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Abstract: Many real-life problems that involve decisions under uncertainty are often sequentially
repeated and can be approached iteratively. Knowledge Gradient (KG) formulates the decision-
under-uncertainty problem into repeatedly estimating the value of information observed from
each possible decisions and then committing to a decision with the highest estimated value. This
paper aims to provide a multi-faceted overview of modern research on KG: firstly, on how the KG
algorithm is formulated in the beginning with an example implementation of its most frequently
used implementation; secondly, on how KG algorithms are related to other problems and iterative
algorithms, in particular, Bayesian optimization; thirdly, on the significant trends found in modern
theoretical research on KG; lastly, on the diverse examples of applications that use KG in their key
decision-making step.
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1. Introduction

Decision making under uncertainty is one of the fundamental tasks not only of scien-
tific methods but also of everyday life. Ranging from mundane yet important decisions
such as choosing a lunch menu to deciding which variations of hypotheses to test in the
next iteration of experiments in academic research, decision making is ubiquitous in human
life. The fundamental uncertainty that makes such decision making a challenging task
is that every decision results in a corresponding aftermath, which is unknown prior to
committing to the decision.

Due to the ubiquity of the problem in the real world, there are many directions in
which mathematics is used to handle uncertainty in order to improve or assist overall
decision making processes. A notable example is taking multiple criteria into consideration
to alleviate subjectivity or bias into decision making, which is found in applications from
different fields: ref. [1] presents a method to rank asphalt production plants under multiple
decision criteria; ref. [2] applies multiple criteria decision making method in human
resource decision of personnel management; ref. [3] designs sustainable measures of
mobility by ranking and selecting multiple candidate measures by professionals. To handle
uncertainty in subjectivity, this method of decision making can be further extended as
follows: ref. [4] uses a fuzzy comparison matrix to model the potential uncertainty of criteria
ranking due to subjectivity; ref. [5] incorporates fuzzy sets to represent the uncertainty of
relative importance quantification in decision criteria.

Randomness due to subjectivity is not the only uncertainty in the field of decision
making. For example, considering the best decision to be the optimal decision that leads
to optimizing the key response variable such as profit or income, modeling the innate
uncertainty in how decision leads to response is another wide field of applied mathematics.
When predicting the monthly income of an online storefront, it is essential to estimate the
sales of the store, for which a hidden Markov model can be used to model the customer
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decision making process that affects the sales [6]. Financial portfolio management has
different optimality conditions—often minimizing portfolio variance—and finding the
corresponding optimal allocation of assets is a challenging decision making task that
must face market uncertainty. To model the uncertainty in the optimal asset allocation
problem, ref. [7] presents a latent variable model that uses student’s t-distribution-based
stochastic processes instead of the traditional Gaussian process. Estimating risk can be
directly modeled by estimating the Value-at-Risk measure, and ref. [8] presents thee
Bernstein copula-based method to model the risk measure adaptively. The aforementioned
examples are just a few of the mathematical modeling of uncertainty methods, which can
be coupled to other optimization tasks to solve real world operations such as reverse stress
testing [9].

Adding another twist to the situation, in particular, the problem class of interest in this
review article is sequential decision making under uncertainty, in which the decision making
agent must make a series of decisions. Here, the agent is assumed to be intelligent, in a sense
that it will learn from its previous decisions and its aftermath. Note that even if the same
decision is repeated multiple times, the observed response may not be the same in value
due to the innate uncertainty of the response. Depending on how the decision candidates
and the objective function is formulated, sequential decision making problems can be cast
into a number of different problems such as ranking and selection (R&S), multi-armed
bandit, and Bayesian optimization, to name a few. Here, we focus on emphasizing the
essence of the sequential decision problem with Figure 1:

Figure 1. Schematic diagram of a canonical sequential decision problem. R̂’s are the response or the
rewards from the environment. Note that the process itself contains Markov property, as each of the
past decision x is the only information (except the unknown environment itself) that immediately
influences the next response. B’s stand for the belief of the decision-making agent, which evolves
with past experiences of observing “decision-response” pairs.

The internal state of the decision-making agent at time n, represented as beliefs (Bn)
that contain sufficient information to make decision at time n (xn), will evolve as the
agent observe the resulting “decision–response” pair of (xn, R̂n+1) into Bn+1, which will
contain the newest information extracted from the “decision–response” pair. For such a
decision-making agent to learn the environment and find out the optimal decision-making
rule, two properties are crucial:

1. Learning from the response: learn efficiently from the observed experience.
2. Decision making: make effective decisions that lead to learning what is unknown.

A knowledge gradient (KG) algorithm covers both aspects, such that for every time
step it (1) learns efficiently with Bayesian inference and (2) makes decisions that maximize
the estimated value of information to be learned from the next experience of the “decision–response”.
The Knowledge gradient (KG) value of any decision candidate at any time step is a quan-
tification of the aforementioned estimated value of information, which makes KG algorithms
readily explained as a rational agent that tries to extract most information from every
decision. In the rest of the review article, the following topics of KG algorithms are covered:
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• Problem setup and fundamental properties of KG algorithms;
• KG and its related problems, especially Bayesian Optimization (BO);
• Survey on theoretical advances of KG-based algorithms;
• Survey on recent applications of KG-based algorithms.

2. Knowledge Gradient Algorithm

The knowledge gradient (KG) algorithm stands for a class of iterative optimization
algorithms that first appeared in [10] and later developed thoroughly in [11] as a principled
approach to solve fixed-budget stochastic ranking and selection (R&S) problems. Therefore,
the R&S problem formulation will be presented first in Section 2.1, and the knowledge
gradient later in Section 2.2.

2.1. Preliminary: Ranking and Selection Problem

R&S problems are defined by a known set of alternatives or possible decisions, and
their unknown response values, and solving them requires finding the best decision accord-
ing to a given objective function. Usually they are formulated as either finding the decision
with the largest average response value—seeing the value as benefit or reward—or finding
the decision with the smallest average response value—seeing the value as a demerit or
cost. In this review, without loss of generality, we choose the maximization formulation
that assumes the response values are considered as rewards, and the objective function
formulated to maximize the expected reward naturally aligns with finding the optimal deci-
sion. Hence, an algorithm that solves an R&S problem must find the best decision through
trial and error, as the intrinsic values of the decisions are initially unknown and must be
estimated by observations revealed through choosing the corresponding decisions. Fu and
Henderson [12] provide a historical discourse and Hong et al. [13] provide a categorical
discourse on R&S problems.

There are many problems that are related to R&S problems, such as the best arm
identification problem, budget allocation problem, multi-armed bandit (MAB) problem,
and Bayesian optimization. The formulations and notations used in each of the related
problems are not always compatible with each other. So in this review, we first introduce the
minimal notations to formulate the R&S problem class solved by the first KG algorithm [11].

Let the set of decisions be X , whose elements x’s are distinct alternatives or decisions.
For now, assume the number of alternatives to be finite, i.e., |X | < ∞. We also assume that
the time horizon T is given, which means that the maximum number of decisions can be
made in the given R&S problem is finite and known before any decision is made. Time index
variable t = 0, 1, · · · , T − 1 is used to index variables, such as the decision made at time
t as xt. Upon choosing a decision x, a reward corresponding to that decision is observed,
and we assume a stochastic R&S problem, such that the true stationary distribution R(x),
which the reward follows, is unknown to the decision-making agent. Therefore, an R&S
problem can be stated as an optimization problem whose objective function is:

max
xT∈X

E[R(xT)|R(x0), R(x1), · · · , R(xT−1)], (1)

within the finite budget T to sample the random variables R(x0), R(x1), · · · , R(xT−1) by
choosing x0, x1, · · · , xT−1 from X .

The reward of choosing xt is observed immediately, in a sense that it is observed before
making another decision at time t + 1. Note that the time index t captures the time between
the last decision xt−1 beinig made and the moment the t-th decision is made, such that the
response observed by xt is indexed with t + 1 as R̂t+1. Furthermore, an additive intrinsic
stochasticity or noise of observation is assumed, such that a zero-mean Gaussian random
variable ε ∼ N (0, σε) is added to the noiseless observation R(xt) for all x, t. Hence, the
observed response R̂t+1 from choosing decision xt at time t, satisfies the following:

R̂t+1 = R(xt) + ε. (2)
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The parameter σε expresses the intensity of the intrinsic noise ε, and this is assumed
to be known to the agent a priori. The introduction of such ε may be seen as introducing
the following assumptions: (1) ε ∼ N (0, σε) means that the agent is certain of the unbi-
asedness of the measurement, i.e., no systematic bias is introduced due to intrinsic noisy
measurement, and (2) knowing σε a priori means that the agent is aware of the precision or
the resolution of its own sensor that measures the observation.

2.2. KG: Capturing Value of Information in R and S Problems

The first knowledge gradient algorithm [11] is called KG with the independent Gaus-
sian belief model, which clarifies that the “belief” on the distribution of R(x) for each x ∈ X
can be modeled by |X | independent Gaussian distributions, each with unknown mean
parameter µx and standard deviation σx. Belief state at time t, denoted as Bt, contains ~µ
and~σ, which are |X |-dim real vectors with elements corresponding to estimates of means
and standard deviations at time t. Note that Bt must contain sufficient information to
precisely describe the “belief” in the model of the the current time, t, and reward for each
and every decision. Withstanding a little abuse of notation, we assume that conditioning
on Bt provides not only the parameter values that are explicitly given but also the implicit
modeling detail such as the distribution type. Every knowledge gradient algorithms have
a particular belief model and additional assumptions, and many different possible belief
models are explained in greater detail in [14]. In this article, we focus our discussion on KG
with the independent Gaussian belief model, as (1) it provides a theoretical foundation for
more complicated KG algorithms and (2) it is the most frequently used KG algorithm in
recent applications.

We define the value of information in R&S problems gathered up to time t as the largest
expected reward, when the subsequent decision xt is made to maximize the corresponding
reward. Therefore, we can use conditional expectation as follows:

Vt := max
x∈X

E[R(x)|Bt], (3)

where Bt is the belief state at time t. Comparing the value of information to the objective
function of the R&S problem shown in Equation (1), it becomes obvious that Bt is defined
to encode all the past information R(x0), · · · , R(xt−1) to solve the R&S problem objective
function at any time t ≤ T.

Note that the choice of the belief model in the KG algorithm will determine how the
value can be evaluated from the information in belief state Bt. Therefore, the belief state
Bt can be seen as a model-specific representation of information gathered up to time t in
the R&S problem to compute Vt at any time t. Particularly, in KG with the independent
Gaussian belief model, where R(x) ∼ N (µx, σx) by modeling assumption, computing Vt
becomes simply finding the maximal among the corresponding parameters from the given
belief state Bt = {~µ,~σ} as:

Vt := max
x∈X

E[R(x)|Bt] (4)

= max
x∈X

{
µ1,t, · · · , µ|X |,t

}
, (5)

since ∀x ∈ X : E[R(x)|Bt] = µx,t at any t.
At any time t for any decision x ∈ X , its KG value, denoted νx, can be defined as the

following conditional expectation:

νt(x) := E[Vt+1 −Vt|Bt, xt = x], (6)

where xt = x denotes the conditional event of “assuming the agent makes the current
decision xt to be x”. The standard interpretation of νt(x), the KG of decision x, is the
expected improvement of value by observing another feedback of choosing decision x [15].
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Note that the conditional expectation in Equation (6) is with respect to random variable
Vt+1.

Particularly, when the belief model contains a parameter representing the expected re-
ward R(x) given x at time t, such as µx,t in independent Gaussian belief model, Equation (6)
can be further simplified as:

νt(x) := E[Vt+1 −Vt|Bt, xt = x] (7)

= E[µx,t+1 − µx,t|Bt, xt = x] (8)

= E[µx,t+1|Bt, xt = x]− µx,t. (9)

Note that Equation (9) explicitly shows the one-step look-ahead behavior of KG, which
requires computing the conditional expectation of what the belief state µx will be at time
t + 1, given information at time t and decision x. As clearly shown above, the knowledge
gradient νt(x) can be interpreted as the expected improvement of the average reward of
choosing x at t, assuming additional information is obtained from decision x at time t is
modeled from belief state Bt.

2.3. Decision Making Step in KG Algorithm

At each time t, a KG algorithm computes νt(x) for all decisions x ∈ X and makes
decision at time t as:

xt = arg max
x∈X
{νt(x)}, (10)

which is to choose the decision x that has the largest KG value νt(x). Hence, the KG
algorithm requires an explicit method to compute νt(x) for any t, x, given Bt, and the
method may differ from the belief model assumed by the algorithm.

In particular, with the independent Gaussian belief model, it is possible to efficiently
compute νt(x) for any decision x ∈ X

νt(x) := σν(ξx,tΦ(ξx,t) + φ(ξx,t)), (11)

where Φ(·) and φ(·) are the cumulative distribution function and the probability density
function of standard Gaussian distribution, respectively, and ξx,t is defined as:

ξx,t := −
∣∣∣∣µx,t −maxx′ 6=x µx′ ,t

σν

∣∣∣∣, (12)

where µx,t is the mean parameter of the reward distribution of decision x estimated at time
t (as part of the belief state Bt), and σν is defined as:

σν :=
σx,t√

1 +
(

σε
σx,t

)2
, (13)

where σx,t is the standard deviation parameter of the reward distribution of decision x
estimated at time t (as part of the belief state Bt).

Two important theoretical properties of KG with independent Gaussian belief algo-
rithm are as follows [16]:

• Makes a myopically optimal choice, such that if the current decision is the last decision
to make in an R&S problem, the decision based on the KG algorithm is the optimal
choice.

• Finds optimal choice asymptotically, such that if the KG algorithm is followed, it is
always guaranteed to find the optimal decision among finite X after learning from a
finite number of decisions.
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The first property is due to the fact that the knowledge gradient of a decision is the
expected improvement of best reward after seeing one more result from the decision. This
is an immediate corollary from Equations (6) and (10). The second property is due to the
fact that the knowledge gradient is guaranteed to sample each decision frequently enough
to overcome finite random bias introduced by stochasticity. Proof of this property needs
discussion on the learning step of the KG algorithm, found in Section 2.4.

2.4. Learning Step in KG Algorithm

When a decision xt is made and the corresponding result R̂t+1 is observed, the agent
following the KG algorithm must update their belief state Bt+1 to reflect the new set of
information: decision xt and the incurred result R̂t+1. Let the space of belief states be B.
For example, the belief state of KG with independent Gaussian belief model can be stated
as B = R|X | ×R|X |+ , where R+ := {x ∈ R|x ≥ 0}, since the belief state is comprised of |X |
parameters for the means and |X | parameters for the standard deviations of the reward
distribution for each possible decision. The first batch of research papers on KG [16–19]
uses SM : B ×X ×R→ B, named “state model”, to designate the function that maps the
old belief state to the new belief state given a new set of information. The name “state
model” implies that SM the “(transition) model” of the “state” of KG algorithm at any time
t; and it may be understood as the transition functional of belief states, which requires the
information pair

(
xt, R̂t+1

)
at any t to actually become the function that maps the current

belief state Bt to the next belief state Bt+1.
As the belief state is derived from the belief model, the form of SM and the availability

of a closed-form formula depends on the belief model used in the KG algorithm. For
example, in KG with independent Gaussian belief, SM can be stated in a closed form
formula for each of the belief state parameters. First, given xt, its response R̂(xt), and the
belief state Bt = {~µ,~σ} at time t, the updated standard deviation parameter σx,t+1 can be
computed as:

σx,t+1 =

√√√√√ σ2
x,t

1 +
σ2

x,t
σ2

ε

, (14)

and the updated mean parameter µx,t+1 as:

µx,t+1 = σ2
x,t+1

(
µx,t

σ2
x,t

+
R̂(xt)

σ2
ε

)
. (15)

2.5. Modeling Belief and Reward in KG Algorithms

The fundamental setup of KG algorithms and its particular realization under the
independent Gaussian belief model has been the topic up to this point. We take a step back,
and consider an even more fundamental question: how the problem to be solved can affect
the belief model of KG algorithms. Let us assume that a problem to be solved can be cast as
an R&S problem. To use a KG algorithm to solve the R&S problem, there is an important
design decision that must be made as soon as possible—how to decide the distributions
of the belief of the algorithm and the response of the R&S problem. Fundamentally, this
is a modeling decision that is ultimately dependent on whether the original problem
specification is compatible with the modeling, yet there is another compatibility issue
between the modeled problem and the KG algorithm to be used.

First of all, the response R(x) for x ∈ X should be compatible to the problem to solve.
The Gaussian response works well in many cases where the unknown response to each
decision can be safely assumed as a Gaussian random variable with unknown mean and
variance. However, there are situations where this assumption is not compatible. For
example, when the response is known to be binary, such that the response to the decision
may be either positive or negative, the KG algorithm with the Beta–Bernoulli belief model
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is a more natural fit with the problem than the KG algorithm with a Gaussian belief model.
A handful of methods to compute KG with different belief models exist, as listed on Table 1,
based on their response variable types.

Table 1. KG belief models with closed-form update rule and KG computation formula, corresponding
to the response types.

Response Type Response Distribution KG Belief Model

Continuous (Independent) Gaussian Independent Gaussian Belief
Model

Continuous (Correlated) Gaussian Correlated Gaussian Belief
Model

Binary Bernoulli Beta–Bernoulli Belief Model

Positive Continuous Exponential Gamma–Exponential Belief
Model

Positive Discrete Poisson Gamma–Poisson Belief Model
Bounded Continuous Uniform Pareto–Uniform Belief Model

Computing SM efficiently has a significant practical impact on any KG algorithm
since every consecutive decision SM needs to be computed, as it captures how to learn
from the information pair

(
xt, R̂t+1

)
and encodes what is learned into the belief state Bt+1.

Therefore, most KG algorithms pay extra attention to establish a tractable computation
method to update the belief state Bt to Bt+1. In particular, all KG algorithms in Table 1
have a closed-form update rule, explained in more detail in Chapter 2 of [14], whose
derivation originates mainly from the rich theory of conjugate priors in Bayesian inference.
For example, the update rules for belief states in KG with independent Gaussian belief,
for each decision x ∈ X , is the same as the posterior predictive parameter update formula
in Bayesian inference with 1-dimensional Gaussian priors and 1-dimensional Gaussian
likelihood distribution.

Furthermore, all KG algorithms in Table 1 have closed-form KG computation rule,
explained in more detail in Chapter 4 of [14]. Yet, as reviewed in the later section of this
review, most applications report that Gaussian belief models are effective in real world
problem solving, perhaps due to Central Limit Theorem allowing the sample mean of a
wide range of distributions converge to a Gaussian limiting distribution.

A number of important modeling characteristics of KG algorithms arise from how KG
algorithms utilize Bayesian inference can be summarized as follow:

1. Despite the canonical freedom to choose the true distribution of R(x) given decision
x, the choice is often affected by the availability of conjugate Bayesian priors.

2. If a conjugate prior distribution is available, it can be used as the belief model to have
the corresponding state space B valid for all t, which is derived from the theory of
conjugate priors in Bayesian inference.

3. With the conjugate prior distribution used as the belief model, there exists a closed
form formula that can be used as the update rule SM.

4. In practice, Gaussian belief models are most frequently used variant of KG algorithms,
as a wide range of random variables converge to Gaussian according to the Central
Limit Theorem.

3. How KG Relates to Other Algorithms

The KG algorithm started as a solution to thee R&S problem, which can be seen as
a constrained optimization of finding, which of a set of unknown stochastic response
variables R(x)’s, has the largest expectation via iterative choice of T sequential decisions
x0, x1, · · · , xT−1 from a predefined decision space X . Problems that share similar character-
istics were found in several different fields, formulated with different set of assumptions,
and resulted in several different classes of algorithms that solve the respective formula-
tion of the problems. In this section, we will note several classes of problems that are
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closely related to the KG algorithm, and in particular, take a deeper look into Bayesian
optimization.

The response surface method (RSM) was introduced in the early 1950s [20], with
the aim of finding the explanatory variable values that achieve optimal response from
an experiment through a sequence of trial and errors. Considering the computational
capacity of the era, RSM uses second-order polynomials as a surrogate function to model
the response function, and assumes independence among the explanatory variables. RSM
is still used in different fields such as manufacturing optimization [21] and chemical
plants [22] since the method explicitly aims to find the optimum of an unknown response
surface, despite its strong assumptions on the surrogate model. A more detailed survey on
RSM can be found in a historical setup [23] and a modern perspective [24].

Kriging is another method popularized in the field of geostatistics and earth scientists
since the mid-1960s [25]. It provides a statistically well-founded infilling method to recon-
struct the entire surface of function from a finite set of observed samples from the function.
Based on a different set of modeling assumptions, there are many types of kriging, such
as ordinary kriging, simple kriging, and universal kriging. The theoretical foundation of
most kriging methods can be traced back to Gaussian process (GP) regression and Best
Linear Unbiased Prediction (BLUP) [26]. A more detailed comparison of different versions
of kriging methods can be found in [27].

Efficient Global Optimization (EGO), proposed in [28] as a general purpose optimiza-
tion algorithm, embeds the essence of the kriging method into a larger framework that
is later called Bayesian optimization. EGO succinctly captures the idea of kriging to use
Gaussian processes as a surrogate function, which has desirable asymptotic properties from
a Bayesian statistics perspective. In particular, EGO introduces Expected Improvements
(EI) as the acquisition function, which determines the input to use to measure the objective
function, such that following the acquisition function will efficiently optimize an expensive-
to-measure black box objective function in an iterative manner. The original formulation of
EGO did not handle stochastic or noisy measurements, but later [29] extends EGO to build
Sequential Kriging Optimization (SKO), which can handle stochastic black box functions.
More detailed advancement on sequential Kriging-based methods can be found in [30].

The three methods—RSM, kriging, EGO—share a common interest in optimizing over
an unknown function via iterative sampling. However, the three methods have distinctive
characteristics: RSM is explicit in finding the optimum of the unknown function using
simpler surrogate functions, whereas kriging methods aim to minimize variance over the
entire function domain using Gaussian processes, and EGO distinctively emphasizes the
efficiency of using less sampling to find the optimum of the unknown function.

3.1. KG and Bayesian Optimization

Bayesian optimization (BO) [31], which gained attention along with EGO [28] and
even more popularity with its application to optimizing deep neural networks [32], is
another iterative algorithm that finds the global optimum of black-box functions. Almost,
if not every, implementation of BO algorithms uses Gaussian processes as its statistical
foundation to model the unknown function whose optimum point is to be found. Hence, it
is a valid viewpoint to consider BO as a method that uses surrogate functions, such as RSM,
but of tighter ties to statistics to support the asymptotic properties required for modern
machine learning. Gaussian process regression, to be precise, is the main learning process
when BO uses the Gaussian process as a surrogate function. A thorough exposition on how
Gaussian process can be used in machine learning can be found in [33].

BO algorithms have a prototypical structure shared by almost all of their variants.
We present the prototypical BO algorithm in Table 2, using the modeling convention from
the R&S problem and KG algorithm to highlight high-level similarity between the KG
algorithm and BO algorithm.
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Table 2. Algorithmic structure of a prototypical Bayesian optimization solving R&S problems.

Prototypical BO Algorithm

1: Initialize Gaussian process prior using B0 (injecting the modeling assumptions)
2: for t < T do
3: Choose next decision xt ∈ X according to a predefined acquisition function
4: Observe a new data Rt+1 ∼ R(xt)
5: Update the posterior Bt+1 using all available data
6: Increase t
7: Return arg maxx∈X E[R(x)|BT ] using the final posterior BT

A deeper discussion on the theory and application of BO can be found in a series
of recent reviews: ref. [34] is a review of BO from the perspective of machine learning
hyperparameter optimization; ref. [35] provides a recent survey on how BO can be applied
in experimental designs with different acquisition functions; ref. [36] is a more recent but
theory-oriented survey; and lastly, ref. [37] in particular, gives a more detailed explanation
on how KG and BO are related.

KG and BO may share structural similarity in their prototypical form, but there
are several important distinctions. The key differences between KG algorithms and the
prototypical BO algorithm are as follows:

Notably, the decision space size makes the largest difference, as the model parameters
KG algorithm grows proportionally with respect to |X | as it determines the length of belief
state vectors ~µ,~σ; whereas BO algorithm’s model parameters are implicitly determined by
the entire observed dataset, as all datasets are needed to update the posterior model.

Acquisition functions for BO algorithms determine which decision is made to measure
the next data sample, and there are many available choices, for example, maximizing
expected improvement (EI), which became popular from the work on EGO [28]; whereas
KG algorithms are always formulated as to choose the decision with the maximal KG
value. We leave further discussion on different acquisition functions to Section 3.2, in which
we will see how KG can be seen as an acquisition function. Just as how the structural
similarity between KG algorithms and prototypical BO algorithms allow injecting the idea
of KG into the BO framework as an acquisition function, the differences outlined in Table 3
get blurred in recent developments of KG algorithms, as a recent trend of research in
KG algorithms uses KG as an acquisition function in the BO framework to derive new
KG-based algorithms.

Table 3. Comparison of KG algorithm (independent Gaussian belief) and the prototypical BO algorithm.

KG Algorithm Prototypical BO

Modeling Assumption Chosen by belief model Chosen by kernel function
Model Parameters Belief state Entire set of observations

Decision Space Size (|X |) Finite. e.g., X = {1, · · · , K} Infinite. e.g., X = [−1, 1]
Repeated Observations

at the Same Decision Allowed Not allowed

Noise in Observation White noise ε ∼ N (0, σε) Zero noise
Acquisition Function Maximizing KG Various

3.2. KG as an Acquisition Function in BO Framework

Acquisition functions determine the next sampling points in Bayesian optimization
(BO) framework. Frequently used acquisition functions include probability of improvement
(PI) [38], expected improvement (EI) [31], knowledge gradient [18], Gaussian Process Upper
Confidence Bound (GP-UCB) [39], entropy search [40], and predictive entropy search [41],
to list a few in chronological order. Recently, the key idea of KG algorithm, which is to
maximize the improvement of the posterior mean of the optimization objective, has been
applied to the BO framework by using KG νt(x) itself as an acquisition function in BO. In
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Table 4, we compare and contrast PI, EI, and KG to highlight the difference of KG and the
other two classic acquisition functions of BO.

Table 4. Classic acquisition functions in BO and KG, with their expressions.

Name and Reference Acquisition Function Expression

Probability of Improvement (PI) [38] maxx P
[
R(x) ≥ R(x+t )

∣∣Bt
] 1

Expected Improvement (EI) [31] maxx E
[
max

(
0, R(x)− R(x+t )

)∣∣Bt
] 1

Knowledge Gradient [18] maxx E[R(x)|Bt, xt = x]−maxx′{E[R(x′)|Bt]}
1 x+t is the decision whose incurred the largest among all observations till time t− 1, i.e., max

{
R̂0, · · · , R̂t−1

}
.

First of all, KG contains one-step lookahead, whereas PI and EI do not include the
lookahead step. The lookahead in KG takes place within the implicit computation of Bt+1
performed as shown below:

νt(x) := E[Vt+1 −Vt|Bt, xt = x] (16)

= E

max
x′′

E
[
R(x′′)

∣∣Bt+1
]︸ ︷︷ ︸

r.v. w.r.t. Bt

−max
x′

{
E
[
R(x′)

∣∣Bt
]}∣∣∣∣∣∣∣Bt, xt = x

 (17)

= E
[

max
x′′

{
E
[
R(x′′)

∣∣Bt+1
]}∣∣∣∣Bt, xt = x

]
− µx∗t ,t (18)

= E
[

max
x′′

{
E
[

R(x′′)
∣∣∣SM(Bt, xt = x,ERt+1 = µx,t)

]}∣∣∣∣Bt, xt = x
]

︸ ︷︷ ︸
Must compute or approximate to use KG as acquisition function

−µx∗t ,t . (19)

The need for one-step lookahead is shown in Equation (17), where E[R(x′′)|Bt+1] is
a random variable with respect to conditioning on the current belief Bt. KG handles this
lookahead computation using the assumed state model SM. In particular, with independent
Gaussian belief model, the computation can be conducted via Equation (11), whose com-
plexity does not change even when many datapoints are observed. It is noteworthy to point
out that both PI and EI use x+t , which is strictly sample dependent and still computable
even when |X | = ∞; whereas, KG uses maxx′ , which is decision–space dependent and
computable when |X | < ∞. This distinction is due to KG assuming finite X with multiple
observations of the same decision allowed, whereas GP assumes infinite X without allow-
ing multiple observations of the same decision. We only need a certain portion of νt(x)
to be computed, as shown in Equation (19) since arg maxx∈X νt(x) to determine the next
decision xt in KG algorithms according to Equation (10). This is the same case for using KG
as the acquisition function in the BO framework, and we will discuss the related research
in Section 4, which has to bridge the difference between KG algorithms and BO algorithms
such as the cardinality of the decision set X and model parametrization techniques.

Ref. [42] provides a more detailed exposition on how acquisition functions work in
the BO framework, albeit limited to PI, EI, and UCB acquisition functions only. For more
explicit comparison on the other acquisition functions and KG, ref. [43] provides a mildly
technical comparison on how KG differs from other frequently used acquisition functions.

4. Theoretical Advancement of KG

The class of KG algorithms expanded significantly since the birth of the first KG
algorithm, i.e., KG with independent Gaussian belief algorithm. In this section, various
directions of theoretical advancement of KG algorithms are concisely presented, with the
aim of showing the key improvements over the first KG algorithms.
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4.1. Changes in Belief Model Structures

Belief model is the key assumption in any KG algorithm, since it determines both the
decision step through computation of KG itself and the learning step through Bayesian
posterior updating. As different belief models can correspond to different problems to
be solved, KG algorithms with different belief models emerged immediately after KG
algorithm with independent Gaussian belief model. Introducing correlation between the
Gaussian response random variables of different decisions results in KG with correlated
Gaussian belief algorithm [18], whose learning step may be implemented with the following
formula to update the correlated Gaussian belief state:

Σt+1 =

(
(Σt)

−1 +
(

σ2
ε

)−1
ext e
>
xt

)−1
, (20)

µt+1 = Σt+1

(
(Σt)

−1µt +
(

σ2
ε

)−1
R̂(xt)ext e

>
xt

)
, (21)

where Σt is the estimated covariance matrix and µt is the estimated mean vector of the
correlated Gaussian belief state modeled by |X |-dimensional multivariate Gaussian dis-
tribution, and ex is the canonical basis vector of R|X |, where its x-th element is 1 and all
other elements are 0. Computing Equation (20) involves inverting Σt, resulting in O(|X |3)
time complexity of the KG algorithm when implemented naively; yet [18] also presents
a computationally more efficient algorithm to update the belief states and compute the
correlated KG values in O(|X |2 log |X |).

KG algorithms with different belief models based on the availability of Bayesian
conjugate priors, as shown in Table 1, have been designed and presented in [14]. There
may be additional conjugate priors that are yet to be explored as KG algorithms, but most
applications of KG algorithms find Gaussian priors to work well enough.

Taking a different path from the correlated Gaussian belief model, ref. [44] presents
hierarchical KG (HKG) algorithm, which decomposes the response modeling into hierarchi-
cal layers of Gaussian beliefs models, and constructs the exact methods to compute the KG
values. This approach assumes a known external hierarchical structure among different
decisions, such that observing a response from a decision provides information about not
only the decision but also other decisions related according to the hierarchical structure.
Along the line of imposing discrete decomposition of the belief model, ref. [45] proposes
KG with Discrete Priors (KGDP), a KG algorithm with discrete convex combination of
possible truth models, over which discrete belief probabilities are learned. The particular
style of belief modeling via a discrete set of possible truth models is particularly useful
when explainability of the learned model is desired. Due to this property, a similar belief
model is later used in [46] to create a multi-step lookahead extension of KG algorithms.

On the other hand, using functional decomposition of the target function R(x) over
the space of X results in a handful of KG algorithms as well. Using locally parametric
approximation of R(x), which is later published as Dirichlet Cloud Radial Basis Func-
tion (DC-RBF) [47], KG algorithm with approximate modeling of response surface in
locally parametric polynomials is constructed in [48]. This approach naturally lifts the
homoskedastic noise assumption in the original KG algorithm setup, thanks to DC-RBF
allowing different parametric models for each of the Dirichlet clouds. Meanwhile, con-
structing KG algorithms under nonlinear decomposition of the target function has also been
explored [49]. This direction of research leads to KG algorithms defined over continuous
decision space X , which fills one of the important differences between KG algorithms and
prototypical BO algorithms.

4.2. Extending into Continuous Decision Space

KG algorithms assume finite-sized discrete decision space X , such that for each
element x ∈ X the KG value is computed first, and then the arg maxx∈X operation is
conducted to choose the next decision. The KG algorithm that lifts this assumption on
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X by allowing continuous decision space such as [−1, 1] is constructed using a Gaussian
process in [19,50]. Building KG algorithm using the Gaussian process as a foundation
for Bayesian learning naturally allows continuous decision space, yet also succumbs to
the setback of increasing model parameter cardinality proportional to the number of past
observed samples, which was not the case for the finite-decision-set versions of KG with
correlated Gaussian belief model.

The approach of using GP is further refined for the batch learning setting as the
q-KG algorithm [51], inspired by the q-EI acquisition function for batch sequential BO
algorithms [52]. However, q-KG can be applied in an approximate form by discretizing X
for computing KG to keep the computation able to handle a long sequence of observations
in a sampling set is proposed.

Algorithms using KG in conjunction to continuous decision space as its building
blocks emerged as well, such as CLEVI [53], whose decision rule computes the KG value for
the measured point, but extends it to nearby unobserved decisions with Gaussian kernel
convolution. Recently, ref. [54] constructed a more simple, yet generalizable, version of the
original consistency analysis of KG for continuous decision space [19] using reproducing
kernel Hilbert space (RKHS) theory, which is a commonly used tool in the analysis of
GP-based algorithms.

4.3. Improving Computational Efficiency

The KG algorithm with correlated beliefs, in general, has O(|X |3) time complexity
when implemented naively, due to inverting the covariance matrix for each t. Despite more
efficient implementation of correlated Gaussian belief presented in [18], applications with
a large enough decision set may be either forced to use KG algorithm with independent
Gaussian belief model or search for a more efficient version that preserves correlation. As
the second alternative, ref. [55] presents sparse knowledge gradient models, with different
belief model assumptions—the simpler one with sparse linear model via Lasso estimates
and Beta–Bernoulli prior on sparse mixtures, the more general one with sparse additive
model. The idea of introducing sparsity with L1-regularization, as found in Lasso and its
variants, is discussed in greater depth in [56].

Computational efficiency becomes even more important for KG algorithms with con-
tinuous X , since their time complexity is O(n3) where n is the number of observations
made up till now, which can grow prohibitively large with a long sequence of observa-
tions. Wu and Frazier [51] proposed the qKG algorithm, which is designed to solve batch
Bayesian optimization problems, and apply the gradient estimation technique for Gaussian
processes to make the evaluation of the knowledge gradient computationally tractable.
Later, ref. [57] introduced a sample average approximation (SAA) technique to compute
qKG with Monte Carlo sampling, and showed that doing so can obtain better computa-
tional tractability without significant loss of performance. Moreover, ref. [58] showed that
the online variational conditioning (OVC) technique can be applied to qKG to gain both
theoretical improvement in computational tractability and empirical performance gains.

4.4. Expansion of Problem Class

R&S problems do not include context such as the auxiliary information that is related
to the response function to be optimized. Introducing context to R&S problems results
in contextual R&S problems, which can model a richer variety of real world problems.
Context may be represented as a random variable, and a natural extension of KG algorithms
to handle the context variable is to sum over, or “integrate”, KG values conditional on
related contexts. The integration idea is found in many versions of algorithms using KG
such as Convolutional Local Expected Value of Improvement (CLEVI) [53], Conditional
Bayesian Optimization (ConBO) [59], and Integrated KG (IKG) [54]. Each of the algorithms
introduces context into BO ([53,59]) and R&S problesm ([54]), and provides different
approximation methods to handle the integration efficiently while computing the KG
values. Improving computational complexity of IKG, ref. [60] constructed GP-C-OCBA,
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which adapts the optimal computing budget allocation (OCBA) technique from [61] with
integrating context-dependent KG values computed based on a GP framework.

There is another class of problem that extends the prototypical BO problem. Multi-task
Bayesian optimization (MTBO) was first proposed as a problem class in [62] to build a
principled approach to provide warm-starting in Bayesian optimization with multi-task
Gaussian processes [63]. MTBO can be interpreted as a model to represent a real-life situa-
tion where multiple sources of information are available to solve a Bayesian optimization
problem. Considering the possibility of having multiple sources of information that have
different costs to measure, ref. [64] proposed misoKG, an algorithm that adapts KG to
Multi-Information Source Optimization (MISO) problems, and its parallelized computation
method. Meanwhile, CLEVI, proposed in [53] to handle context-enabled R&S problems,
can also solve multi-task Bayesian optimization problems with continuous action space.
An evident trend in recently developed algorithms using KG to solve context-enabled
problems is that the distinction between KG algorithms and BO algorithms becomes more
blurry, due to the widespread use of GP and the similarity between R&S problem objective
and BO objective.

4.5. Exotic Objective Functions

R&S problems and BO frameworks share a common objective function, which can be
represented in a problem-agnostic manner as follows:

max
x∈X

E[F(x, W)], (22)

where W represents the canonical random variable that induces F to a random variable,
which can be the random response in R&S problems or the expensive-to-measure function
in a BO framework.

Meanwhile, KG can also be used to solve problems with a different kind of objective
function. For example, instead of optimizing the expectation of the function, it is possible
to optimize the risk measure of the objective function such as Value-at-Risk (VaR) or
Conditional Value-at-Risk (CVaR). Ref. [65] designed a Bayesian optimization method with
KG acquisition function that optimizes over the following objective function

min
x∈X

ρ[F(x, W)], (23)

where ρ is a risk measure, which by its nature is the target of minimization.
Another approach that gives rise to a different objective function is applying the

principle of KG in an inverse reinforcement learning (IRL) setting, where the boundary
of the search space is set by a KG-like objective function, within which the search for the
best option from the response of the human decision maker takes place [66]. This approach
maximizes the following type of objective function:

max
x∈X

g( f (x)), (24)

where f : Rd → Rk models the black-box function that is expensive to measure and
g : Rk → R models the preference or utility function originating from the decision-making
agent. This approach can be seen as a decomposition of the subjective reward function R
that is directed as modeled in the typical R&S problems or BO problems into g ◦ f , such
that the randomness due to the environment is relegated to f and the subjectiveness is
represented by g as the agent’s preference.

Despite the original KG algorithm being designed to solve the R&S problem that only
emphasizes the quality of the final estimation or ranking of decisions, there are many real
world problems where the cumulative response from the trial and error steps is equally
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important. Natural form of objective function to model such “online” problems can be
written as:

max
x0,··· ,xT−1

T−1

∑
t=0

E[R(xt)], (25)

where x0, · · · , xT−1 ∈ X . For such problems, ref. [67] proposes the online KG algorithm,
which is an adaptation of KG with Gaussian beliefs to such problems optimizing the
cumulative response over a finite time horizon. Later, this direction of research is extended
with online regularized KG algorithm [68], which has not only the asymptotic consistency
like other KG algorithms, but also no-regret property when solving the online learning
objective function in Equation (25) is seen as a stochastic multi-armed bandit problem.

4.6. Lifting Sampling Constraints

Lastly, there are series of studies related to lifting the sampling assumption in the
classic R&S problem, which assumes one-sample-at-a-time and equal cost (either in time or
effort or both) per sample.

Ref. [69] presents batch KG (BKG) algorithm, which applies KG to nested optimization,
where the need for multiple decision making for each layer of optimization is natural. As
BKG algorithm solves nested optimization problems iteratively, it computes the KG of
heterogeneous combinations of decisions to make, at each iteration, multiple decisions that
pertain to each layer of the nested objective function.

Similarly, but instead of using a nested optimization setup but a parallel BO setting,
ref. [51] extends KG algorithms to handle multiple samplings from the BO perspective,
which allows multiple decisions by parallel agents.

On a different note, ref. [46] designed the multiperiod KG algorithm, whose belief
model allows computation of the multiple-step lookahead version of KG. This allows
computing KG for a sequence of multiple decisions, albeit the multi-step is limited to
repeating the same decision multiple times. This approach is related in its spirit to multi-
fidelity BO, which also assumes the problem class, where multiple sources of information
with different precision are available.

5. Applications of KG

In addition to the theoretical advancements in research related to KG, we provide a
wide coverage of how KG algorithms are used in different applications, focusing on results
from the recent five years. KG algorithms are widely used in real world problems, especially
where the real version of the problem is hard or expensive to measure or simulate.

5.1. Material Sciences

Ref. [45] uses KG with discrete priors (KGDP) to predict the parameter setting to
maximize nanoemulsion particle stability with a limited budget of experimental validations.
Ref. [70] uses KG with support vector machine (SVM) with radial basis kernel function to
find new alloy materials with desired properties. Ref. [71] constructs a multi-information-
source Bayesian optimization framework for materials design, which fuses information
from sources of different fidelity, with KG with correlated Gaussian belief. Ref. [72] uses
KG as a key element to drive their autonomous material research platform, in which
Bayesian optimization is augmented with problem-specific domain knowledge. Ref. [73]
uses KG with correlated belief in the context of Bayesian optimization and applies it to
select molding compounds that improves solder joint robustness in power devices. Note
that the decision rule of the KG algorithm can be seen as one of the possible acquisition
functions to implement Bayesian optimization in chemical engineering applications [74].

5.2. Mechanical and Aerospace Engineering

Ref. [75] uses KG to determine the best ball radius to achieve the longest life ex-
pectancy of ball bearings. Ref. [76] deploys KG algorithms with multiple information
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source fusion technique to optimize the mechanical behaviors of dual-phase steel. With a
similar approach, ref. [77] solves an aerodynamic design task as a constrained optimization
problem. Ref. [78] uses KG with correlated belief algorithm to find the optimal frequency
selection algorithm for optimally estimating the position of an unmanned aerial vehicle
(UAV). Ref. [79] solves a sensor path planning problem, in which a UAV tries to find the
signal emitter, by casting it as an R&S problem with a policy rollout algorithm and solving
the R&S problem with KG algorithm. Ref. [80] uses KG acquisition function to design its
sample-efficient adversarial attack algorithm toward deep neural network-based driving
algorithms in autonomous vehicles.

5.3. Biological and Cognitive Science

Ref. [81] performs a trial-and-error behavioral experiment on multi-armed bandit
(MAB) problem, and shows that KG effectively models the observed human behavior.
Ref. [82] applies Sparse KG algorithm [83] to efficiently predict which part of RNA structure
has biological activity, with the aim of designing efficient experimental validations. Ref. [84]
uses the KG acquisition function to solve inverse reinforcement learning (IRL) problems that
model (1) predicting gene expression data from melanoma gene regulatory network and
(2) predicting gut microbial community intervention process. Ref. [85] optimally designs
the time for hydrogels to be created from silk and embedded E. coli with Generalized
Knowledge Gradient (GKG), a custom KG policy for the problem design space.

5.4. Medicine

Ref. [86] applies KG with correlated Gaussian beliefs in a simulated drug discovery
scenario, in which different but correlated drug candidates to be tested are sequentially
chosen to find the best candidate. Ref. [87] also uses KG with correlated Gaussian beliefs to
determine how many actuators are needed to design soft catheters given an intracranial
vessel target region. Ref. [88] uses a KG acquisition function to decide the next stimulus
orientation of transcranial magnetic stimulation (TMS) to minimize the number of stimuli
to achieve desired results in TMS therapy. Ref. [89] applies both KG and optimal computing
budget allocation strategy to create an active learning method for adaptive clinical trial
design. Ref. [90] solves the budget allocation problem for multiple correlated medical
interventions using correlation KG (cKG), an adaptation of KG to the stopping time problem,
along with correlation PDE heuristics.

5.5. Computer Science and Optimization

KG can be used as a tool to guide optimization problems in general from within.
Ref. [75] presents KGCS, an improved cuckoo search algorithm that uses KG to determine
the populations of cuckoos to be used in the next batch of search. Ref. [91] uses KG in
urban delivery fleet allocation problems, and [92] solves the sequential transit route design
problem using KG with correlated beliefs. Ref. [93] uses the KG acquisition function to
construct a two-stage Bayesian optimization framework to solve the State Space Model
(SSM), a modeling technique of a system with an underlying hidden Markov model.
Ref. [94] presents a unified method to decide between using simulation results or perform
data collection by comparing the value of information computed by KG.

6. Discussion and Future Direction

Research in KG seems to have entered an explosive stage both from the theory per-
spective and application side. Still, there are many underexplored perspectives of the
theoretical research on KG. Hoping that future breakthroughs in KG will lead not only to a
richer theory of KG but also more widespread applications of KG, we overview some of
the potential future research directions in more detail.
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6.1. Scalability of KG in Continuous Decision Space

Extension of KG algorithms to handle continuous decision space X relies on Gaussian
process (GP) regression, which is not readily scalable due to its cubic complexity with
respect to sample counts. Recently, ref. [95] showed that gradient estimation for Gaussian
process can lift the scalability issue of GP, which may lead to similar speedup for KG in
general. Meanwhile, the Hybrid KG computation method using both dynamic discretiza-
tion of X and Monte-Carlo sampling technique [59], may provide a practical alternative.
Moreover, approximation via variational inference techniques, which has been applied
to GP [96] to show scalability improvements, may provide another scalability boost for
KG with continuous action space. From a different note, KG with GP is still too slow to
be used in realtime applications, as [97] comments that KG, with several other BO-based
algorithms, cannot be used for its application of online scanning probe microscopy due to
high computational latency.

6.2. Finite-Time Behavior Analysis

Asymptotic consistency of KG algorithms have been established since the first KG
algorithm, yet the finite-time behavior of KG algorithms is not as widely explored. First
distribution-free finite-time performance bound of KG algorithms on R&S problems are
shown under submodular objective function assumption, in particular under |X | = 2
and independent belief case [98]. Despite being distribution-free, using this breakthrough
requires proving the submodularity assumption of the objective function per problem
basis. On the other hand, by restricting the distribution, ref. [99] provides theoretical
bounds on the performances of KG with Gaussian beliefs—probability of error in Best Arm
Identification problem and simple regret in Multi-armed Bandit problems.

6.3. Nonstationary or Mis-Specified Problems

Problems related to KG, such as the R&S problem and BO problem, assume stationary
unknown truth, as this assumption is crucial in the eventual learning of the optimal
solution by Bayesian inference. This limitation may be partially lifted using time-varying
discretization of decision space, as seen in q-KG [51], PES [41], and parallel-PES [100].

Moreover, the initial problem specification may need to be modified. For example,
ref. [82] uses the RNA-specific method called “length mutagenesis” to expand action space
dynamically, due to the full decision space being too spacious. Still, KG algorithms have
stronger empirical robustness against mis-specified priors than myopic Bayesian sequential
decision-making algorithms such as Thompson Sampling (TS) [101] .

7. Conclusions

Knowledge Gradient (KG) started as an iterative algorithm that solves ranking and
selection (R&S) problems, by quantifying the value of information resulting from com-
mitting to a decision under uncertainty. Recently, research on KG has established a rich
class of algorithms in itself and has affected many related problems and algorithms. In
particular, many recent theoretical breakthroughs on KG rely on the amalgamation of KG
with Bayesian optimization (BO) and the Gaussian process (GP), which allowed mutual
benefits in both areas of research: exploiting recent advancement in BO and GP to bolster
theoretical understanding of KG-based algorithms, and allowing KG as an acquisition func-
tion to provide the BO framework with a lookahead decision model that often shows better
performance in practical applications. Recently, there has been a trend of computer-aided
decision making in scientific experiments, which is a timely match with KG algorithms:
invoking KG algorithm’s property of making the best decision that maximizes the expected
gain from learning the response of that decision once more. Computerized decision-making
agents for scientific experiments can optimize every trial whose response is random and
cost is heavy. As the potential applications of KG diversifies, theoretical research on the
mathematical characterization of KG has been of greater importance to a wider audience
than ever.
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