other hand, increases as nλ decreases. This is because a smaller nλ implies a lower penalty on g.
(vi) Comparing the values of the L2 norm of f̂ and the L2 norm of ĝ, we can see the L2 norm of f̂ is
much larger, which is desired because we tend to maximize the interpretable part, which is linear
functions in this example.
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6. Application to Real Datasets

To illustrate, we apply the approach to two datasets. The first dataset is [36], which
includes 50 human fecal microbiome features for n = 414 unrelated individuals, of ge-
netic sequence tags corresponding to bacterial taxa, and with a response variable of log-
transformed body mass index (BMI). To increase the prediction accuracy, we first reduce the
number of original features to the final dataset using the HFE cross-validated approach [37],
as discussed in [38]. The second dataset is the diabetes dataset from the lars R package,
widely used to illustrate penalized regression [39]. The response is a log-transformed mea-
sure of disease progression one year after baseline, and predictor features are ten baseline
variables, age, sex, BMI, average blood pressure, and six blood serum measurements.

Following Algorithm 1, we let f denote the LASSO algorithm ([40], interpretable part),
and use the built-in l1 penalty as L f , with parameter λ f as implemented in the R package
glmnet. For the “uninterpretable” part, we use the xgboost decision tree approach, with
built-in L2 penalty as Lg, with parameter λg as implemented in the R package xgboost [41].
For xgboost, we set an L1 penalty as zero throughout, with other parameters (tree depth,
etc.), set by cross-validation internally, while preserving convexity of Lg. We also set the
maximum number of boosting iterations at ten. At each iterative step of LASSO and
xgboost, ten simulations of five-fold cross-validation were performed and the predicted
values were then averaged.

Finally, in order to explore the tradeoffs between the interpretable and uninterpretable
parts, we first establish a range-finding exercise for the penalty tuning parameters on
the logarithmic scale, such that log10(λg) + log10(λ f ) = c for constant c. We refer to this
tradeoff as the transect between the tuning parameters, with low values of λ f , for example,
emphasizing and placing weight on the interpretable part by enforcing a low penalty for
overfitting. To illustrate performance, we use the Pearson correlation coefficient between
the response vector y and the average (cross-validated) values of f̂ , ĝ and ( f̂ + ĝ) over the
transect. The correlations are of course directly related to the objective function term ∑(y−
f̂ − ĝ)2, but are easier to interpret. Note that f̂ and ĝ are not orthogonal, so the correlations
do not partition into the overall correlation of y with ( f̂ + ĝ). Additionally, as a final
comparison, we compute these correlation values over the entire grid of {λ f , λg} values, to
ensure that the transect was largely capturing the best choice of tuning parameters.

For the Goodrich microbiome data, Figure 3 top panel shows the correlations between
y and the three cross-validated predictors over the transect. Low values of λ f are favored,
although it is clear that the decision tree is favored throughout most of the transect, i.e., y
has much higher correlations with ĝ than with f̂ . Using log10(λ f ) in the range of (−2, −1)
maximizes the correlation with the interpretable portion, while still achieving near the
overall maximum correlation for the combined prediction rule (correlation of nearly 0.5).
Our subjective “best balance" region for the interpretable portion is shown on the figure.

Figure 3 bottom panel shows the analogous results for the diabetes dataset. Here LASSO
provides overall good predictions for small tuning parameter λ f , and log10(λ f ) = −2
provides good correlations (in the range 0.55–0.6) of y with f̂ , ĝ and ( f̂ + ĝ). As the tuning
parameter λ f increases, the correlation between y and f̂ falls off dramatically, and our
suggested “best balance” point is also shown. In no instance were the correlation values
for the full grid of {λ f , λg} more than 0.015 greater than the greatest value observed along
the transects.
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Figure 3. Top panel: cross-validated correlations between y and each of f̂ , ĝ, and ( f̂ + ĝ) for the
microbiome dataset, where the tuning parameters vary along the transect as described in the text.
Bottom panel: the analogous correlations for the diabetes dataset. Grey region and black vertical
line represent suggested tuning parameter values to maximize interpretability while preserving high
prediction accuracy.

7. Discussion

In this work, we propose using a double penalty model as a means of isolating
and studying the effects and implications of ensemble learning. We have established
conditions for local algorithmic convergence under relatively general convexity conditions.
We highlight the fact that in some settings identifiability is not necessary for effective
use of the model in prediction. If two function classes are orthogonal, the convergence
of the algorithm provided in this work is very fast. This observation inspires potential
future work, given any two function classes, to construct two separable function classes
that are orthogonal, and to obtain subsequent consistency results, since the two portions
are identifiable.

Although our interest here is theoretical, we have also illustrated how the fitting
algorithm can be used in practice to make the relative contribution of f̂ large, while not
substantially degrading overall predictive performance. The examples here are relatively
straightforward, serving to illustrate the theoretical concepts. Further practical implications
and implementation issues will be described elsewhere.
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Appendix A. Proof of Theorem 1

Without loss of generality, assume L f is strongly convex. For any α ∈ (0, 1), by the
strong convexity of L f , we have

‖ f ∗ + g∗ + ε− fm − gm‖2
n + L f ( fm)

≤‖ f ∗ + g∗ + ε− α f̂ − (1− α) fm − gm‖2
n + L f (α f̂ + (1− α) fm)

≤‖ f ∗ + g∗ + ε− α f̂ − (1− α) fm − gm‖2
n

+ αL f ( f̂ ) + (1− α)L f ( fm)−
1
2

γα(1− α)‖ f̂ − fm‖2
n. (A1)

We can rewrite (A1) as

‖ f ∗ − fm‖2
n + 2〈 f ∗ − fm, g∗ − gm + ε〉n + L f ( fm)

≤α2‖ f ∗ − f̂ ‖2
n + (1− α)2‖ f ∗ − fm‖2

n + 2〈 f ∗ − α f̂ − (1− α) fm, g∗ − gm + ε〉

+ 2α(1− α)〈 f ∗ − f̂ , f ∗ − fm〉n + αL f ( f̂ ) + (1− α)L f ( fm)−
1
2

γα(1− α)‖ f̂ − fm‖2
n

≤α2‖ f ∗ − f̂ ‖2
n + (1− α)2‖ f ∗ − fm‖2

n + 2〈 f ∗ − α f̂ − (1− α) fm, g∗ − gm + ε〉
+ 2α(1− α)〈 f ∗ − f̂ , f ∗ − fm〉n + αL f ( f̂ ) + (1− α)L f ( fm)

− 1
2

γα(1− α)(‖ f̂ − f ∗‖2
n − 2〈 f ∗ − f̂ , f ∗ − fm〉n + ‖ f ∗ − fm‖2

n),

which is the same as

(2α− α2 +
1
2

γα(1− α))‖ f ∗ − fm‖2
n + 2α〈 f ∗ − fm, g∗ − gm + ε〉n + αL f ( fm)

≤(α2 − 1
2

γα(1− α))‖ f ∗ − f̂ ‖2
n + 2α〈 f ∗ − f̂ , g∗ − gm + ε〉n

+ (2 + γ)α(1− α)〈 f ∗ − f̂ , f ∗ − fm〉n + αL f ( f̂ )

⇔(2− α +
1
2

γ(1− α))‖ f ∗ − fm‖2
n + 2〈 f ∗ − fm, g∗ − gm + ε〉n + L f ( fm)

≤(α− 1
2

γ(1− α))‖ f ∗ − f̂ ‖2
n + 2〈 f ∗ − f̂ , g∗ − gm + ε〉n

+ (2 + γ)(1− α)〈 f ∗ − f̂ , f ∗ − fm〉n + L f ( f̂ ). (A2)

Taking limit α→ 0 in (A2) yields

(2 +
1
2

γ)‖ f ∗ − fm‖2
n + 2〈 f ∗ − fm, g∗ − gm + ε〉n + L f ( fm)

≤− 1
2

γ‖ f ∗ − f̂ ‖2
n + 2〈 f ∗ − f̂ , g∗ − gm + ε〉n + (2 + γ)〈 f ∗ − f̂ , f ∗ − fm〉n + L f ( f̂ ). (A3)
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Since f̂ is the solution to (2), for any β ∈ (0, 1), it is true that

‖ f ∗ + g∗ + ε− f̂ − ĝ‖2
n + L f ( f̂ ) + Lg(ĝ)

≤‖ f ∗ + g∗ + ε− β f̂ − (1− β) fm − ĝ‖2
n + L f (β f̂ + (1− β) fm) + Lg(ĝ)

≤‖ f ∗ + g∗ + ε− β f̂ − (1− β) fm − ĝ‖2
n + βL f ( f̂ )

+ (1− β)L f ( fm) + Lg(ĝ)− 1
2

γβ(1− β)‖ f̂ − fm‖2
n.

By the similar approach as shown in (A1)–(A3), we can show

(2 +
1
2

γ)‖ f ∗ − f̂ ‖2
n + 2〈 f ∗ − f̂ , g∗ − ĝ + ε〉n + L f ( f̂ )

≤− 1
2

γ‖ f ∗ − fm‖2
n + 2〈 f ∗ − fm, g∗ − ĝ + ε〉n

+ (2 + γ)〈 f ∗ − f̂ , f ∗ − fm〉n + L f ( fm). (A4)

Combining (A3) and (A4) leads to

(1 +
1
2

γ)‖ f̂ − fm‖2
n ≤ −〈 f̂ − fm, ĝ− gm〉n ≤ ‖ f̂ − fm‖n‖ĝ− gm‖n.

Thus,

(1 +
1
2

γ)‖ f̂ − fm‖n ≤ ‖ĝ− gm‖n. (A5)

Applying the same procedure to function gm+1, and noting that we do not have the strong
convexity of Lg(g), we have

‖ĝ− gm+1‖n ≤‖ f̂ − fm‖n. (A6)

By (A5) and (A6), we have

‖ĝ− gm+1‖n ≤ ‖ f̂ − fm‖n ≤
2

2 + γ
‖ĝ− gm‖n ≤ . . . ≤

(
2

2 + γ

)m
‖ĝ− g1‖n,

which implies ‖ĝ− gm‖n converges to zero. By (A5), ‖ f̂ − fm‖n also converges to zero. The
rest of the proof is similar to the proof of Theorem 3. Thus, we finish the proof.

Appendix B. Proof of Lemma 1

The proof is straightforward. Suppose there exist another two functions f0 ∈ F and
g0 ∈ G such that h = f0 + g0. By (5), we have

0 = ‖ f0 + g0 − f ∗ − g∗‖2
L2

= ‖ f0 − f ∗‖2
L2
+ ‖g0 − g∗‖2

L2
+ 2〈 f0 − f ∗, g0 − g∗〉2

≥ ‖ f0 − f ∗‖2
L2
+ ‖g0 − g∗‖2

L2
− 2θ1‖ f0 − f ∗‖L2‖g0 − g∗‖L2

≥ ‖ f0 − f ∗‖2
L2
+ ‖g0 − g∗‖2

L2
− 2‖ f0 − f ∗‖L2‖g0 − g∗‖L2

= (‖ f0 − f ∗‖L2 − ‖g0 − g∗‖L2)
2,

where the equality holds only when 2θ1‖ f0− f ∗‖L2‖g0− g∗‖L2 = 2‖ f0− f ∗‖L2‖g0− g∗‖L2 ,
i.e., ‖ f0 − f ∗‖L2 = ‖g0 − g∗‖L2 = 0, since θ1 < 1. Thus, we finish the proof.
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Appendix C. Proof of Theorem 2

Because f̂ and ĝ are derived by (7), we have

1
n

n

∑
i=1

(yi − f̂ (xi)− ĝ(xi))
2 + λ1‖ f̂ ‖2

NΨν1
(Ω) + λ2‖ĝ‖2

NΨν2
(Ω)

≤ 1
n

n

∑
i=1

(yi − f ∗(xi)− g∗(xi))
2 + λ1‖ f ∗‖2

NΨν1
(Ω) + λ2‖g∗‖2

NΨν2
(Ω),

which can be rewritten as

‖ f ∗ − f̂ ‖2
n + ‖g∗ − ĝ‖2

n + 2〈 f ∗ − f̂ , g∗ − ĝ〉n + λ1‖ f̂ ‖2
NΨν1

(Ω) + λ2‖ĝ‖2
NΨν2

(Ω)

≤2〈ε, f̂ − f ∗〉n + 2〈ε, ĝ− g∗〉n + λ1‖ f ∗‖2
NΨν1

(Ω) + λ2‖g∗‖2
NΨν2

(Ω) (A7)

Note NΨνl
(Ω) coincides Hνl (Ω), for l = 1, 2. By the entropy number of a unit ball in the

Sobolev space Hνl (Ω) [42] and Lemma 8.4 of [22], it can be shown that

sup
f∈F

|〈ε, f̂ − f ∗〉n|

‖ f ∗ − f̂ ‖
1− p

2ν1
n (‖ f̂ ‖NΨν1

(Ω) + ‖ f ∗‖NΨν1
(Ω))

p
2ν1

= OP(n−1/2),

which implies

〈ε, f̂ − f ∗〉n

=OP(n−1/2)‖ f ∗ − f̂ ‖
1− p

2ν1
n (‖ f̂ ‖NΨν1

(Ω) + ‖ f ∗‖NΨν1
(Ω))

p
2ν1

=OP(n−1/2)‖ f ∗ − f̂ ‖
1− p

2ν1
n , (A8)

since F is bounded. Following a similar argument, we have

〈ε, ĝ− g∗〉n =OP(n−1/2)‖g∗ − ĝ‖
1− p

2ν2
n . (A9)

Let

F1 =

{
h1 ∈ F : h1 =

f̂ − f ∗

‖ f̂ − f ∗‖L∞(Ω)

}
, G1 =

{
h2 ∈ G : h2 =

ĝ− g∗

‖ĝ− g∗‖L∞(Ω)

}
.

Thus, F1 ⊂ NΨν1
(Ω) and G1 ⊂ NΨν2

(Ω) with suph1∈F1
‖h1‖L∞(Ω) ≤ 1 and suph2∈G1

‖h2‖L∞(Ω) ≤ 1. Applying Lemma A2 yields

〈 f ∗ − f̂ , g∗ − ĝ〉n = 〈 f ∗ − f̂ , g∗ − ĝ〉2 + OP(n−1/2)‖ f̂ − f ∗‖L∞(Ω)‖ĝ− g∗‖L∞(Ω), (A10)

where we also use F and G are bounded. By the interpolation inequality, we have

‖ f̂ − f ∗‖L∞(Ω) ≤ C1‖ f̂ − f ∗‖
1− p

2ν1
L2(Ω)

‖ f̂ − f ∗‖
p

2ν1
NΨν1

≤ C2‖ f̂ − f ∗‖
1− p

2ν1
L2(Ω)

, (A11)

where the last inequality is because f̂ ∈ F and F is bounded. Similarly,

‖ĝ− g∗‖L∞(Ω) ≤ C3‖ĝ− g∗‖
1− p

2ν2
L2(Ω)

, (A12)
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By applying Lemma 5.16 of [22], we can conclude the asymptotic equivalence of L2 norm
and the empirical norm of ‖ f ∗ − f̂ ‖2

n, i.e.,

lim sup
n→∞

P
(

sup

‖ f ∗− f̂ ‖2
L2(Ω)

≥C6n
− 2ν1

2ν1+p

∣∣∣∣ ‖ f ∗ − f̂ ‖2
n

‖ f ∗ − f̂ ‖2
L2(Ω)

− 1
∣∣∣∣ ≥ η

)
= 0,

for some constants C6 and η (if ‖ f ∗ − f̂ ‖2
L2(Ω) ≥ C6n−

2ν1
2ν1+p , then the conclusions automati-

cally hold, and there is nothing needs to be proved). Therefore, we can replace ‖ f ∗ − f̂ ‖n
and ‖g∗ − ĝ‖n by ‖ f ∗ − f̂ ‖L2(Ω) and ‖g∗ − ĝ‖L2(Ω) in (A7), respectively. Plugging (A8),
(A9), (A10), (A11), and (A12) into (A7), we obtain

(1− θ1)‖ f ∗ − f̂ ‖2
L2(Ω) + (1− θ1)‖g∗ − ĝ‖2

L2(Ω)

≤‖ f ∗ − f̂ ‖2
L2(Ω) + ‖g

∗ − ĝ‖2
L2(Ω) − 2θ1‖ f ∗ − f̂ ‖L2(Ω)‖g∗ − ĝ‖L2(Ω)

≤‖ f ∗ − f̂ ‖2
L2(Ω) + ‖g

∗ − ĝ‖2
L2(Ω) + 2〈 f ∗ − f̂ , g∗ − ĝ〉2 + λ1‖ f̂ ‖2

NΨν1
(Ω) + λ2‖ĝ‖2

NΨν2
(Ω)

≤OP(n−1/2)‖ f ∗ − f̂ ‖
1− p

2ν1
L2(Ω)

+ OP(n−1/2)‖g∗ − ĝ‖
1− p

2ν2
L2(Ω)

+ λ1‖ f ∗‖2
NΨν1

(Ω) + λ2‖g∗‖2
NΨν2

(Ω)

+ OP(n−1/2)‖ f̂ − f ∗‖
1− p

2ν1
L2(Ω)

‖ĝ− g∗‖
1− p

2ν2
L2(Ω)

=OP(n−1/2)‖ f ∗ − f̂ ‖
1− p

2ν1
L2(Ω)

+ OP(n−1/2)‖g∗ − ĝ‖
1− p

2ν2
L2(Ω)

+ λ1‖ f ∗‖2
NΨν1

(Ω) + λ2‖g∗‖2
NΨν2

(Ω)

=OP(n−1/2)‖ f ∗ − f̂ ‖
1− p

2ν1
L2(Ω)

+ OP(n−1/2)‖g∗ − ĝ‖
1− p

2ν2
L2(Ω)

+ OP(n
− 2ν2

2ν2+p ), (A13)

where the first inequality is because of the Cauchy-Schwarz inequality, the second inequality
is because F and G are separable with respect to L2 norm, and the first equality is because
F is bounded. Therefore, since ν1 ≥ ν2 either

‖ f ∗ − f̂ ‖2
L2(Ω) + ‖g

∗ − ĝ‖2
L2(Ω)

=OP(n−1/2)‖ f ∗ − f̂ ‖
1− p

2ν1
L2(Ω)

+ OP(n−1/2)‖g∗ − ĝ‖
1− p

2ν2
L2(Ω)

=OP(n−1/2)‖ f ∗ − f̂ ‖
1− p

2ν2
L2(Ω)

+ OP(n−1/2)‖g∗ − ĝ‖
1− p

2ν2
L2(Ω)

(A14)

or

‖ f ∗ − f̂ ‖2
L2(Ω) + ‖g

∗ − ĝ‖2
L2(Ω) = OP(n

− 2ν2
2ν2+p ). (A15)

Consider (A14) first. If ‖ f ∗ − f̂ ‖L2(Ω) ≥ ‖g∗ − ĝ‖L2(Ω), then (A14) implies

‖ f ∗ − f̂ ‖2
L2(Ω) = OP(n−1/2)‖ f ∗ − f̂ ‖

1− p
2ν2

L2(Ω)
⇔ ‖ f ∗ − f̂ ‖2

L2(Ω) = OP(n
− 2ν2

2ν2+p ). (A16)

Similarly, if ‖ f ∗ − f̂ ‖L2(Ω) < ‖g∗ − ĝ‖L2(Ω), then (A14) implies

‖g∗ − ĝ‖2
L2(Ω) = OP(n

− 2ν2
2ν2+p ). (A17)

Combining (A15), (A16), and (A17), we finish the proof.

Appendix D. Proof of Theorem 3

We first present some lemmas used in this proof.
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Let (T, d) be a metric space with metric d, and T is a space. Let N(ε, T, d) denote the
ε-covering number of the metric space (T, d), and H(ε, T, d) = log N(ε, T, d) be the entropy
number. We need the following two lemmas. Lemma A1 is a direct result of Theorem
2.1 of [43], which provides an upper bound on the difference between the empirical norm
and L2 norm. Lemma A2 is a direct result of Theorem 3.1 of [43], which provides an
upper bound on the empirical inner product. In Lemmas A1 and A2, we use the following
definition. For z > 0, we define

J2
∞(z,A) = C2

0 inf
δ>0

E
[

z
∫ 1

δ

√
H(uz/2,A, ‖ · ‖∞) +

√
nδz
]2

,

where C0 is a constant, and H(u,A, ‖ · ‖∞) is the entropy of (A, ‖ · ‖∞) for a function
class A.

Lemma A1. Let R = sup f∈A ‖ f ‖2, and K = sup f∈A ‖ f ‖∞, where A is a class. Then for all
t > 0, with probability at least 1− exp(−t),

sup
f∈A

∣∣∣∣‖ f ‖2
n − ‖ f ‖2

2

∣∣∣∣ ≤ C1

(
2RJ∞(K,A) + RK

√
t√

n
+

4J2
∞(K,A) + K2t

n

)
,

where C1 is a constant.

Lemma A2. Let F and G be two function classes. Let

R1 = sup
f∈F
‖ f ‖2, K1 = sup

f∈F
‖ f ‖∞, R2 = sup

g∈G
‖g‖2, K2 = sup

g∈G
‖g‖∞.

Suppose that R1K2 ≤ R2K1. Assume(
2R1 J∞(K1,F ) + R1K1

√
t√

n
+

4J2
∞(K1,F ) + K2

1t
n

)
≤

R2
1

C1
,

and (
2R2 J∞(K2,G) + R2K2

√
t√

n
+

4J2
∞(K2,G) + K2

2t
n

)
≤

R2
2

C1
.

Then for t ≥ 4, with probability at least 1− 12 exp(−t),

1
8C1

sup
f∈F ,g∈G

|〈 f , g〉2 − 〈 f , g〉n| ≤
R1 J∞(K2,G) + R2 J∞(R1K2/R2),F ) + R1K2

√
t√

n
+

K1K2t
n

.

If m = 1, then the results automatically hold. Suppose m > 1. Since fm is the solution
to (4), for any α ∈ (0, 1), we have

‖ f ∗ + g∗ + ε− fm − gm‖2
n + L f ( fm)

≤‖ f ∗ + g∗ + ε− α f̂ − (1− α) fm − gm‖2
n + L f (α f̂ + (1− α) fm)

≤‖ f ∗ + g∗ + ε− α f̂ − (1− α) fm − gm‖2
n + αL f ( f̂ ) + (1− α)L f ( fm), (A18)

where the last inequality is because L f is convex. Rewriting (A18) yields

‖ f ∗ − fm‖2
n + 2〈 f ∗ − fm, g∗ − gm + ε〉n + L f ( fm)

≤α2‖ f ∗ − f̂ ‖2
n + (1− α)2‖ f ∗ − fm‖2

n + 2〈 f ∗ − α f̂ − (1− α) fm, g∗ − gm + ε〉
+ 2α(1− α)〈 f ∗ − f̂ , f ∗ − fm〉n + αL f ( f̂ ) + (1− α)L f ( fm),
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which is the same as

(2α− α2)‖ f ∗ − fm‖2
n + 2α〈 f ∗ − fm, g∗ − gm + ε〉n + αL f ( fm)

≤α2‖ f ∗ − f̂ ‖2
n + 2α〈 f ∗ − f̂ , g∗ − gm + ε〉n

+ 2α(1− α)〈 f ∗ − f̂ , f ∗ − fm〉n + αL f ( f̂ ). (A19)

Because α ∈ (0, 1), (A19) implies

(2− α)‖ f ∗ − fm‖2
n + 2〈 f ∗ − fm, g∗ − gm + ε〉n + L f ( fm)

≤α‖ f ∗ − f̂ ‖2
n + 2〈 f ∗ − f̂ , g∗ − gm + ε〉n + 2(1− α)〈 f ∗ − f̂ , f ∗ − fm〉n + L f ( f̂ ). (A20)

Taking limit α→ 0 in (A20) leads to

‖ f ∗ − fm‖2
n + 〈 f ∗ − fm, g∗ − gm + ε〉n + L f ( fm)/2 (A21)

≤ 〈 f ∗ − f̂ , g∗ − gm + ε〉n + 〈 f ∗ − f̂ , f ∗ − fm〉n + L f ( f̂ )/2. (A22)

Since f̂ is the solution to (2), for any β ∈ (0, 1), it is true that

‖ f ∗ + g∗ + ε− f̂ − ĝ‖2
n + L f ( f̂ ) + Lg(ĝ)

≤ ‖ f ∗ + g∗ + ε− β f̂ − (1− β) fm − ĝ‖2
n + L f (β f̂ + (1− β) fm) + Lg(ĝ)

≤‖ f ∗ + g∗ + ε− β f̂ − (1− β) fm − ĝ‖2
n + βL f ( f̂ ) + (1− β)L f ( fm) + Lg(ĝ),

which implies

(1− β2)‖ f ∗ − f̂ ‖2
n + 2(1− β)〈 f ∗ − f̂ , g∗ − ĝ + ε〉n + (1− β)L f ( f̂ )

≤(1− β)2‖ f ∗ − fm‖2
n + 2β(1− β)〈 f ∗ − f̂ , f ∗ − fm〉n (A23)

+ 2(1− β)〈 f ∗ − fm, g∗ − ĝ + ε〉n + (1− β)L f ( fm). (A24)

Since β < 1, (A23) implies

(1 + β)‖ f ∗ − f̂ ‖2
n + 2〈 f ∗ − f̂ , g∗ − ĝ + ε〉n + L f ( f̂ )

≤(1− β)‖ f ∗ − fm‖2
n + 2β〈 f ∗ − f̂ , f ∗ − fm〉n + 2〈 f ∗ − fm, g∗ − ĝ + ε〉n + L f ( fm). (A25)

Letting β→ 1 in (A25) yields

‖ f ∗ − f̂ ‖2
n + 〈 f ∗ − f̂ , g∗ − ĝ + ε〉n + L f ( f̂ )/2

≤〈 f ∗ − f̂ , f ∗ − fm〉n + 〈 f ∗ − fm, g∗ − ĝ + ε〉n + L f ( fm)/2. (A26)

Combining (A26) and (A21), it can be checked that

‖ f̂ − fm‖2
n ≤ −〈 f̂ − fm, ĝ− gm〉n, (A27)

which implies

‖ f̂ − fm‖n ≤ ‖ĝ− gm‖n. (A28)

Applying similar approach to gm, we obtain

‖ĝ− gm+1‖n ≤ ‖ f̂ − fm‖n. (A29)
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Let

F1 =

{
h1 ∈ F : h1 =

f̂ − fm

‖ f̂ − fm‖L∞(Ω)

}
, G1 =

{
h2 ∈ G : h2 =

ĝ− gm

‖ĝ− gm‖L∞(Ω)

}
.

Thus, F1 ⊂ NΨν1
(Ω) and G1 ⊂ NΨν2

(Ω) with suph1∈F1
‖h1‖L∞(Ω) ≤ 1 and suph2∈G1

‖h2‖L∞(Ω) ≤ 1. Applying Lemma A2 yields that with probability at least 1− exp(−t),∣∣∣〈 fm − f̂ , gm − ĝ〉n
∣∣∣

≤
∣∣∣〈 fm − f̂ , gm − ĝ〉2

∣∣∣+ C1(nt)−1/2‖ f̂ − fm‖L∞(Ω)‖ĝ− gm‖L∞(Ω)

≤
∣∣∣〈 fm − f̂ , gm − ĝ〉2

∣∣∣+ C2(nt)−1/2‖ f̂ − fm‖
1− p

2ν1
L2(Ω)

‖ĝ− gm‖
1− p

2ν2
L2(Ω)

, (A30)

where the last inequality is by the interpolation inequality, and F and G are bounded.
Similarly, by Lemma A2, we also obtain that with probability at least 1− 2 exp(−t),

‖ fm − f̂ ‖2
L2(Ω) ≤‖ f̂ − fm‖2

n + C1(nt)−1/2‖ f̂ − fm‖2
L∞(Ω)

≤‖ f̂ − fm‖2
n + C2(nt)−1/2‖ f̂ − fm‖

2− p
ν1

L2(Ω)
, (A31)

and
‖gm − ĝ‖2

L2(Ω) ≤‖ĝ− gm‖2
n + C1(nt)−1/2‖ĝ− gm‖2

L∞(Ω)

≤‖ĝ− gm‖2
n + C2(nt)−1/2‖ĝ− gm‖

2− p
ν2

L2(Ω)
. (A32)

Since F and G satisfy (5), together with (A30)–(A32), we have that with probability at least
1− 3 exp(−t)∣∣∣〈 fm − f̂ , gm − ĝ〉n

∣∣∣
≤θ1‖ fm − f̂ ‖L2(Ω)‖gm − ĝ‖L2(Ω) + C2(nt)−1/2‖ f̂ − fm‖

1− p
2ν1

L2(Ω)
‖ĝ− gm‖

1− p
2ν2

L2(Ω)

≤θ1‖ fm − f̂ ‖n‖gm − ĝ‖n + C2(nt)−1/4‖ĝ− gm‖
1− p

2ν2
L2(Ω)

‖ fm − f̂ ‖n

+ C2(nt)−1/4‖ f̂ − fm‖
1− p

2ν1
L2(Ω)

‖gm − ĝ‖n (A33)

+ C2(nt)−1/2‖ f̂ − fm‖
1− p

2ν1
L2(Ω)

‖ĝ− gm‖
1− p

2ν2
L2(Ω)

≤θ1‖ fm − f̂ ‖n‖gm − ĝ‖n + C3(nt)−1/4‖ĝ− gm‖
1− p

2ν2
n ‖ fm − f̂ ‖n

+ C3(nt)−1/4‖ f̂ − fm‖
1− p

2ν2
n ‖gm − ĝ‖n (A34)

+ C3(nt)−1/2‖ f̂ − fm‖
1− p

2ν2
n ‖ĝ− gm‖

1− p
2ν2

n (A35)

where the last inequality is by Lemma A1 and ν1 ≥ ν2.

If ‖ fm − f̂ ‖n < ((nt)−1/4nα)
2ν2

p , then (A29) implies ‖gm+1 − ĝ‖n < ((nt)−1/4nα)
2ν2

p .

If ‖ fm − f̂ ‖n ≥ ((nt)−1/4nα)
2ν2

p , then by (A28), we also have ‖gm − ĝ‖n ≥ ((nt)−1/4nα)
2ν2

p .

Thus, (nt)−1/4‖ fm− f̂ ‖
− p

2ν2
n ≤ n−α and (nt)−1/4‖gm− ĝ‖

− p
2ν2

n ≤ n−α, which, together with
(A33), yields ∣∣∣〈 fm − f̂ , gm − ĝ〉n

∣∣∣ ≤ (θ1 + C5n−α)‖ fm − f̂ ‖n‖gm − ĝ‖n. (A36)
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Define θ2 = θ1 + C5n−α. By (A27) and (A36), we have

‖ f̂ − fm‖2
n ≤ θ2‖ f̂ − fm‖n‖ĝ− gm‖n ⇔ ‖ f̂ − fm‖n ≤ θ2‖ĝ− gm‖n. (A37)

Applying the same procedure to function gm+1, we have

‖ĝ− gm+1‖n ≤θ2‖ f̂ − fm‖n. (A38)

By (A37) and (A38), it can be seen that

‖ĝ− gm+1‖n ≤θ2‖ f̂ − fm‖n ≤ θ2
2‖ĝ− gm‖n . . . ≤ θ2m−2

2 ‖ĝ− g1‖n.

Taking α = 2ν2−p
2(2ν2+p) and t = n

2ν2−p
2ν2+p finishes the proof.
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