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Abstract: Large-scale inverse problems that require high-performance computing arise in various
fields, including regional air quality studies. The paper focuses on parallel solutions of an emission
source identification problem for a 2D advection–diffusion–reaction model where the sources are
identified by heterogeneous measurement data. In the inverse modeling approach we use, a source
identification problem is transformed to a quasi-linear operator equation with a sensitivity operator,
which allows working in a unified way with heterogeneous measurement data and provides natural
parallelization of numeric algorithms by concurrent calculation of the rows of a sensitivity operator
matrix. The parallel version of the algorithm implemented with a message passing interface (MPI)
has shown a 40× speedup on four Intel Xeon Gold 6248R nodes in an inverse modeling scenario for
the Lake Baikal region.
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1. Introduction

The effective use of air quality data is a significant scientific problem [1–3]. In this
regard, it is worth mentioning the ideas of data assimilation that are currently being de-
veloped all over the world, especially in weather forecasting [4,5]. The combined use of
process models and observational data (or shortly inverse modeling) allows solving a
number of environmental problems, including emission sources identification and recon-
struction of air pollution concentration fields in unobserved areas. The emission source
identification problem is one of the crucial inverse problems in air quality studies [4,6] since
the sources largely determine the behavior of an environmental system [7,8] and usually
are not completely known.

Due to the complexity [3,9,10] (both high dimension and non-linearity) of the air
quality models, the corresponding inverse problems can be qualified as large-scale ones
(see, e.g., [11]). In terms of the computational cost, the solution of the inverse problem
can be equivalent to hundreds or thousands solutions of the direct (forward) modeling
problems. Hence, the large-scale inverse problems in the air-quality studies can be re-
solved in several basic ways: reduction in the mathematical model complexity or using
simplified models, modification of the inversion algorithms to reduce their computational
demand, and operation of high performance computing (HPC) systems involving sufficient
computational resources. In the paper, we focus on the last one listed. Currently, the avail-
able computational systems develop in the direction of massively parallel computations.
Therefore, the algorithms should have the appropriate scalable design.

The inverse modeling and data assimilation framework (IMDAF) is an original soft-
ware platform for solving inverse modeling problems for differential equations and various
types of measurement data. The main task classes to be solved are direct and inverse
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problems, data assimilation, and sensitivity assessment. We have experience in the applica-
tion of the platform for air quality modeling [12,13] and in biological systems studies [14].
Within IMDAF, we implemented the sensitivity operator and adjoint ensemble-based ap-
proach [12] to the inverse problem solution. The inverse problem is represented by a
set of quasi-linear operator equations with sensitivity operators of various dimensions.
Sensitivity operators are constructed with the adjoint problem ensembles, linking the set of
observed quantities with unknown model parameters. The approach combines the idea
from [15], the sensitivity theory methods [16], the essence of the mollification [17], and the
“image to structure” operator concept [18].

In the overview of the related works, we considered the papers on scalable parallel
algorithms for large-scale inverse modeling and data assimilation problems. The ensemble
Kalman filters [19,20] are widely used in large-scale atmospheric and hydrological [21,22]
data assimilation. These algorithms take direct problem solution ensembles with different
parameters. Some examples of the frameworks implementing these algorithms are data
assimilation research testbed (DART) [23], parallel data assimilation framework (PDAF) [24,25]
and employing message passing interface for researching ensembles (EMPIRE) [26]. The
Kalman filter-based approach can be applied to large-scale inverse problems to construct
derivative-free algorithms [27]. Scalable inverse modeling algorithms can be constructed
within the Bayesian framework using algebraic hybrid projection methods [28].

Classical gradient-based 4DVAR (and 3DVAR) algorithms are known to be used in
large-scale inverse modeling problems (e.g., [4,6,11]). However, these algorithms are less
suitable for scalable parallelization [29]. Some results on the scalability of these algorithms
can be achieved by means of space-time domain decomposition [29,30]. To improve the
scalability, these algorithms can be hybridized with the other algorithms such as ensemble
Kalman filters [31], Lagrangian back-trajectories [32,33] and particle filters [34]. An example
of a hybrid framework is presented in [33]. A promising approach to improve the scalability
of the inverse modeling algorithms is to use scalable surrogates (e.g., neural networks)
instead of computationally intensive model aggregates [35]. There are general frameworks
implementing various optimization algorithms that are designed to work with large-scale
inverse problems [36,37].

Adjoint ensemble-based source identification algorithms have been applied to the
linear (non-reacting) transport model in [38] and the nonlinear transport-transformation
model with pointwise sources and in situ measurements in [39]. An overview of other
adjoint-ensemble-based methods can be found in [40]. The cluster implementation of the
adjoint ensemble algorithm for a linear urban-scale source identification problem was
presented in [41]. In the linear case, the adjoin ensemble is evaluated only once and that is
not the case for the nonlinear models we consider in the paper.

Summarizing this overview, we can identify the following research gap. Ensemble-
based algorithms are widely used to solve the large-scale inverse modeling and data
assimilation problems. The adjoint ensemble-based algorithms fit the parallel architectures;
nevertheless, there is a relatively small number of works concerning their scalability and
applications to large-scale nonlinear inverse modeling problems.

Previously, we implemented the parallel version of the IMDAF adjoint ensemble
solver for shared memory computers [42]. However, the need to work with heterogeneous
measurement data of high detail (in situ measurements and satellite images of concentra-
tion fields) [13] and to use more realistic models of atmospheric chemistry requires the
involvement of larger computational resources than a computer with shared memory. The
paper’s objective is to present the message passing interface (MPI) version of the IMDAF
source identification adjoint ensemble solver and the results of its tests on distributed
memory systems in a realistic inverse modeling scenario.

The paper is organized as follows. Section 2.1 provides a brief survey of IMDAF as a
framework. Section 2.2 states the basic source identification problem. In terms of the inverse
modeling workflow, the sensitivity operator and adjoint ensemble-based approach consist of
two major steps. The first step is to represent the inverse problem as the quasi-linear operator
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equation with the sensitivity operator (Section 2.3). The second step (Section 2.4) is to solve
this equation numerically. Therefore, Section 2.4 includes a description of the algorithm’s
parallelization strategy. Section 2.5 describes the HPC modeling setup. Section 3 provides the
results of the computational experiment. In Section 4, we analyze the numerical results and
discuss the conclusions.

2. Materials and Methods
2.1. Inverse Modeling and Data Assimilation Framework

Within the IMDAF platform, three main groups of the inverse problems “solvers”
are implemented. Each group (individual framework) defines a code skeleton, which is
parameterized with external procedures specific for the applied concrete problem. The
groups require different complexities of their external procedures:

1. The first group of solvers uses NLOpt package [43] implementations of “derivative-
free” minimization algorithms. To use the solvers, it is enough to implement the
procedure for solving a direct problem only. Derivative-free and meta-heuristic solvers
(a review can be found in [44]) may use the ensembles of direct problem solutions with
different input parameters, which can be calculated in parallel. It makes them a good
target for parallel implementation (e.g., [45]). We tested this approach in [46] for a
Python differential evolution solver in a chemical reaction rate identification problem.
Nevertheless, meta-heuristic solvers seem to show relatively slow convergence for
high-dimensional inverse problems [47]. To use them for solving large-scale inverse
problems, some reduction procedures should be applied in advance.

2. The second group uses the implementations of gradient algorithms from GSL [48]
or NLOpt [43] to address the misfit minimization problems [47,49,50]. The solvers
require the procedures for operating both direct and adjoint problems to estimate
the gradient of the misfit functional of measured and modeled values. Deriving
adjoint problems and implementing their solutions takes additional theoretical and
programming effort comparable to the one needed for the direct problem. The task of
adjoint code generation can be potentially automatized [51–53]. The gradient-based
algorithms can be paralleled on the level of direct and adjoint problem solutions.

3. The third group of solvers is based on the sensitivity operators of inverse problems
and refers to the unique features of IMDAF: the inverse problem is reduced to a family
of quasi-linear operator equations with sensitivity operators, which are constructed
by solving the ensembles of adjoint equations and calculating the corresponding
sensitivity functions defined by a set of measurement data aggregation functions. We
provide a brief description of the algorithms in Section 2.3; the detailed description can
be found in [12,13]. The sensitivity operators can be used for solving and analyzing
inverse problems. To realize such options, it is necessary to design the procedures for
solving an ensemble of adjoint equations.

Numerical experiments show a higher efficiency of solvers from the third group [47,49,50].
The kernel of the IMDAF is implemented in C++ within the object-oriented paradigm.

The kernel uses NetCDF file format [54] for reading and storing data and XML as configura-
tion files. In the case of the regional air quality studies, the input files include the chemical
transport model (CTM) parameters and measurement data. Pre- and post-processing,
including visualization, is carried out in Python scripts.

2.2. Direct and Inverse Problems

The approach based on adjoint ensembles and sensitivity operators provides a natural
way to integrate various data with a CTM. The CTM for Nc reacting substances is defined
in a domain ΩT = Ω × (0, T), where Ω is a sufficiently smooth approximation of a
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bounded rectangular domain [0, X]× [0, Y] in R2, T > 0. The domain ΩT is bounded by
∂ΩT = ∂Ω × [0, T].

∂ϕl
∂t
−∇ · (diag(µl)∇ϕl − uϕl) + Pl(t,ϕ)ϕl = Πl(t,ϕ) + fl + rl , (x, t) ∈ ΩT , (1)

n · (diag(µl)∇ϕl) + βl ϕl = αl , (x, t) ∈ Γ(out) ⊂ ∂Ω× [0, T], (2)

ϕl = αl , (x, t) ∈ Γ(in) ⊂ ∂Ω× [0, T], (3)

ϕl = ϕ0
l , x ∈ Ω, t = 0, (4)

l = 1, . . . , Nc, (5)

where t is time, and x is a space coordinate, ϕl = ϕl(x, t) denotes the concentration of the
lth substance at a point (x, t) ∈ ΩT , ϕ is the vector of ϕl(x, t) for l = 1, . . . , Nc, which is
called the state function, L = {1, . . . , Nc} . The functions µl(x, t) ∈ R2 correspond to the
diffusion coefficients, diag(a) is the diagonal matrix with the vector a on the diagonal,
and u(x, t) ∈ R2 is the wind speed vector at the surface level. Γ(in) and Γ(out) are parts
of domain boundary ∂ΩT in which the vector u(x, t) points the domain ΩT inwards and
is zero or points the domain ΩT outwards correspondingly, and n is the outer normal.
The functions αl(x, t), ϕ0

l (x) describe the boundary and initial conditions, correspondingly,
βl is the boundary condition parameter, fl(x, t) is the a priori known source function;
rl(x, t) is the unknown source function. Loss and production operator elements Pl , Πl :
[0, T]×RNc

+ → R+ are defined by the transformation model (see Section 2.5.1).
The model parameters are divided into “predefined parameters” v, and “uncertainty

functions” q from some set Q of admissible values. We choose r as the uncertainty function
q = {r}. The rest of the parameters are predefined. Let the set of admissible sources Q be
defined by a priori information:

• Let only a given set of species Lsrc be emitted and rl(x, t) = 0 for l /∈ Lsrc.
• Let the sources be constant in time (rl(x, t) = rl(x)).
• The emission rates can be of both signs.

Let us define “direct” and “inverse” problems:

• In the direct problem, v and q ∈ Q are known, find ϕ from (1)–(4) . The solution of the
direct problem is denoted by ϕ[q]. Let there be an “exact” q(∗) = {r(∗)} to be found,
and ϕ(∗) = ϕ

[
q(∗)

]
be the corresponding direct problem solution.

• In the inverse problem, q(∗) has to be identified from the “measurement data” collected
for ϕ(∗), see Section 2.5.1.

2.3. Sensitivity Operator-Based Representation of Source Identification Problem

To solve the inverse problem, we use the algorithm from [12,13]. Its basic element
is the sensitivity relation, which links the variation of the model’s state function with the
variation of the unknown parameters. For any q(2), q(1) ∈ Q:〈

S[q(2), q(1); h], q(2) − q(1)
〉

Q
=
〈

h,ϕ[q(2)]−ϕ[q(1)]
〉

H
. (6)

Here S[q(2), q(1); h] is the sensitivity function, which is evaluated by solving the adjoint
problem (the details can be found in [12] and Section 2.4). The solution of the adjoint
problem is determined by its source function h, which corresponds to the measurement
operator. The scalar products in (6) are

〈a, b〉H =
Nc

∑
l=1

ρl

∫ T

0

∫
Ω

al(x, t)bl(x, t)dxdt, 〈a, b〉Q =
Nc

∑
l=1

ρl

∫
Ω

al(x)bl(x)dx. (7)

Here, ρl are some positive weights. The right-hand side of (6) corresponds to an
aggregate of the measurement data.
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For a given set of functions U =
{

h(ξ)
}Ξ

ξ=1
, we can combine the relations (6) to obtain

a sensitivity operator relation

MU

[
q(2), q(1)

](
q(2) − q(1)

)
= HUϕ

[
q(2)

]
− HUϕ

[
q(1)

]
, (8)

where

MU

[
q(2), q(1)

]
z =

Ξ

∑
ξ=1

e(ξ)
〈

S[q(2), q(1); h(ξ)], z
〉

Q
, (9)

HUϕ =
Ξ

∑
ξ=1

e(ξ)
〈

h(ξ),ϕ
〉

H
. (10)

Here, e(ξ) is the ξ-th element of the canonical basis in RΞ. The adjoint functions,
corresponding to different elements of U, can be processed in parallel as an ensemble.
Heterogeneous monitoring networks can be considered by aggregating the adjoint ensem-
bles corresponding to different measurement types [13]. Hence, the quasi-linear operator
equation

MU

[
q(∗), q

](
q(∗) − q

)
= HU I + HUδI − HUϕ[q], (11)

holds for the exact solution of the source identification problem q(∗), the measurement
data I aggregated in the state function form (i.e., it is equal to the measurement results
in the parts of ΩT where they appear and is zero otherwise), its perturbation δI (i.e., the
measurement noise), and any U and q.

Equation (11) can be solved by any relevant method. We use the Newton–Kantorovich-
type algorithm from [13] regularized with the truncated singular value decomposition
(SVD). The algorithm is presented in Section 2.4 and Appendix A. In the numerical experi-
ments in Section 3, we measure the performance of the inverse problem solution with this
algorithm.

Representation (11) can be used to predict the inverse problem’s solution quality [12,13].
Let

Υ[q(2), q(1)] := M∗(MM∗)† M,

where M = MU [q(2), q(1)], M∗ is the adjoint of M, and (MM∗)† is the generalized Moore–
Penrose inverse of MM∗. The aggregate Υ[q(2), q(1)] is an orthogonal projector on the
orthogonal complement to the sensitivity operator’s kernel [13]. Hence,

q(p) := q(0) + Υ[q(0), q(0)]
(

q(∗) − q(0)
)

. (12)

can be considered as a predictor of the solution, where q(0) is the initial guess [13]. Therefore,
in Section 3, we also measure the performance of the sensitivity operator’s computation as
a separate meaningful task.

2.4. Parallelization Strategy

To solve the inverse problem by solving the ill-posed nonlinear (quasi-linear) operator
Equation (11), we use Algorithm A1 from Appendix A. The computational scheme of the
algorithm is shown in Figure 1, and it has three levels of nested loops:

• The outer loop increases the sensitivity operator’s matrix inversion regularization
parameter Σ;

• The middle loop performs the Newton-type iterations up to the stabilization with the
fixed Σ;

• The inner loop chooses the step parameter γ in the Newton-type iterations to provide
the monotonic decrease in the data misfit.
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The iteration at the middle level constructs the sensitivity operator’s matrix m =
MU [q[k], q[k]] according to (9) and builds the Newton-type update using Truncated SVD
regularized inversion of m; the details can be found in Appendix A.

Figure 1. The principal scheme on the algorithm’s iterations (the outer and the middle loops), the
inner loop is inside the green box. The most time-consuming part of the algorithm (more than 95% of
all computations) is constructing the sensitivity operator’s matrix m.

The most time-consuming part of the algorithm (more than 95% of all computations,
see Table 1) is constructing the sensitivity operator’s matrix m, so this operation is the
main target for parallel implementation. According to (9), the rows of m correspond to the
ensemble of sensitivity functions

S[k] = {S[q[k], q[k]; h(ξ)], ξ = 1, . . . , Ξ}. (13)

In a naive way, we can evaluate the members of S[k] in parallel independently. This
procedure can be optimized thanks to the similar nature of the ensemble members and
reusing common aggregates of the sensitivity function calculation algorithms. To do this,
we should consider the inner structure of the elements.

In the case of the source identification problem, the sensitivity function is evaluated
according to ([12], Lemma 3.1). For the stationary sources r(2), r(1) ∈ Q, the sensitivity
function is the temporal integral of the adjoint problem solution

S[q(2), q[(1); h](x) =
∫ T

0
Ψ(x, t)dt. (14)

Here, Ψ(x, t) is the solution of the adjoint problem

−∂Ψl
∂t
− u · ∇Ψl −∇ · (diag(µl)∇Ψl) +

(
W
(

t,ϕ[r(2)],ϕ[r(1)]
)

Ψ
)

l
= hl ,

(x, t) ∈ ΩT , (15)

W(t, a, b) = diagP(t, a) + ρ−1∇̄P(t, a, b)Tρdiagb−ρ−1∇̄Π(t, a, b)Tρ, (16)

n · (diag(µl)∇Ψl + uΨl) + βΨl = 0, (x, t) ∈ Γ(out) ⊂ ∂Ω× [0, T], (17)

Ψl = 0, (x, t) ∈ Γ(in) ⊂ ∂Ω× [0, T], (18)

Ψl = 0, x ∈ Ω, t = T. (19)

In (16), the vector ρ is the vector with elements ρl , and P(t, a), Π(t, a) are the vector-
functions with the elements Pl(t, a) and Πl(t, a), correspondingly for l = 1, . . . , Nc; and the
symbol ∇̄ defines the divided difference operator ([55], p. 201) that maps vector-function
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S : [0, T]×RNc → RNc to the vector function ∇̄S : [0, T]×RNc ×RNc → RNc×Nc , such that
for any t ∈ [0, T] and ϕ, δϕ ∈ RNc ,

S(t,ϕ+ δϕ)− S(t,ϕ) = ∇̄S(t,ϕ+ δϕ,ϕ)δϕ.

We can see that the problem (15)–(19) is linear and all ensemble members share the
same equation coefficients. In other words, we have to solve multiple linear problems
that share the same numerical schemes coefficients and differ by right-hand sides only.
Note that the ensemble of direct problem solutions would take the solution of nonlinear
problems (1)–(4) with different right-hand sides. We evaluate the whole ensemble of the
adjoint equation solutions backward in time, collecting S[k] according to (14).

Figure 2 illustrates our approaches to organizing the parallel evaluation of S[k] to
obtain the rows of m:

• For single-process execution, we use OpenMP parallelization technology [42]: each
OpenMP thread constructs its set of the rows of m; after all rows are constructed and
the whole m is built, one (the main) thread executes the sequential part of the iteration,
i.e., inverts m and makes an update.

• For multiple-process execution, we use OpenMP for in-process parallelization and
MPI for inter-process communications. Each MPI process executes the sequential part
of the algorithm. In the parallel part, each process constructs its set of the rows of m;
then the processes communicate with each other to form full m on each process.

Figure 2. Single-process (left) and multiple-process (right) parallelization schemes for the algorithm’s
iterations. Parallelization is achieved by concurrent calculation of the rows of sensitivity operator
matrix m. Green box corresponds to the green box in Figure 1 (sequential part of the iteration, i.e.,
inverting m and building update).

Obviously, in this approach, the number of rows of sensitivity operator matrix de-
termines the algorithm’s scalability, i.e., how many threads can concurrently execute the
algorithm.

2.5. Experimental Setup
2.5.1. Inverse Modeling Scenario

For the objectives of the paper, we use the same “realistic” inverse modeling scenario
as in [13], where the domain of the study contains the Baikal Natural Territory (Figure 3),
which is recognized by UNESCO as a World Heritage Site [56]. The locations of the
Roshydromet sites [57] are taken as the prototype of the measurement system in the scenario.
We suppose that there are only O3 concentration measurements (Lmeas = {#(O3)}). Here,
#(O3) denotes the index of O3 concentration in the state function ϕ.
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Figure 3. Geographical domain and the monitoring site locations collecting time series (red crosses),
pointwise measurements (blue circles) and integral measurements (magenta triangles) of ozone (O3)
concentrations.

The measurement sites in Figure 3 are divided into three groups with respect to the
type of the “collected” measurements: concentration time series in a point, pointwise
measurements in space and time, integrals over time domain in a point; the fourth type is a
snapshot represented by the image of the simultaneous concentration distribution in the
whole domain.

Time series are collected at 6 sites and are projected to 10 cosine Fourier basis elements
resulting in 60 (6 sites× 10 basis elements) aggregates. Pointwise measurements are taken
at 5 sites with 6-hour time intervals, thus producing 60 (5 sites× 12 measurement moments)
aggregates. Integrals are collected at 5 sites producing 5 values. Snapshot is available on the
third day of the scenario and is presented by 625 (25× 25) projections to 2D cosine Fourier
basis elements. Projection functions h corresponding to these types of measurements can
be found in [13]. The total number of the measurement data aggregates Ξ is equal to 750.

The value of Ξ is an important parameter of the algorithm as the number of rows of the
sensitivity operator’s matrix is equal to Ξ; therefore, according to Section 2.4, Ξ determines
the scalability of the parallel algorithm.

(a) (b)
Figure 4. “Exact” configuration of emission sources (a) and reconstructed sources (b) of NO from [13].

To obtain synthetic measurement data, we constructed a realistic “exact” emission
source distribution r(∗) as in [13] (Figure 4a). The initial guess is r(0) = 0, corresponding to
100% relative error. A priory emission source is f = 0.
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As the transformation model, we chose the atmospheric chemistry model (e.g., [58])
describing the photochemical O3 − NOx cycle:

NO2 + hν
y1→ NO + O(3P), (20)

O(3P) + O2
y2→ O3, (21)

NO + O3
y3→ O2 + NO2. (22)

The first reaction rate coefficient y1 is time-dependent, and y2, y3 are constants:

y1(t) =
{

10−5esec(t), at day time
10−40, at night time

, (23)

sec(t) =
(

sin
( π

16
(
th − 4

)))0.2
, th = th − 24int

(
th
24

)
, th =

t
3600

, (24)

y2 = 1.87× 10−14, y3 = 10−16, (25)

and int
(

th
24

)
is the integer part of th

24 . The concentration of O2 is considered constant.

The initial concentration distributions ϕ0
l are constant in the spatial domain Ω:

[NO] ≈ 0.002
mg
m3 , [NO2] ≈ 0.001

mg
m3 , (26)

[O2] ≈ 284,202
mg
m3 , [O] = 0

mg
m3 , [O3] ≈ 0.12

mg
m3 . (27)

The boundary conditions are

αl =

{
0, (x, t) ∈ Γ(out)

ϕ0
l , (x, t) ∈ Γ(in) , βl = 0, (28)

where ϕ0
l is the constant value of the corresponding initial conditions. The values ϕ0

l denote
the background concentrations of the considered substances.

The results of the COSMO model [59] simulations for the period 2019-07-23 T12:00:00
to 2019-08-03 T12:00:00 are used as the 2D wind speed vector field u at the surface level.
The diffusion coefficient µ = 1000 m2/s is chosen as a constant one.

The “exact” concentration distribution ϕ(∗) is generated by solving the direct problem
with r(∗). The synthetic measurement data, which are provided to the source reconstruction
algorithm, is obtained from the O3 elements of ϕ(∗). The result of the source reconstruction
is presented in Figure 4b.

The calculations are carried out on a grid of Nx = 57 by Ny = 60 points in space,
Nt = 18,801 points in time, and Nc = 5 chemicals. The time step ∆t = 54 seconds is
demanded for the correct simulation of chemical transformations (20)–(25). Thus, the
dimension of the state function is Nt × Nx × Ny × Nc = 321,497,100 elements. The dimen-
sion of the unknowns that have to be estimated by given Ξ = 750 aggregated values is
Nx × Ny = 3420.

Sequential execution of the source identification algorithm with this scenario takes
about 5 days on an Intel Xeon Phi 7290 1.50 GHz 96 GB RAM node and about 1 day on an
Intel Xeon Gold 6248R 3.00 GHz 384 GB RAM (Table 1).
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Table 1. Time results of sequential execution of the source identification algorithm with the considered
scenario: tseq

IP is the total time of the inverse problem solution; tseq
SO is the total time of the sensitivity

operator matrix construction; pseq
SO = tseq

SO/tseq
IP is the fraction of the time of inverse problem solution

spent for sensitivity operator matrix construction.

Hardware tseq
IP , sec tseq

SO , sec pseq
SO , %

Intel Xeon Phi 7290 461,257 442,233 95.9

Intel Xeon Gold 6248R 84,928 82,101 96.7

2.5.2. Hardware Configuration

The experiments with HPC were carried out in the Siberian Supercomputer Center on
the NKS-30T Hybrid cluster. The following configurations are used:

• Single node with Intel Xeon Phi 7290 (1 CPU × 72 cores × 4 threads, 1.50 GHz, 96 GB
RAM). Total number of cores is 72, and the maximum number of processing threads
is 288.

• Total of 1, 2, 3, and 4 nodes with Intel Xeon Gold 6248R (2 CPU × 24 cores × 2
threads, 3.00 GHz, 384 GB RAM) connected with Cluster Interconnect Omni-Path
100 Gbps. Total number of cores/threads is 48/96, 96/192, 144/288, and 192/384,
correspondingly. For each number of nodes, we tested:

– “Single process per node” execution,
– “Two processes per node” execution with each process running on separate CPU.

In multiple-process execution, all the processes launch an equal number of OpenMP
threads, so the total number of threads is a multiple of the number of processes.

The main principle for choosing the number of threads to test the algorithm is the
minimization of the total idle threads. As, in our scenario, the value of Ξ (the number of
rows of sensitivity operator matrix m and, therefore, the number of independent “pieces
of work” for constructing m) is 750, it makes sense to test the algorithm against, say,
375 threads (each thread constructs 2 rows, no idle) or 250 threads (each thread constructs
3 rows, no idle), but not against 300 threads (150 threads per 2 rows plus 150 per 3 rows;
execution time is “3 rows”, and the total idle is (3× 150− 2× 150) = “150 rows”).

3. Results

The results of the computational experiments are demonstrated in Table 2 and Figures 5–7:

• Table 2 summarizes various time characteristics of parallel execution for different
hardware configurations.

• Figures 5 and 6 show the speedup achieved with different hardware configurations
and the number of executing threads for inverse problem solution and for sensitivity
operator matrix construction, correspondingly.

• Figure 7 compares the performance of two approaches to parallel execution: “single
process per node” and “single process per CPU”.
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Table 2. Time results of the inverse problem solution on different hardware configurations: tseq
IP is the

time of the sequential inverse problem solution; tpar
IP is the best time of the parallel inverse problem

solution; sIP = tseq
IP /tpar

IP is the best speedup; NIP is the total number of threads with which the best
speedup was achieved; nIP is the number of threads per node with which the best speedup was
achieved; eIP = sIP/NIP is the parallelization efficiency for best speedup; tpar

SO is the time of sensitivity
operator’s matrix construction with NIP threads; ppar

SO = tpar
SO /tpar

IP is the fraction of time of parallel
inverse problem solution spent for the sensitivity operator’s matrix construction.

Hardware tseq
IP ,

sec
tpar

IP ,
sec

sIP NIP nIP
eIP,
%

tpar
SO ,
sec

ppar
SO ,
%

1 × Intel Xeon Phi 7290 461,257 11,758 39.23 125 125 31.4 6336 53.9

1 × Intel Xeon Gold 6248R 84,928 4195 20.25 48 48 42.2 3003 71.6

2 × Intel Xeon Gold 6248R 84,928 2847 29.83 96 48 31.1 1551 54.5

3 × Intel Xeon Gold 6248R 84,928 2460 34.52 126 42 27.4 1155 47.0

4 × Intel Xeon Gold 6248R 84,928 2105 40.35 192 48 21.0 858 40.8

Figure 5. Speedup of inverse problem solution on different hardware configurations. The best values
are achieved with the numbers of threads equal to the number of processor cores (for Intel Xeon Phi
node, twice the number of cores).

Figure 6. Speedup of sensitivity operator matrix construction on different hardware configurations.
The best values are achieved with the numbers of threads equal to the number of processor cores (for
Intel Xeon Phi node, triple the number of cores).
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Figure 7. Speedup of four-node executions of the inverse problem solution with four (one per two-CPU
node) and eight (two per node with CPU affinity) MPI processes. For a large number of threads, the
option with CPU affinity provides better results despite the additional costs of duplicating calculations.

4. Discussion

As one can see from Figure 5, the speedup of the inverse problem solution grows until
the number of threads becomes equal to the number of processor cores (for Intel Xeon Phi
node, twice the number of cores), i.e., involving the second (for Intel Xeon Phi node, the
third and the forth) threads of the cores results in no further speedup. With this limitation,
the parallel code shows satisfactory efficiency of 20% on 192 threads (40× speedup). Such
a big speedup value may look contradicting to Table 1, which states that the “sequential”
part of the algorithm takes 3–5% of total calculations (and, therefore, the “ideal” speedup is
limited by the values of 20–30), but can be explained by the presence of some in-process
parallelization inside the “sequential” part.

Figure 6 focuses on the time results of the sensitivity operator matrix construction and
allows us to look at parallelization effects in isolation. The operation shows parallelization
efficiency of 63% for 152 threads (95× speedup). In other words, the additional cost of
152-thread parallelism (scheduling, tasking, and synchronization by MPI and OpenMP
plus concurrent memory access conflicts resolution by hardware) is only about 37% of
computation time, which can be considered good efficiency.

Another interesting point is that a single Intel Xeon Phi node provides a speedup
comparable to several (3 for the sensitivity operator matrix construction and 4 for the
inverse problem solution) Intel Xeon Gold nodes. This effect is more significant for the
inverse problem solution due to the in-process parallelization in the “sequential” part
mentioned above; as the execution of the “sequential” part is duplicated by each processing
node, the number of threads executing the “sequential” part is greater for single process
execution (all the processing threads) than for multiple process execution (some fraction
of all the processing threads). Furthermore, the speedup that the single Intel Xeon Phi
provides for the sensitivity operator matrix construction grows until the hardware thread
exhaustion (the best value is achieved with 250 threads). These facts, together with the
lower cost of Intel Xeon Phi, makes it an attractive facility for HPC.

Finally, it turned out that, starting with the number of threads equal to half of the
number of cores, launching two MPI processes with CPU affinity on Intel Xeon Gold
node rather than one, provides better performance, despite the redundant calculations
introduced by the duplication of the “sequential” parts of the algorithm in each process.
Figure 7 shows this for a four-node execution, and a similar picture is observed for other
setups. This can be explained by the nature of non-uniform memory access (NUMA)
architecture, which is used in the vast majority of multiprocessors (such as Intel Xeon Gold
nodes):

• The OpenMP threads 1–24 are executed by one CPU of Intel Xeon Gold and the threads
25–48, by another;

• The memory allocated by a thread is taken from the local memory of the CPU running
the thread;
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• CPU accesses its own local memory faster than non-local memory.

As a result, if a process runs 24 OpenMP threads or less, all its threads are executed
by a single CPU and allocate and access only local memory. However, if a process runs 25
OpenMP threads or more, some threads executed by one CPU access other CPU’s local
memory, which is less effective. For our code, the overhead of accessing non-local memory
is greater than the one of duplicating the “sequential” part of calculations.

Table 2 shows that the use of HPC allows us to shorten the inverse problem solution
drastically: for Intel Xeon Phi, from 5 days to less than 4 h, and for 4 Intel Xeon Gold nodes,
from 1 day to 35 min.

The fraction of time spent for the “parallel” part of the program decreased from 95%
to 40%; therefore, involving additional threads in processing will not result in significant
acceleration with our modeling scenario, which can be considered one of the limitations of
the work. Furthermore, a limitation is relatively high memory consumption compared to
the gradient-based algorithms due to solving multiple adjoint problems instead of a single
one. This limitation is common for the ensemble-based algorithms, which makes it difficult
to use our approach directly in realistic cases on GPU-like architectures.

5. Conclusions

Large-scale inverse problems demand both efficient algorithms and the implementa-
tion of the modern computational infrastructure. In the paper, we presented the evaluation
results of MPI implementation of the source identification algorithm based on the sensi-
tivity operators and adjoint ensembles in the inverse modeling scenario for Lake Baikal
region, which allows using large HPC systems.

The implementation drastically shortens modeling time in the scenario from days to
tens of minutes and provides satisfactory scalability up to 200 executing threads. It is shown
that launching two MPI processes on a two-processor node with CPU affinity provides
better performance than the “one process per node” setup despite some redundancy of
calculation. The achieved results contribute to the wider application of inverse modeling in
large-scale studies. As a possible future work, we consider:

• Increasing overall efficiency of IMDAF code at micro (loop vectorization, memory
access optimization) and macro (using highly optimized libraries, decreasing memory
footprint) levels;

• Introducing parallelism into the “sequential” part of the program;
• Analyzing and mitigating the factors limiting the speedup of sensitivity operator

matrix construction;
• Testing more realistic and time-consuming models and scenarios (including more

complicated chemistry model and 3D space modeling);
• Using the software in the thematic services for air quality studies.
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Appendix A

Algorithm A1 Newton–Kantorovich-type Algorithm [13]

Σ← 1
k← 0
q[k] ← q0
Jmin ← JU(q[k])

qmin ← q[k]

while Σ < Σmax and JU(q[k]) > ‖HUδI‖2
RΞ do

i← 0
repeat

m[k] ←matrix of the sensitivity operator MU[q[k], q[k]]

d[k] ← HU I − HUϕ
[
q[k]
]

δq[k] ← Pr
src

Θ(m[k], Σ)d[k]

γ← 1
q(test)(γ)← q[k] + γδq[k]

while (not ‖HUδI‖2
RΞ < JU(q(test)(γ)) < JU(q[k])) do

γ← γ/2
end while
q[k+1] ← q[k] + γδq[k]

k← k + 1
if Jmin ≥ JU(q[k]) then . Storing a “minimizing” iteration

Jmin ← JU(q[k])

qmin ← q[k]

end if
i← i + 1

until JU(q[k]) > ‖HUδI‖2
RΞ and

∥∥∥q[k] − q[k−1]
∥∥∥ ≤ εstab

∥∥∥q[k−1]
∥∥∥ and i < imax

Σ← Σ× ∆Σ
if Jmin < JU(q[k]) then . Restoring the last “minimizing” iteration

q[k] ← qmin
end if

end while
return qmin
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To solve (11), we use the Newton–Kantorovich-type Algorithm A1 from [13]. The
inversion procedure of the ill-conditioned sensitivity operator’s matrix is regularized
according to:

Θ(m, Σ) := mT
[
mmT

]+
Σ

. (A1)

Here,
[
mmT]+

Σ denotes the r-pseudoinverse matrix [60] for matrix mmT ∈ RK×K:

[
mmT

]+
Σ
=

p

∑
l=1

Ul

s2
l
〈., Ul〉RK , s2

1/s2
p ≤ Σ < s2

1/s2
p+1, (A2)

where 〈., .〉RK is the Euclidean scalar product in RK, {Ul}
rank(m)
l=1 is the orthonormal system

of left singular vectors of m, and sl are the singular values. To obtain the SVD for mmT we
use the Eigen::JacobiSVD class from Eigen C++ template library for linear algebra [61].

The misfit function JU decreases monotonically by choosing appropriate step parame-
ter γ:

JU(q) := ‖HU I − HUϕ[q]‖2
RΞ . (A3)

To initialize the algorithm, one has to set ∆Σ, q0, εstab, imax. The details can be found
in [13].
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