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Abstract: In this paper, we define characteristic axioms for 3D matrix games and extend the definitions
of the decision criteria under uncertainty to three dimensions in order to investigate the simultaneous
effect of two different states on the decision process. We first redefine the Laplace, Wald, Hurwicz,
and Savage criteria in 3D. We present a new definition depending on only the ∞-norm of the 3D
payoff matrix for the Laplace criterion in 3D. Then, we demonstrate that the Laplace criterion in
3D explicitly satisfies all the proposed axioms, as well as the other three criteria. Moreover, we
illustrate a fundamental example for a three-dimensional matrix with 3D figures and show the usage
of each criterion in detail. In the second example, we model a decision process during the COVID-19
pandemic for South Korea to show the applicability of the 3D decision criteria using real data with
two different states of nature for individuals’ actions for the quarantine. Additionally, we present an
agricultural insurance problem and analyze the effects of the hailstorm and different speeds of wind
on the harvest by the 3D criteria. To the best of our knowledge, this is the first study that brings 3D
matrices in decision and game theories together.

Keywords: characteristic axioms; multi-state games; three-dimensional matrix games; game against
nature; COVID-19; insurance problem
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1. Introduction

The decision-making process involves some difficulties such as choosing among a
large number of criteria, and alternatives, the determination of the importance of the criteria
(i.e., the weights of the criteria), collecting the related information about the problem, and
developing a model for the decision-making problem [1–3]. The process also requires
significant time and effort to analyze the numerous actions using systematic techniques. In
particular, decision-making under uncertainty is more difficult since there is no knowledge
about the player’s behavior [4]. These types of games are known as the games against
nature in the literature. Games against nature are the games in which the payoffs in the
game are unknown and the probability with which the player will choose his/her actions is
entirely unknown [5,6]. Pazek and Rozman stated how a player decides under uncertainty
in [7] as follows:

1. Make a list of all possible alternatives for obtaining knowledge, experimenting, and
taking action.
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2. List all events that may possibly occur.
3. Arrange all relevant data and choices/assumptions.
4. Sort the effects of each choice of action on a scale.
5. Determine the probability of an uncertain event occurring.

Over time, some mathematical methods have been developed for decision-making
under uncertainty. For example, Laplace, Wald, Hurwicz, and Savage presented some
criteria for these types of games [8–10]. On other hand, the results of decisions not only
depend on the decisions themselves, but also on some exterior factors that cannot be
controlled by the player. The word “nature” in games against nature stands for the entirety
of these external factors. The state of nature refers to the complete explanation of the
external factors concerning all aspects of the situation [11]. Researchers have improved the
methodologies and presented more complex algorithms to find an answer for such decision
processes, which are known as decision criteria under uncertainty or multicriteria decision
methods. Then, these methods are applied to various types of problems. For example, the
criteria under uncertainty are usually applied to agricultural problems in the literature due
to the unpredictable behavior of nature [7,12,13]. However, the application area of these
criteria is not limited to only agricultural applications. For example, in 2006, Ballestero et
al. used these criteria to analyze the best portfolio options in the Frankfurt and Vienna
Stock Exchanges [14]. In 2007, Ünal and Atılgan applied the decision-making techniques to
the apparel industry [15]. Galasso and Thiery, in 2009, investigated the consumer–supplier
relationship using these criteria [16].

Green and Weatherhead, in 2014, studied the climate change problem with the criteria
under uncertainty [17]. In 2019, Ma et al. used the multicriteria decision technique to select
a portfolio fulfilling the requirement [18]. In 2020, İzgi and Özkaya considered the necessity
of the agricultural insurance problem by these criteria with a method called the matrix norm
approach from game theory [12]. In the same year, Yazdani et al. used the multicriteria
methods to decide the optimal location of healthcare waste disposal [19]. Furthermore,
in 2020, Saldanha et al. showed that multicriteria decision-making under uncertainty
provides a rational solution to shell-and-tube heat problems [20]. In 2021, Ulansky and
Raza proposed an approach that generalized the decision criteria under uncertainty [21].
Shmelova et al. investigated the selection of the optimal location for a remote tower center
by using the criteria of Laplace, Wald, Savage, and Hurwicz [22]. Pak et al., in 2021, applied
the criteria for assessing the economic efficiency of investment projects under the conditions
of radical and probabilistic uncertainties [23]. Shmelova and Sechko studied the hybrid
expert system for collaborative decision-making in transportation services of healthcare
needs by using the decision criteria under uncertainty [24]. Wang et al. aimed to develop
an indicator framework for integrated monitoring of the costing process for a patient by
rehabilitation medical institutions with the help of decision criteria [25]. Balasa et al., in
2022, investigated the risk management and risk control in a wind tunnel by the criteria
under uncertainty [26]. Gomes and Martins represented the details of the decision criteria
under uncertainty in their book in detail and also presented some applications of the
criteria [27]. Balakina et al. used the criterion under uncertainty to demonstrate how large-
scale railway projects of federal significance should be computed [28]. Vdovyn et al. used
Hurwicz, Bayes–Laplace, Wald, Savage, and another decision criterion to model economic
systems by game theory [29]. Walker et al. studied the effects of future developments on
buildings’ greenhouse gas emissions by scenario-based robustness assessment with the
help of decision criteria [30].

In addition to these, in this paper, we mainly focus on the methods established by
Laplace, Wald, Hurwicz, and Savage and combine the 3D matrices together. All the
definitions and applications above are modeled with two-dimensional matrices and related
matrix operations. However, it may be more useful to model a problem with higher-
dimensional matrices depending on the type of problem since those matrices may express
and reflect the problem better than it is stated in two dimensions. To develop a higher-
dimensional model with matrices, scientists began by defining the 3D matrices in the
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literature. Even though there are many different definitions of the 3D matrices, we ground
ourselves on the definitions in [31]. İzgi, in 2015, explicitly defined and proved 3D matrix
norms with details in his Ph.D. thesis. Additionally, the applications of the 3D matrix
norms to mathematical finance were presented in [31,32]. In 2017, İzgi and Özkaya stated
and proved the equivalence of the 3D matrix norms. They demonstrated an application
of these norms’ inequalities on some simulation results obtained by real data using the
methods of mathematical finance [33]. In 2018, İzgi and Özkaya presented the fundamental
definitions and properties of three-dimensional matrices [34].

Besides the numerous theoretical studies about 3D matrices in the literature, there
are different applications of 3D matrices in physics, electrical engineering, mathematical
finance, etc. In 1979, Cosima proved that, if each of the horizontal plane sections of the
p× q× r, three-dimensional matrix A, has full-term rank, then the plane term rank of the
3D matrix A is larger than m−

√
m, where m = min{p, q, r}, which is used in physics [35].

In 1996, Burkard et al. investigated 3D assignment problems as considering the cost
coefficients can be decomposed into three different values [36]. In 2006, Ignatova and
Styczynski showed the graphical representation of the transition number matrix and the
Markov matrix in 3D [37]. As seen from the studies above, three-dimensional matrices
have a wide range of use in the literature.

In this paper, we specifically study the decision under uncertainty and its fundamental
criteria such as those of Laplace, Wald, Hurwicz, and Savage. These criteria consist of
only one state; in other words, these criteria may refer to the single-state decision criteria.
We present the extension of the criteria under uncertainty to the three-dimensional cases
by adding a second state of nature in the payoff matrix by considering that the decision-
making process in real-life problems is usually affected by more than one factor. Therefore,
we extend the definitions of the Laplace, Wald, Hurwicz, and Savage criteria to the three-
dimensional case to capture and analyze the effects of the second state of nature, the
multiple state decision criteria. In the literature, there are studies about the multiple
criteria/multicriteria decision-making process [38–40]. However, this study improves the
multiple-state decision-making process based on the decision criteria under uncertainty and
3D matrices. The number of states may be increased by the usage of higher-dimensional
matrices. According to our literature review, the decision and game theories come together
with the 3D matrices for the first time in this study. Thus, we aim to bring a new perspective
to game theory and decision theory by these extensions, that is the multi-state decision
criteria, via the usage of 3D matrices.

The remainder of the paper is organized as follows: In Section 1.1, we present some
theoretical background and definitions of Laplace, Wald, Hurwicz, and Savage. In Section 2,
we present the characteristic axioms of the criteria in 3D. Moreover, we define the three-
dimensional decision criteria such as those of Laplace, Wald, Hurwicz, and Savage. Addi-
tionally, we demonstrate that each criterion satisfies the characteristic axioms of the criteria
in 3D. In Section 3, we give a fundamental example explaining the usage of the 3D criteria.
Furthermore, we present real-life problems modeled with 3D matrices and solve them by
using the 3D decision criteria, explicitly. Section 4 concludes the paper.

1.1. Some Theoretical Background

In this section, we present some notions and definitions that are used as a basis
throughout the study. To show the correspondence between the state of nature and actions
selected by a player, we first focus on the representation of the game against nature. The
consequences of actions depending on states are usually represented as in Table 1, including
the outcome of the actions [6,11].
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Table 1. Representation of game against nature [11].

State o f Nature
Values S1 S2 . . . Sn

A1 V11 V12 . . . V1n
A2 . . . . . .

Actions . . . . . . .
. . . . . . .
. . . . . . .
Am Vm1 Vm2 . . . Vmn

In decision theory, there are different types of decisions such as decision under risk,
decision under certainty, decision under uncertainty, and multicriteria decision [5,41]. The
types of uncertainty are called by different authors in various [42–44]. However, we can
summarize them as follows [11]:

Definition 1 (First type of uncertainty). The player knows the states of nature.

Definition 2 (Second type of uncertainty). The player knows that states of nature, but not the
probabilities.

Definition 3 (Third type of uncertainty). The player knows both the states of nature and the
probabilities.

The player decides the decision rule after stating the problems clearly and analyzing
the situations. The best-known decision-making rules are those of the Laplace, Wald,
Hurwicz, and Savage criteria, among others [11].

Definition 4 (Laplace criterion). Let pij denote the probabilities of the n states of nature and vij

denote the outcomes by the usage of the ith action chosen by the player within the jth state of nature.
The Laplace value, also known as the expected monetary value, Ei for the action Ai is evaluated as

Ei =
n

∑
j=1

pijvij.

Then, the Laplace criterion implies the action with a maximum Ei so that we select

Aopt = max
i=1...m

{Ei}.

In addition to this definition, Laplace defines the criterion in [8] as a maximum of

ri =
1
n

n

∑
j=1

vij.

Definition 5 (Wald criterion). The worst potential outcome that might occur as a result of action
Ai has a value for the decision-maker of

Wi = min
j
{vij}

where Wi is the security level of the action Ai. Wald recommends that the player should select the
action with the highest security level as:

Wopt = max
i
{Wi}.
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Definition 6 (Hurwicz criterion). Hurwicz established an optimistic criterion by taking into
account the best-possible result of each action. The optimism level is defined as

Hi = max
j
{vij}

where Hi is the best result if action Ai is taken. Hurwicz’s maximax return criterion is

Hopt = max
i
{Hi}.

Hurwicz also defined the optimism–pessimism index z with 0 ≤ z ≤ 1 in 1951 by
considering a balance between maximum optimism and pessimism [9]. Moreover, Hurwicz
proposed the decision rule with regard to the index z as:

zWopt + (1− z)Hopt = max
i
{zWi + (1− z)Hi}.

In the same year, 1951, Savage proposed a criterion containing the comparison of the
result of every action with the results of other actions under the same state of nature [10].

Definition 7 (Savage criterion). Let the regret Rij refers to the difference between the values
coming from the best action given that Sj is the true state of nature and the value resulting from Ai
under Sj:

Rij = max
i
{vij} − vij.

By the regret matrix of Rij values, every action should be assigned the index of worst regret Yi
resulting from action Ai:

Yi = max
j
{Rij}

Savage’s minimax regret criterion is defined as:

Yopt = min
i
{Yi}.

2. Extension of Decision Criteria to Three Dimensions

In this section, we present the extensions of the characteristic axioms of the criteria
in three dimensions. Then, we give the definitions for the Laplace, Wald, Hurwicz, and
Savage criteria in 3D and prove the related axioms of each criterion.

2.1. Axiomatic Characterization of Criteria in Three Dimensions

We extend and present the characteristic axioms presented by Milnor in [5], which
characterize the decision criteria in decision theory, in 3D. These axioms are also mentioned
in Pataki’s paper [11]. First of all, we introduce the definitions of the row-block and
column-block used throughout the extensions for 3D matrices.

Definition 8. A row-block of a three-dimensional matrix A is the horizontal section of the matrix
A ∈ Rm×n×s such that the rth row-block is denoted by A(r, j, k), where r is a fixed number in [1, m]
and j = 1, ..., n and k = 1, ..., s. Similarly, a column-block of a three-dimensional matrix A is the
vertical section of the 3D matrix A such that the tth column-block is denoted by A(i, t, k), where t is
a fixed number in [1, n], i = 1, ..., m, and k = 1, ..., s.

Axiom 1 (ordering). The relation is complete ordering. In other words, the following two laws are
satisfied:

• For any two row-blocks r and r′, either r ≥ r′ or r′ ≥ r.
• If r ≥ r′ ≥ r′′ holds for r, r′, and r′′ row-blocks, then r ≥ r′′.
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Axiom 2 (symmetry). The relation between any two row-blocks is not changed by any permutation
of the row-blocks.

Axiom 3 (strong domination). If each element of pth row-block is greater than qth, then rp ≥ rq.

Axiom 4 (continuity). If a sequence of three-dimensional matrices Pi converges to the matrix P
and if ri ≥ ri

′ for all i, then the limit row-blocks r and r′ satisfy r ≥ r′.

Axiom 5 (linearity). The ordering relation is not changed if each element ak
ij of the 3D matrix A is

replaced by λak
ij + µ and λ > 0.

Axiom 6 (row-block adjunction). The order of any two row-blocks is not changed by the
adjunction of a new row-block.

Axiom 7 (column-block linearity). The order of the row-blocks is not changed if a constant is
added to a column-block.

Axiom 8 (column-block duplication). The ordering is not changed if a new column-block,
identical to some old column, is adjoined to the matrix.

Axiom 9 (convexity). If row-block r is equal to the average 1
2 (r
′+ r′′) of two equivalent row-blocks

(i.e., r′ ∼ r′′, if r′ ≥ r′′ and r′′ ≥ r′), then r ≥ r′.

Axiom 10 (special row-block adjunction). The ordering between the old row-blocks is not
changed by the adjunction of a new row-block, providing that no component of this new row-block is
greater than the corresponding components of all old row-blocks.

In the following subsections, we present the extensions of the two-dimensional criteria
to three dimensions.

2.2. Laplace Criterion in 3D

Definition 9. Let A ∈ Rm×n×s be a three-dimensional matrix with entries vk
ij. The Laplace

criterion in 3D is defined as

Ek
i =

n

∑
j=1

pk
ijv

k
ij

where pk
ij denotes the probabilities of the each state of nature for i = 1, 2, ..., m and k = 1, ..., s. Then,

the Laplace criterion implies the action with

Aopt = max
i=1,...,m

{Ei}

where Ei =
s
∑

k=1
Ek

i for all i=1, ..., m.

For simplicity, as in [5], if we assume the probabilities of the states of nature are equally
likely, we represent the Laplace criterion for a matrix A in 3D, which is the extended form
of the definition given by Laplace in [8], as a maximum of ri = 1

ns ∑s
k=1 ∑n

j=1 vk
ij over i,

where ri represents the ith row-block of 3D matrix A.

Proposition 1. The Laplace criterion satisfies the ordering axiom.

Proof. Let A ∈ Rm×n×s and ri = 1
ns ∑s

k=1 ∑n
j=1 vk

ij. Since ri ∈ R, it is obvious that the
relation has complete ordering. Hence, the relation in the row-blockwise sense is a complete
ordering.
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Proposition 2. The Laplace criterion fulfills the symmetry axiom.

Proof. Assume ri ≥ rj holds, where 1 ≤ i, j ≤ m. Let us interchange the order of the
row-blocks in the 3D matrix A as i↔ j. Then, the relation turns out to be rj′ ≥ ri′ , where

j
′
= i and i

′
= j in the original matrix. The only change occurs in the notation in this case,

but not in the relation sense.

Proposition 3. The Laplace criterion satisfies the strong domination axiom.

Proof. Assume that A(p, j, k)− A(q, j, k) > 0 while 1 ≤ p, q ≤ m and for all 1 ≤ j ≤ n, 1 ≤
k ≤ s. Since rp = 1

ns ∑s
k=1 ∑n

j=1 A(p, j, k) and rq = 1
ns ∑s

k=1 ∑n
j=1 A(q, j, k) by the definition,

then, rp − rq = 1
ns ∑s

k=1 ∑n
j=1(A(p, j, k)− A(q, j, k)) > 0. Thus, the result follows.

Proposition 4. The Laplace criterion satisfies the continuity axiom.

Proof. Let Pi be a sequence of 3D matrices and P ∈ Rm×n×s a three-dimensional matrix
while limi→∞ Pi = P. Furthermore, assume that rk

i ≥ r̄i, limi→∞ rk
i = rk, and limi→∞ r̄i = r̄

hold for all k, where rk and r̄ are the row-blocks of Pi and P, respectively. Since the row-
blocks are two-dimensional matrices and the Laplace criterion holds for the continuity
axiom in 2D, the result follows: rk ≥ r̄.

Proposition 5. The Laplace criterion holds for the linearity axiom.

Proof. Assume that rp ≥ rq holds for any 1 ≤ p, q ≤ m. Then, let us replace each ak
ij of 3D

matrix A with λak
ij + µ where λ > 0. Accordingly,

r̄p =
1
ns

s

∑
k=1

n

∑
j=1

[
λA(p, j, k) + µ

]

=

(
λ

ns

[ s

∑
k=1

n

∑
j=1

A(p, j, k)
]
+ µ

)

≥
(

λ

ns

[ s

∑
k=1

n

∑
j=1

A(q, j, k)
]
+ µ

)
= r̄q

holds by the assumption. Thus, r̄p = λrp + µ ≥ λrq + µ = r̄q, and the proof is complete.

Proposition 6. The Laplace criterion holds for the row-block adjunction.

Proof. Assume ri ≥ rj. Let us add rt to the matrix. Since there is a complete ordering, we
can say (ri ≥ rt or rt ≥ ri) and (rj ≥ rt or rt ≥ rj). Then:
Case I. ri ≥ rt and rj ≥ rt → ri ≥ rj ≥ rt ≥→ ri ≥ rj.
Case II. ri ≥ rt and rt ≥ rj → ri ≥ rt ≥ rj → ri ≥ rj.
Case III. rt ≥ ri and rj ≥ rt → rj ≥ rt ≥ ri. Since we assume ri ≥ rj, this case is not valid
due to the violation of the assumption.
Case IV. rt ≥ ri and rt ≥ rj → rt ≥ ri ≥ rj. By the assumption, the result is trivial.

Proposition 7. The Laplace criterion holds for the column-block linearity.

Proof. Let us redefine the column-perturbed version of the 3D matrix A with Ā by adding
any constant c ∈ R to each element in the tth column of A (i.e., Ā(:, t, :) = A(:, t, :) + c; here,
the colon “:” refers to all the elements in the corresponding places). Now, assume that rp ≥ rq
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holds for 3D matrix A. Then, rp = 1
ns ∑s

k=1 ∑n
j=1 Ā(p, j, k) ≥ 1

ns ∑s
k=1 ∑n

j=1 Ā(q, j, k) = rq

also operates for Ā, and the proof is complete.

Proposition 8. The column-block duplication axiom is not valid for the Laplace criterion.

Proof. Since this axiom is not valid for the Laplace criterion in the two-dimensional case
and by Definition 9, the axiom is not valid for the Laplace criterion in 3D as well.

Proposition 9. The Laplace criterion holds for the convexity.

Proof. Assume that r = 1
2 (r
′ + r′′), where r′ and r′′ are equivalent row-blocks while

r = 1
ns ∑s

k=1 ∑n
j=1 A(i, j, k), r′ = 1

ns ∑s
k=1 ∑n

j=1 A(i
′
, j, k), and r′′ = 1

ns ∑s
k=1 ∑n

j=1 A(i
′′
, j, k)

for fixed i, i
′

and i
′′

in [1, m]. Then, we have

r =
1
ns

s

∑
k=1

n

∑
j=1

A(i, j, k) =
1

2ns

[ s

∑
k=1

n

∑
j=1

A(i
′
, j, k) + A(i

′′
, j, k)

]
.

On the other hand,

r− r′ =
1

2ns

[ s

∑
k=1

n

∑
j=1

A(i
′
, j, k) + A(i

′′
, j, k)

]
− 1

ns

s

∑
k=1

n

∑
j=1

A(i
′
, j, k)

=
1

2ns

s

∑
k=1

n

∑
j=1

(
A(i

′′
, j, k)− A(i

′
, j, k)

)
≥ 0 (by the definition of the row equivalence)

and the proof is complete.

Proposition 10. The Laplace criterion holds for the special row-block adjunction axiom.

Proof. We skip the proof since it is similar to the proof of Proposition 6.

According to the definition of Laplace in [8,45], we present the new definition of the
Laplace criterion in terms of the ∞-norm of the matrix in 3D as follows:

Definition 10 ([31,32]). Let A ∈ Rm×n×s be a 3D matrix and the ∞-norm of A be defined
as follows:

||A||∞ = max
1≤i≤m

s

∑
k=1

n

∑
j=1
|vk

ij| = the largest absolute block-row sum.

Definition 11. Let A ∈ Rm×n×s be a 3D matrix with non-negative entries, then the Laplace
criterion implies the action with ||A||∞, where ||A||∞ is the largest absolute row-block sum for the
three-dimensional matrix.

Remark 1. It is important to notice that the Laplace criterion is invariant under the perturbation
of the matrix by Proposition 5. In order to use the new definition of the Laplace criterion in terms
of the infinity norm for a 3D matrix with some negative entries, we firstly get rid of the negative
entries in the matrix by adding ||A||max, which is the largest absolute value of the element A, to
each entry of the matrix.

Remark 2. Definition 11 is also valid for two-dimensional matrices since the linearity axiom holds
in two dimensions, as well.
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2.3. Wald Criterion in 3D

Definition 12. Let A ∈ Rm×n×s be a 3D matrix with entries vk
ij. The Wald criterion is defined in

three dimensions as

Wk
i = min

j
{vk

ij}

Wi = min
k
{Wk

i }

Wopt = max
i
{Wi}

where i = 1, ..., m, j = 1, ..., n, and k = 1, ..., s.

The characteristic axioms of the Wald criterion are presented in the following
propositions.

Proposition 11. The Wald criterion in three dimensions satisfies Axioms 1, 2, 4–6, and 10.

Proof. Since the proofs are trivial, we skip them.

Proposition 12. The Wald criterion in three dimensions does not hold for the column-block linear-
ity axiom.

Proof. Since the order of the row may change by adding a constant to a column of the 2D
matrix (i.e., the Wald criterion does not have the column linearity property in 2D) in terms
of the Wald criterion, the axiom is not valid in 3D either, concerning the definition of the
Wald criterion. (See Appendix A for an illustration).

Proposition 13. The Wald criterion in three dimensions satisfies Axioms 3 and 8.

Proof of Axiom 3. If each element of the pth row-block is greater than the qth row-block’s,
then we have rp = max(Wp) ≥ max(Wq) = rq.

Proof of Axiom 8. Let rp and rq be any two row-blocks of the 3D matrix A while rp ≥ rq.
Since the addition of the duplicated column-block will not make any significant sense for
the result in view of the 3D Wald criterion definition, the relation will be kept.

Proposition 14. The Wald criterion in 3D is suited to the convexity axiom.

Proof. By considering the definition of the Wald criterion in three dimensions, let A be
a 3D matrix in Rm×n×s, and suppose that r′ and r′′ are equivalent row-blocks such that
r = 1

2 (r
′ + r′′), while r, r′ and r′′ represent the i0-th, i

′
-th, and i

′′
-th row-blocks of matrix

A, where 1 ≤ i0, i
′
, i
′′ ≤ m. According to the assumptions and the definition of the Wald

criterion in 3D, we have

r− r′ = min
k

min
j
(A(i0, j, k))−min

k
min

j
(A(i

′
, j, k))

=
1
2

min
k

min
j
(A(i

′
, j, k) + A(i

′′
, j, k))−min

k
min

j
(A(i

′
, j, k))

≥ 1
2

(
min

k
min

j
(A(i

′
, j, k)) + min

k
min

j
(A(i

′′
, j, k))

)
−min

k
min

j
(A(i

′
, j, k))

=
1
2

min
k

min
j
(A(i

′′
, j, k))− 1

2
min

k
min

j
(A(i

′
, j, k))

≥ 0 since r′ ∼ r′′.

This concludes the proof.
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2.4. Hurwicz Criterion in 3D

Definition 13. Let A ∈ Rm×n×s be a 3D matrix with entries vk
ij. The Hurwicz criterion is defined

in three dimensions as
Hk

i = max
j
{vk

ij}

Hi = max
k
{Hk

i }

Hopt = max
i
{Hi}

where i = 1, ..., m, j = 1, ..., n, and k = 1, ..., s.

According to the above definition, we recommend the Hurwicz criterion decision rule
in 3D as:

zWopt + (1− z)Hopt = max
i
{zWi + (1− z)Hi}

which is based on Hurwicz’s decision rule in 2D. Here, the constant 0 ≤ z ≤ 1 measures the
player’s optimism. Note that the special case of the rule in 3D, while z = 1, is also identical
to the Wald criterion in three dimensions.

Proposition 15. The Hurwicz criterion in three dimensions holds Axioms 1, 2, 3, 4, 5, 6, 8, and 10.

Proof. The proof steps of Axioms 1–6, 8, and 10 are almost the same as their respective
proofs for the Laplace and/or Wald criteria. Therefore, they are skipped here.

Proposition 16. The Hurwicz criterion in three dimensions does not hold for Axioms 7 and 9.

Proof. By using the fact that arises between 2D and 3D matrices, Axioms 7 and 9 do not
hold in 3D since they do not promise anything in 2D either. (See Appendix A for the
illustrations of the related cases).

2.5. Savage Criterion in 3D

Definition 14. Let A ∈ Rm×n×s be a 3D matrix with entries vk
ij. The Savage criterion is defined

in three dimensions as

Rk
ij = max

k
max

i
{vk

ij} − vk
ij

Yi = max
k

max
j
{Rk

ij}

Yopt = min
i

Yi

where Rk
ij represents three-dimensional positive regret matrix of A for i = 1, ..., m, j = 1, ..., n, and

k = 1, ..., s.

Proposition 17. The Savage criterion in three dimensions satisfies Axioms 1–5 and 7–10.

Proof. The proofs are trivial since they can be made by following similar steps as used in
the corresponding proofs for the Laplace, Wald, or Hurwicz criterion.

Proposition 18. The Savage criterion in three dimensions does not hold for Axiom 6.

Proof. Let A be a 3D matrix in Rm×n×s. There is no doubt that the Savage criterion
suggests one of the row-blocks between the first to mth row-blocks that is referred to as
Yopt is obtained by the definition. For instance, to present the effect of the row-block
adjunction, suppose that we add a new row-block, all entries of which are max

i,j,k
vk

ij (i.e., the
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maximum elements of matrix A) to the bottom of the matrix A, and generate a new matrix
Ā ∈ R(m+1)×n×s. Therefore, the Savage criterion will suggest one of the row-block between
first and (m + 1)th row-blocks of matrix Ā. However, it is important to notice that all
entries of the last row-block of the regret matrix of Ā are zeros with respect to Definition 14.
Additionally, it is crucial to realize that the regret matrix contains non-negative entries. By
taking this fact into account, the Savage criterion, in other words Ȳopt, suggests the adjunct
row-block (i.e., the (m + 1)th row-block of Ā), which is not one of the row-block of matrix A.
Consequently, the row-block adjunction changes the result of the Savage criterion. Hence,
the axiom fails.

Table 2 summarizes the characteristic axioms of each criterion in three dimensions.
The criteria characterized by the related axioms are marked as X and the compatibility
of the axioms is shown with X in the table. For example, the Laplace criterion in 3D is
characterized by the following axioms: ordering, symmetry, strong domination, row-block
adjunction, and column-block linearity. It does not satisfy the column-block duplication,
and it has compatibility in terms of continuity, linearity, convexity, and special row-block
adjunction.

Table 2. The characteristic axioms of 3-dimensional decision criteria.

Axioms Laplace Wald Hurwicz Savage
1. Ordering X X X X
2. Symmetry X X X X
3. Str. Domination X X X X
4. Continuity X X X X
5. Linearity X X X X
6. Row-Block Adjunction X X X
7. Col.-Block Linearity X X
8. Col.-Block Duplication X X X
9. Convexity X X X
10. Special Row-Block Adj. X X X X

Remark 3. We would like to emphasize that all 3D criteria presented above can be reduced for the
decision problems containing the 2D matrix only by choosing the third dimension parameter s as 1
in the related definitions.

3. Examples: Multiple State Games

In this section, we present some useful illustrations of the criteria in three dimensions.
The first example aims to show the usage of the criteria in detail. The second and third
examples demonstrate the real-life applications of these criteria. The third dimension treats
the time and speed of the wind in the second and third examples, respectively.

Example 1 (Fundamental example). The main purpose of this example is to show the application
of the criteria in three dimensions comprehensively, as was done in [5,45] for two-dimensional
matrices. Let A be a 3D matrix in R4×4×3, and define it as follows:

A =

A1 =


2 2 0 1
1 1 1 1
0 4 0 0
1 3 0 0

, A2 =


7 7 5 6
6 6 6 6
5 9 5 5
6 8 5 5

, A3 =


4 4 2 3
3 3 3 3
2 6 2 2
3 5 2 2




Figure 1 represents the 3D form of matrix A above. Each section in Figure 1 refers to
the sections A1, A2, and A3 from front to back, respectively. In other words, the entries of
the most front section of Figure 1 are v1

ij for i = 1, 2, 3, 4 and j = 1, 2, 3, 4.
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Figure 1. Extension form of the 3D matrix A ∈ R4×4×3 of Example 1.

Laplace criterion: We used the simplest form of the definition of the Laplace criterion in 3D
as we may choose the row-block providing the highest average of the sum of the elements

in the row-blocks. Therefore, we evaluated them by using ri =
1
ns

s
∑

k=1

n
∑

j=1
vk

ij for i = 1, 2, 3, 4,

so that

r1 =
1
12

3

∑
k=1

4

∑
j=1

vk
ij = 3.58,

and similarly r2 = 3.33 and r3 = 3.33, r4 = 3.33 are calculated. Then,

Aopt = max
i
{Ei} = max

i
{ri} = {3.58, 3.33, 3.33, 3.33} = 3.58

by the definition. Hence, the Laplace would suggest that the player choose the first row-
block (i.e., Alternative 1).

On the other hand, we can easily evaluate the result of the Laplace criterion in 3D by
using the 3D matrix norm definition presented in Definition 11 as

||A||∞ = max
1≤i≤4

3

∑
k=1

4

∑
j=1
|vk

ij| = 43.

Similar to the original definition of the Laplace criterion in 3D, the norm definition
also suggests Alternative 1. The advantage of using the 3D norm definition of the Laplace
criterion is that the result is obtained quickly without any intermediate calculation steps.

Wald criterion: We use the definition of the Wald criterion and follow the steps of the
definition in three dimensions as

Wk
i = min

j
{vk

ij} = {(0, 1, 0, 0)T , (5, 6, 5, 5)T , (2, 3, 2, 2)T}

Wi = min
k
{Wk

i } = {0, 1, 0, 0}

Wopt = max
i
{Wi} = 1.

Thus, the Wald criterion in 3D recommends preferring Alternative 2. In other words, the
Wald criterion says that the best decision is the second row-block.
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Hurwicz criterion: As we did in the analysis of the Wald criterion above, we follow the
definition of the Hurwicz criterion in three dimensions and obtain the following:

Hk
i = max

j
{vk

ij} = {(2, 1, 4, 3)T , (7, 6, 9, 8)T , (4, 3, 6, 5)T}

Hi = max
k
{Hk

i } = {7, 6, 9, 8}

Hopt = max
i
{Hi} = 9.

In order to compare the results for different optimism index z = 3
4 , which is the

indecision point for this example between the 2nd and 3rd row-blocks, we first consider
the case while z < 3

4 ; as an example, we chose z = 0.5, then we have

zWopt + (1− z)Hopt = max
i
{zWi + (1− z)Hi} = max

i
{3.5, 3.5, 4.5, 4} = 4.5.

According to the Hurwicz criterion, the best alternative is Alternative 3 (i.e., the third
row-block) while z = 0.5. We now examine the case when z > 3

4 . As an illustration, let
z = 0.8.

zWopt + (1− z)Hopt = max
i
{zWi + (1− z)Hi}

= max
i
{1.4, 2, 1.8, 1.6} = 2.

Hence, the Hurwicz criterion advises preferring Alternative 2 (i.e., the second row-
block) for z = 0.8.

Savage criterion: We firstly obtain the positive regret matrix R by using Rk
ij = max

k
max

i
{vk

ij}

− vk
ij in Definition 14 as

R =

R1 =


5 7 6 5
6 8 5 5
7 5 6 6
6 6 6 6

, R2 =


0 2 1 0
1 3 0 0
2 0 1 1
1 1 1 1

, R3 =


3 5 4 3
4 6 3 3
5 3 4 4
4 4 4 4


.

Then, we use the rest of the definition as

Yi = max
k

max
j
{Rk

ij} = {(7, 8, 7, 6)T}

and
Yopt = min

i
Yi = 6.

Hence, the best decision is Alternative 4 according to the Savage criterion in 3D. In
other words, Savage recommends the fourth row-block to the player.

We can summarize the obtained results via three-dimensional representation in
Figure 2, which shows the composite form of the 3D matrix A. For example, the Laplace
criterion suggests choosing Alternative 1. In other words, the yellow row-block refers to
the result of the Laplace criterion in 3D. Similarly, the green, blue, and purple row-blocks
refer to the results of the Wald, Hurwicz (for z < 3

4 ), and Savage criteria, respectively.
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Figure 2. The compact form of the 3D matrix A ∈ R4×4×3 of Example 1 and the suggested solutions
with 3D decision criteria.

Example 2 (COVID-19 stages with real data). Let A ∈ R2×2×3 be 3D matrix, which is created
by using real data for South Korea [46], and Ak denotes the stages of the COVID-19 pandemic as
the start, spread, and end for k = 1, 2, and 3, respectively. In this modeling, the actions are keeping
the quarantine and breaking the quarantine while the state of nature is the different infection risk of
the individuals in the stages. Accordingly, we have the following 3D matrix A:

A =

[
A1 =

[
0.984 0.984
−0.016 −0.032

]
, A2 =

[
0.9634 0.9634
−0.0366 −0.0732

]
, A3 =

[
0.987 0.987
−0.013 −0.026

]]

Laplace criterion: We used the alternative definition of the Laplace criterion for the 3D
matrix as follows:

r1 =
1
6

3

∑
k=1

2

∑
j=1

A(1, j, k)

=
1
6
[(0.984 + 0.984) + (0.9634 + 0.9634) + (0.987 + 0.987)]

= 0.9781.

Similarly, we evaluated r2 = −0.0328 as above. Then, Aopt = max
i
{Ei} = max

i
{ri} = 0.9781.

Therefore, the Laplace criterion suggests the first row-block, that is keeping the quarantine
is the best alternative.
On the other hand, we can easily evaluate the Laplace criterion by Definition 11. However,
we need to perturb the matrix by adding a 3D matrix with all entries of 0.987 in order to
obtain a non-negative matrix in light of Remark 1. By the norm definition of the Laplace
criterion applied on the perturbed 3D matrix, we have

||A||∞ = max
1≤i≤2

3

∑
k=1

2

∑
j=1
|vk

ij| = 11.7908

that points out to the first row-block.

Wald criterion: In order to determine which row-block suggested by the Wald criterion,
we applied Definition 12 step by step and obtain the following:

Wk
i = min

j
{vk

ij} = {(0.984,−0.032)T , (0.9634,−0.0732)T , (0.987,−0.026)T}

Wi = min
k
{Wk

i } = {0.9634,−0.0732}

Wopt = max
i
{Wi} = 0.9634.
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Consequently, it is clear by the Wopt value that the Wald criterion implies Alternative
1/the first row-block is the best option.

Hurwicz criterion: Similarly, we used Definition 13 by choosing the optimism index z = 0.5
as an example, then

Hk
i = max

j
{vk

ij} = {(0.984,−0.016)T , (0.9634,−0.0366)T , (0.987,−0.013)T}

Hi = max
k
{Hk

i } = {0.987,−0.013}

Hopt = max
i
{Hi} = 0.987.

while

zWopt + (1− z)Hopt = max
i
{zWi + (1− z)Hi}

= max
i
{0.9752,−0.0431} = 0.9752.

Hence, the Hurwicz criterion advises selecting Alternative 1. In other words, accord-
ing to the Hurwicz criterion, the best option for the player is the first row-block.

Savage criterion: Firstly, we created the regret matrix using Rk
ij = max

k
max

i
{vk

ij} − vk
ij and

obtain

R =

[
R1 =

[
0.003 0.003
1.003 1.019

]
, R2 =

[
0.0236 0.0236
1.0236 1.0602

]
, R3 =

[
0 0
1 1.013

]]

Next, we followed the rest of the definition of the Savage criterion in three dimen-
sions as

Yi = max
k

max
j
{Rk

ij}

Yopt = min
i

Yi = min
i
{0.0236, 1.0602}

Yopt = 0.0236.

Thus, Savage suggests the best alternative as Alternative 1 (i.e., the first row-block).
It is well known in the literature that the combination of wind and hailstorms increases

the risk of a lower harvest of fruits [47,48]. In light of this fact, we reconsidered the problem
given in [12] and extended it to the three-dimensional case to examine the simultaneous
effects of the hailstorm and wind speed on the harvest of apricot fruit in the following
example under the perspective of decision criteria for the necessity of agricultural insurance.

Example 3 (Agricultural insurance with hailstorms and the speed of the wind). In this
example, we used the data for the hailstorm given in [47] and for the effect of the wind in [48]. We
considered that the loss of the farmer would be doubled when the wind speed doubled during the
hailstorm since the hailstorm and the wind speed affect the production of apricot fruit in the field.
We assumed that the maximum loss of the farmer would be −20,000 since the total value of the
harvest is 20,000 in [47]. Then, the 3D payoff matrix A ∈ R2×2×3 is generated as follows:

Firstcolumn-block and second column-block: “Hail storm does not exist” and “Hail storm exists”
First row-block and second row-block: “Insurance unavailable” and “Insurance available”

A =

[
A1 =

[
0 −5000

−6400 −6400

]
, A2 =

[
−3200 −10000
−6400 −6400

]
, A3 =

[
−6400 −20000
−6400 −6400

]]



Mathematics 2022, 10, 4524 16 of 20

Here, Aks, for k = 1, 2, 3, represent the case for different wind speeds with the hail-
storm situations. More explicitly, A1, A2, and A3 refer to the situations with the wind
speeds of 0, 20, and 40 kph, respectively, and the hailstorm cases.

Laplace criterion: We applied the definition of the Laplace criterion in 3D and evaluated
r1 = −44600 and r2 = −38400. Then, Aopt = max

i
{Ei} = max

i
{ri} = −38400. Therefore,

the Laplace criterion suggests the best alternative to be the second row-block.
We can also recalculate the criterion result with Definition 11 by using the fact in

Remark 1, which means we added the matrix A with a 3D matrix with all entries of 20000,
as ||A||∞ = 81600, which says the best option is the insurance available action.

Wald criterion: By the Wald criterion stated in Definition 12, we have

Wk
i = min

j
{vk

ij} = {(−5000,−6400)T , (−10000,−6400)T , (−20000,−6400)T}

Wi = min
k
{Wk

i } = {−20000,−6400}

Wopt = max
i
{Wi} = −6400.

The best action is the second row-block according to the Wald criterion result.

Hurwicz criterion: We directly applied the steps of the Hurwicz criterion given in Definition 13
with the optimism index, for instance, z = 0.6, and we obtain

Hk
i = max

j
{vk

ij} = {(0,−6400)T , (−3200,−6400)T , (−6400,−6400)T}

Hi = max
k
{Hk

i } = {0,−6400}

Hopt = max
i
{Hi} = 0.

Furthermore, we have the following via the recommended Hurwicz criterion decision
rule in 3D:

zWopt + (1− z)Hopt = max
i
{zWi + (1− z)Hi}

= max
i
{−12000,−6400} = −6400

Thus, the Hurwicz criterion encourages preferring the action of insurance available.

Savage criterion: By the Savage criterion in 3D, we first obtain the regret matrix R as

R =

[
R1 =

[
0 0

6400 1400

]
, R2 =

[
3200 5000
6400 1400

]
, R3 =

[
6400 15000
6400 1400

]]

Then, we obtain from the rest of the steps the following:

Yi = {15000, 6400}
Yopt = 6400

The best alternative is the second row-block with respect to the Savage criterion.

4. Conclusions and Discussions

The main goal of these extensions is to discover the simultaneous effects of two states
of nature on the decision process in 3D. For this purpose, we extended the Laplace, Wald,
Hurwicz, and Savage criteria to three dimensions under uncertainty. In addition to these
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definitions, we presented a new definition for the Laplace criterion, based on only the
∞-norm of the 3D payoff matrix, which reduces the computational costs and obtains
results quickly.

Then, we presented all 3D characteristic axioms for the Laplace, Wald, Hurwicz, and
Savage criteria to demonstrate the effects of the third dimension theoretically. After giving
the proofs of the propositions for all criteria, we stated that the criteria in three dimensions
work well for any two-dimensional matrix if the third dimension is assumed as 1. Finally,
we presented an illustrative fundamental example in order to show the application of the
3D decision criteria explicitly. Moreover, we showed the applicability of the 3D decision
criteria on real-life problems, as well. We used the real data belonging to South Korea
during the different stages of the first wave of the COVID-19 pandemic. Although it is hard
to handle different stages’ effects simultaneously in 3D matrix analyses, the 3D criteria
helped us obtain the results easily, and they both suggested the best alternative during the
COVID-19 pandemic to be the keeping the quarantine strategy while different factors were
affecting the individuals’ decision process.

Additionally, we investigated an agricultural insurance problem in 3D, which is based
on natural events’ (wind and hailstorm) effects, as another important real-life action. Under
a similar complexity of the decision process in 3D, we simply concluded that it is necessary
to obtain agricultural insurance for the apricot field in any weather condition with the
guidance of the 3D criteria.

Consequently, we believe that the extensions of the criteria in 3D may have a wide
application area. The usage of the criteria in three dimensions might especially be useful
for some problems that contain two simultaneous states of nature. We also think that the
applications of 3D matrices in decision and game theories may make it easier or take an
important role to model some complex situations. For example, in the case of more than two
states of nature, these cases cannot be modeled directly by the three-dimensional matrix.
Therefore, these cases need higher-dimensional matrices, which require comprehensive
work depending on the theoretical studies for the higher-dimensional matrices. Thus,
the extensions and contributions of this paper could be the base for higher-dimensional
extension research. On the other hand, since we focused on three-dimensional extensions
of the criteria in this paper, this may be considered as a limitation of the study in view of
theoretical and practical implications. The higher-dimensional extensions of the criteria are
left for future research.
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Appendix A

Let us consider the following 3D matrix A ∈ R3×3×2 to illustrate the case of the
unsatisfied characteristic axioms for the related criteria.
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A =

A1 =

 0 4 −1
2 3 −1
4 2 −1

, A2 =

 −3 1 0
−1 −1 −1
1 −3 −2

.

Demonstration A1. The Wald criterion in 3D does not satisfy the column-block linearity
axiom: The Wald criterion result can be obtained as Wopt = −1. Thus, the Wald criterion
suggests preferring Alternative 2 (see the left-hand side of Figure A1).

To analyze the effect of the column linearity on the result, let us add a constant, for
instance c = −6, to the second column-block of the matrix A. Then, we obtain

Ā =

A1 =

 0 −2 −1
2 −3 −1
4 −4 −1

, A2 =

 −3 −5 0
−1 −7 −1
1 −9 −2

.

Similarly, the criterion can be obtained as W̄opt = −5 for the matrix Ā. Hence, the
Wald criterion points out that the best action is the first row-block (see the right-hand side
of Figure A1). Thus, it is clear that Axiom 7 fails for the Wald criterion.

Demonstration A2. The Hurwicz criterion fails to satisfy the column-block linearity axiom:
After we evaluate Wi and Hi for the Wald and Hurwicz criteria, respectively, we have

zWopt + (1− z)Hopt = max
i
{zWi + (1− z)Hi} = max

i
{−0.2, 0.6,−0.2} = 0.6,

which implies the second-row block while z = 0.6 (see the left block of Figure A1). By
following the same steps, we obtain W̄i and H̄i for the perturbed 3D matrix Ā above and

zW̄opt + (1− z)H̄opt = max
i
{zW̄i + (1− z)H̄i} = max

i
{−3,−3.4,−3.8} = −3,

which points to the first-row block for z = 0.6 (see the right block of Figure A1). Therefore,
the Hurwicz criterion does not satisfy the axiom.

Figure A1. Column-block linearity analyses for Wald and Hurwicz criteria: change in the results via
the 3D matrices A (on the left) and Ā (on the right).

Demonstration A3. The Hurwicz criterion does not satisfy the convexity axiom: In this
demonstration, we again used the 3D matrix A above. The second row-block is equal to
the average of the first and third row-blocks, which are equivalent row-blocks, of A. By the
Hurwicz criterion, it is clear that r1 = r3 = 4 while r2 = 3. Hence, the convexity axiom fails
for the Hurwicz criterion.
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