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The author is sorry to report that the statement in Proposition 1 in the paper [1] is
not valid, unless some additional assumptions concerning “no arbitrage”, price dynamics
and trading constraints are admitted. The inherited convexity property of the solutions of
Bellman–Isaacs equations holds for the generalised Kolokoltsov model [2], satisfying the
NDAO (no arbitrage opportunities) condition. The author would like therefore to make the
following corrections to his paper [1].

1. In the original paper, the formulation and the proof of Proposition 1 are the following.

Proposition 1. If the compacts Kt(·), t = 0, . . . , N are convex and the payoff functions gt,
t = 1, . . . , N are convex, then the Bellman–Isaacs functions v∗t , t = 0, . . . , N, defined by (1),
are also convex.

Proof. Let us prove the lemma by induction, using the Bellman–Isaacs Equations (1).
For s = N, function v∗s is convex because v∗N(·) = gN(·). Let vs be convex for
s = N, . . . , t + 1; now, we show that vt is also convex. Indeed, the function (xt, h) 7→
v∗t+1(xt, xt + y)− hy is convex for any y ∈ Kt(·), so the function

ϕt(xt, h) = sup
y∈Kt(·)

[v∗t+1(xt, xt + y)− hy]

is convex with respect to (x̄t, h). Let us denote

ψt(xt) = inf
h∈Dt(·)

ϕt(xt, h).

Consider x1
t and x2

t of (Rn)t−1 and their convex combination xt = q1x1
t + q2x2

t with
weights q1, q2 ≥ 0, q1 + q2 = 1. For any given ε > 0, there are h1 = h1(ε, x1

t ) ∈ Dt(·)
and h2 = h2(ε, x2

t ) ∈ Dt(·) such that ϕt(x1
t , h1) ≤ ψt(x1

t ) + ε and ϕt(x2
t , h2) ≤ ψt(x2

t ) +
ε. Due to the convexity of Dt(·), we obtain q1h1 + q2h2 ∈ Dt(·). The following
inequalities can be written:

q1ψt(x1
t ) + q2ψt(x2

t )− ε ≥ q1 ϕt(x1
t , h1) + q2 ϕt(x2

t , h2) ≥
≥ ϕt(xt, q1h1 + q2h2) ≥ inf

h∈Dt(·)
ϕt(xt, h) = ψt(xt).

As ε > 0 is arbitrary, we obtain

ψt(q1x1
t + q2x2

t ) ≤ q1ψt(x1
t ) + q2ψt(x2

t ).

Since
v∗t (·) = gt(·)∨ψt(·),
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the function v∗t (·) is convex as the maximum of convex functions.

It should be corrected as follows.

Proposition 1. Let the (deterministic) price dynamics be of Markov type, representable in the
multiplicative form: the recurrent relation (R1) applies to the (discounted) price at time t of
one unit of risky asset i ∈ {1, . . . , n}

Xi
t = Mi

tX
i
t−1, Mt = (M1

t , . . . , Mn
t ) ∈ Čt, t = 1, . . . , N, (R1)

where Čt are convex compact sets with non-void interior such that Čt ⊆ (0, ∞)n. Suppose
that there are no trading constraints, i.e., Dt(·) ≡ Rn, and the NDAO condition (no arbitrage
opportunities) is satisfied. If the payoff functions on the American option x̄t 7→ gt(x̄t), t =
1, . . . , N are convex, then the solutions of Bellman–Isaacs equations x̄t 7→ v∗t (x̄t), t =
N, . . . , 1 are also convex.

Proof. Note first, that for the considered model the NDAO condition is tantamount
to e ∈ Čt, where e = (1, . . . , 1) ∈ Rn. Denote by Λ(m) the diagonal matrix with main
diagonal entries equal to m1, . . . , mn. Considering Xt as the vector-column of n prices
of risky assets, we can rewrite (R1) as follows:

Xt = Λ(Mt)Xt−1, Mt ∈ Čt, t = 1, . . . , N. (R2)

Using the representation (R2) of price dynamics, let us prove the assertion by induction.
The convexity is immediate for s = N. By induction, suppose that v∗s are convex for
s = N, . . . , t ≥ 1. The convexity of v∗t−1 follows from the formula (R3), which is a
direct consequence of Theorem 2 in [6]:

v∗t−1(x̄t−1) = gt−1(x̄t−1)∨ sup
P∈P∗(Č),

∫
m P(dm)=e

[ ∫
v∗t ((x̄t−1, Λ(m)xt−1) P(dm)

]
, (R3)

where P∗(E) stands for the class of all the probability measures, concentrated on finite
subsets of a (non-void) set E. The convexity is conserved when taking integral (in fact,
convex combinations) and supremum in (R3), whence the required result.

2. In the original paper, Remark 1 is the following.

Remark 1.

(1) If the conditions of Proposition 1 are fulfilled, then the functions v∗t (·) are convex every-
where on Rn and, therefore, continuous (the same applies to the payoff functions gt(·)).
Therefore, the condition (USC) from Reference [5], that is, the upper semicontinuity of
v∗t (·), t = 0, . . . , N, is fulfilled, so (Reference [5], Proposition 3.3) is applicable, and
hence, there is an equilibrium with mixed extension P(Kt(·)); moreover, P opt

t (·) 6= ∅.

(2) If the maximizer in expression (2.6) from [8] is unique, that is, P opt
t (·) = {Q∗t (·)}

is a one-point set, then by Lemma 1, supp(Q∗t (·)) ⊆ ext(Kt(·)). Applying a two-
stage optimization defined by the relations (11) and (12) in Reference [7] and taking
into account Item 2 of Remark 3.2 in Reference [7], we conclude that the number of
points in support | supp(Q∗t (·))| ≤ n + 1. Moreover, if the conditions of Theorem 2.1
from Reference [8] are fulfilled, the mapping x 7→ Q∗t (x) is (weakly) continuous and
x 7→ supp(Q∗t (·)) is a lower semicontinuous multivalued mapping.

(3) In the case when Kt(·) are convex polyhedra, that is, can be represented as a convex hull of
a finite number of points (According to Theorem 19.1 in Reference [29], the polyhedrality
of a convex set is equivalent to its finite generation; in the case of compactness, such a
set coincides with the convex hull of a finite number of points; see also (Reference [28]
Definition 2.2).), the set of extreme points ext(Kt(·)) is finite and m = | ext(Kt(·))| ≥
n + 1; so n + 1 of these m points constitute the optimal mixed strategy’s support.
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It should be corrected as follows.

Remark 1.
Assume that NDSAUP holds and the functions v∗t (·), t = 0, . . . , N are convex everywhere
(since the functions v∗t (·) are convex everywhere on (Rn)t, they are continuous (see, for
example, [29], Corollary 10.1.1) on (Rn)t).

(1) Therefore, the condition (USC) from [5], i.e., the upper semicontinuity of v∗t (·), t =
0, . . . , N, is fulfilled, so [5], Proposition 3.3 is applicable, and hence, there is an equilib-
rium with mixed extension P(Kt(·)); moreover, P opt

t (·) 6= ∅.

(2) If the maximizer in expression (2.6) from [8] is unique, i.e., P opt
t (·) = {Q∗t (·)} is a

one-point set, then by Lemma 1, supp(Q∗t (·)) ⊆ ext(Kt(·)). Applying a two-stage
optimization defined by the relations (11) and (12) in [7] and taking into account Item 2
of Remark 3.2 in [7], we conclude that the number of points in support | supp(Q∗t (·))| ≤
n + 1. Moreover, if the conditions of Theorem 2.1 from [8] are fulfilled, the mapping
x 7→ Q∗t (x) is (weakly) continuous and x 7→ supp(Q∗t (·)) is a lower semicontinuous
multivalued mapping.

(3) In the case that Kt(·) are convex polyhedra, i.e., can be represented as a convex hull of a
finite number of points (according to Theorem 19.1 in [29], the polyhedrality of a convex
set is equivalent to its finite generation; in the case of compactness, such a set coincides
with the convex hull of a finite number of points; see also [28], Definition 2.2), the set of
extreme points ext(Kt(·)) is finite and m = | ext(Kt(·))| ≥ n + 1; so n + 1 of these m
points constitute the optimal mixed strategy support.

3. In the original paper Proposition 2 is formulated as follows.

Proposition 2. Let the compact-valued mappings Kt(·) be continuous, convex-valued map-
pings, Dt(·) be weakly continuous (That is, lower semicontinuous and closed (see the ter-
minology in § 14 in Reference [30])), functions, and gt(·) be convex (since the functions
gt(·) are convex everywhere on Rn, they are continuous (see, for example, Reference [29],
Corollary 10.1.1).), t = 1, . . . , N. Suppose that the robust condition of no sure arbitrage with
unbounded profit RNDSAUP and one of two following conditions hold:

(1) set Kt(·) is strictly convex t = 1, . . . , N;
(2) Kt(x) is a convex polyhedron with a constant (independent of x) number of vertices

(the set of vertices of a compact convex polyhedron coincides with the set of its extreme
points.), t = 1, . . . , N.

Then, the multi-valued mapping x 7→ P opt
t (x)∩Pn(ext(Kt(x))) 6= ∅ is upper semicontin-

uous.

The statement of Proposition 2 should be reformulated as follows.

Proposition 2. Assume that the functions v∗t (·) t = 0, . . . , N are convex everywhere
on (Rn)t. Let the compact-valued mappings Kt(·) be continuous, convex-valued mappings,
Dt(·) be weakly continuous (i.e., lower semicontinuous and closed (see the terminology in § 14
in [30])), and functions gt(·) be convex, t = 1, . . . , N. Suppose that the robust condition of no
sure arbitrage with unbounded profit RNDSAUP and one of two following conditions hold:

(1) set Kt(·) is strictly convex t = 1, . . . , N;
(2) Kt(x) is a convex polyhedron with a constant (independent of x) number of vertices

(the set of vertices of a compact convex polyhedron coincides with the set of its extreme
points), t = 1, . . . , N.

Then, the multivalued mapping x 7→ Popt
t (x)∩Pn(ext(Kt(x))) 6= ∅ is upper semicontinuous.

4. In the original paper Proposition 3 is formulated as follows.

Proposition 3. Let there be no trading constraints; the condition of no sure arbitrage NDSA
be fulfilled. Suppose that the functions gt(·) are convex and Kt(·) are convex polyhedra,
t = 1, . . . , N.
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(1) If the condition

0 /∈ ri(conv(A)) for any A ⊆ ext(Kt(·)), such as |A| ≤ n, (11)

is fulfilled, then we have the following:

- there is an optimal mixed strategy Q∗t (·) with zero mean and supp(Q∗t (·)) ⊆
ext(Kt(·)) satisfying the condition of maximum cardinality of support, that is,
| supp(Q∗t (·))| ≡ n + 1;

- compacts Kt(·) are full-dimensional, that is, dim Kt(·) = n; and
- the robust condition of no arbitrage opportunities RNDAO is fulfilled.

(2) If, in addition, P opt
t (·) contains a single element, that is, P opt

t (·) = {Q∗t (·)}, the
compact-valued mappings Kt(·) are continuous, t = 1, . . . , N, then multi-valued map-
ping x 7→ supp(Q∗t (·)) can be decomposed into n non-coincident continuous everywhere
branches, each of which is a vertex of one of the Kt(·) n-simplex (the n-simplex is a solid
polyhedron in Rn with n + 1 vertices (which are the extreme points of this polyhedron))
containing 0. (There can be several such n-simplexes.)

The statement of Proposition 3 should be reformulated as follows.

Proposition 3. Assume that the functions v∗t (·) t = 0, . . . , N are convex everywhere
on (Rn)t. Let there be no trading constraints; the condition of no sure arbitrage NDSA
is fulfilled. Suppose that the functions gt(·) are convex and Kt(·) are convex polyhedra,
t = 1, . . . , N.

(1) If the condition

0 /∈ ri(conv(A)) for any A ⊆ ext(Kt(·)), such as |A| ≤ n, (11)

is fulfilled, then we have the following:

- there is an optimal mixed strategy Q∗t (·) with zero mean and supp(Q∗t (·)) ⊆
ext(Kt(·)) satisfying the condition of maximum cardinality of support, i.e.,
| supp(Q∗t (·))| ≡ n + 1;

- compacts Kt(·) are full-dimensional, i.e., dim Kt(·) = n; and
- the robust condition of no arbitrage opportunities RNDAO is fulfilled.

(2) If, in addition, P opt
t (·) contains a single element, i.e., P opt

t (·) = {Q∗t (·)}, the compact-
valued mappings Kt(·) are continuous, t = 1, . . . , N, then multivalued mapping x 7→
supp(Q∗t (·)) can be decomposed into n non-coincident continuous everywhere branches,
each of which is a vertex of one of the Kt(·) n-simplex (the n-simplex is a solid polyhedron
in Rn with n+ 1 vertices (which are the extreme points of this polyhedron)). containing 0.
(There can be several such n-simplexes).

5. In the original paper reference no.6 is as follows:
Smirnov, S.N. Guaranteed deterministic approach to superhedging: Equilibrium in
the case of no trading constraints. J. Math. Sci. 2020. accepted.
It should be updated as follow:
Smirnov, S.N. Guaranteed deterministic approach to superhedging: Equilibrium in
the case of no trading constraints. J. Math. Sci. 2020, 248, 105–115.

The author would like to apologize for any inconvenience caused to the readers by
this mistake and the changes to the text.
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