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The author is sorry to report that the statement in Proposition 1 in the paper [1] is

not valid, unless some additional assumptions concerning “no arbitrage”, price dynamics
and trading constraints are admitted. The inherited convexity property of the solutions of
Bellman-Isaacs equations holds for the generalised Kolokoltsov model [2], satisfying the
NDAO (no arbitrage opportunities) condition. The author would like therefore to make the
following corrections to his paper [1].

1.

In the original paper, the formulation and the proof of Proposition 1 are the following.

Proposition 1. If the compacts K¢(-), t = 0, ..., N are convex and the payoff functions g,
t =1,..., N are convex, then the Bellman—Isaacs functions vi, t =0, ..., N, defined by (1),
are also convex.

Proof.  Letus prove the lemma by induction, using the Bellman-Isaacs Equations (1).
For s = N, function v} is convex because v} (-) = gn(-). Let vs be convex for
s = N,...,t+ 1, now, we show that v; is also convex. Indeed, the function (%, ) —
v} 1 (X1, xt +y) — hy is convex for any y € Ki(-), so the function

@r(xt, ) = sup [0} (%, xt +y) — hy]
yeke(+)

is convex with respect to (%, ). Let us denote

inf Xt h).
heDi(.) o 1)

e(xe) =

Consider ¥} and ¥? of (R")!~1 and their convex combination X; = ;X} + 42X with
weights q1, 42 > 0, g1 + g2 = 1. For any given e > 0, there are h; = hy (e, ¥}) € Dy(-)
and hy = hy(e,%?) € Dy(-) such that @; (%}, h1) < ¥i(x}) +eand @ (X7, hy) < ¢ (%7) +
e. Due to the convexity of D¢(-), we obtain gi1h1 + qahy € Dy(-). The following
inequalities can be written:

e (XF) + o (37) — & > qupe (X1, 1) + qoge (37, 1p) >
> @t(Xt, q1h1 + q2ho) > inf @i (X, h) = Pi(%).
hGDt(-)

As ¢ > 0 is arbitrary, we obtain

Pe(nxt + q2x7) < () + qatpe (37).

Since

v (1) = &) Ve (o),
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the function v} (-) is convex as the maximum of convex functions. [

It should be corrected as follows.

Proposition 1. Let the (deterministic) price dynamics be of Markov type, representable in the
multiplicative form: the recurrent relation (R1) applies to the (discounted) price at time t of
one unit of risky asset i € {1,...,n}

Xi:Milf g—l/ Mt:(M}/'-'rM?)Gét’tzl""’N’ (R1)

where C; are convex compact sets with non-void interior such that C; C (0,00)". Suppose
that there are no trading constraints, i.e., Di(-) = R", and the NDAO condition (no arbitrage
opportunities) is satisfied. If the payoff functions on the American option Xy v— g¢(Xt), t =
1,...,N are convex, then the solutions of Bellman—Isaacs equations %y — vy (%), t =
N, ..., 1arealso convex.

Proof. Note first, that for the considered model the NDAO condition is tantamount
toe € C;, wheree = (1,..., 1) € R". Denote by A(m) the diagonal matrix with main
diagonal entries equal to ml, ..., m". Considering X; as the vector-column of n prices
of risky assets, we can rewrite (R1) as follows:

Xi = AM)X;_q, My eCy, t=1,...,N. (R2)

Using the representation (R2) of price dynamics, let us prove the assertion by induction.
The convexity is immediate for s = N. By induction, suppose that v} are convex for
s = N,...,t > 1. The convexity of v;_; follows from the formula (R3), which is a
direct consequence of Theorem 2 in [6]:

() =gV sp | opl(me A Plm)|, (R3)
PeP+(C), [ mP(dm)=e

where P*(E) stands for the class of all the probability measures, concentrated on finite
subsets of a (non-void) set E. The convexity is conserved when taking integral (in fact,
convex combinations) and supremum in (R3), whence the required result. [

In the original paper, Remark 1 is the following.
Remark 1.

(1) If the conditions of Proposition 1 are fulfilled, then the functions v} (-) are convex every-
where on R™ and, therefore, continuous (the same applies to the payoff functions g(-)).
Therefore, the condition (USC) from Reference [5], that is, the upper semicontinuity of
vi (), t =0,...,N, is fulfilled, so (Reference [5], Proposition 3.3) is applicable, and
hence, there is an equilibrium with mixed extension P (Ky(+)); moreover, P}¥ t() # Q.

(2)  If the maximizer in expression (2.6) from [8] is unique, that is, prt(.) ={Q; (")}
is a one-point set, then by Lemma 1, supp(Q; (-)) C ext(K¢(-)). Applying a two-
stage optimization defined by the relations (11) and (12) in Reference [7] and taking
into account Item 2 of Remark 3.2 in Reference [7], we conclude that the number of
points in support | supp(Q; (+))| < n + 1. Moreover, if the conditions of Theorem 2.1
from Reference [8] are fulfilled, the mapping x — Qjf (x) is (weakly) continuous and
x — supp(Q; (+)) is a lower semicontinuous multivalued mapping.

(3)  Inthe case when K (-) are convex polyhedra, that is, can be represented as a convex hull of
a finite number of points (According to Theorem 19.1 in Reference [29], the polyhedrality
of a convex set is equivalent to its finite generation; in the case of compactness, such a
set coincides with the convex hull of a finite number of points; see also (Reference [28]
Definition 2.2).), the set of extreme points ext(K(-)) is finite and m = |ext(K¢(-))| >
n +1; 50 n + 1 of these m points constitute the optimal mixed strategy’s support.
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It should be corrected as follows.

Remark 1.

Assume that NDSAUP holds and the functions v (-), t =0, ..., N are convex everywhere
(since the functions v} (-) are convex everywhere on (R™)!, they are continuous (see, for
example, [29], Corollary 10.1.1) on (R")").

(1) Therefore, the condition (USC) from [5], i.e., the upper semicontinuity of vi(-), t =
0,...,N, is fulfilled, so [5], Proposition 3.3 is applicable, and hence, there is an equilib-
rium with mixed extension P (K¢ (-)); moreover, P} pt(-) # Q.

(2)  If the maximizer in expression (2.6) from [8] is unique, i.e., P*'(-) = {QF(-)} isa
one-point set, then by Lemma 1, supp(Qf(-)) C ext(K¢(+)). Applying a two-stage
optimization defined by the relations (11) and (12) in [7] and taking into account Item 2
of Remark 3.2 in [7], we conclude that the number of points in support | supp(Q; (+))| <
n + 1. Moreover, if the conditions of Theorem 2.1 from [8] are fulfilled, the mapping
x — Qj (x) is (weakly) continuous and x — supp(Q; (-)) is a lower semicontinuous
multivalued mapping.

(3)  In the case that K(-) are convex polyhedra, i.e., can be represented as a convex hull of a
finite number of points (according to Theorem 19.1 in [29], the polyhedrality of a convex
set is equivalent to its finite generation; in the case of compactness, such a set coincides
with the convex hull of a finite number of points; see also [28], Definition 2.2), the set of
extreme points ext(K¢(-)) is finite and m = | ext(K¢(+))| > n+ 1, so n + 1 of these m
points constitute the optimal mixed strategy support.

In the original paper Proposition 2 is formulated as follows.

Proposition 2. Let the compact-valued mappings Ky (+) be continuous, convex-valued map-
pings, Dy(-) be weakly continuous (That is, lower semicontinuous and closed (see the ter-
minology in § 14 in Reference [30])), functions, and g;(-) be convex (since the functions
<t(+) are convex everywhere on R", they are continuous (see, for example, Reference [29],
Corollary 10.1.1).), t = 1,..., N. Suppose that the robust condition of no sure arbitrage with
unbounded profit RNDSAUP and one of two following conditions hold:

(1) set K¢(-) is strictly convext =1,...,N;
(2)  K¢(x) is a convex polyhedron with a constant (independent of x) number of vertices

(the set of vertices of a compact convex polyhedron coincides with the set of its extreme
points.), t =1,...,N.

Then, the multi-valued mapping x — P;? “(x) NP1 (ext(Ki(x))) # @ is upper semicontin-
uous.

The statement of Proposition 2 should be reformulated as follows.

Proposition 2. Assume that the functions v;(-) t = 0,...,N are convex everywhere
on (R™)!. Let the compact-valued mappings K;(-) be continuous, convex-valued mappings,
D (-) be weakly continuous (i.e., lower semicontinuous and closed (see the terminology in § 14
in [30])), and functions g(-) be convex, t = 1,..., N. Suppose that the robust condition of no
sure arbitrage with unbounded profit RNDSAUP and one of two following conditions hold:

(1) set K¢(+) is strictly convex t =1,...,N;
(2)  Ki(x) is a convex polyhedron with a constant (independent of x) number of vertices

(the set of vertices of a compact convex polyhedron coincides with the set of its extreme
points), t =1,...,N.

Then, the multivalued mapping x — P;¥ ! (x) NP (ext(K¢(x))) # @ is upper semicontinuous.
In the original paper Proposition 3 is formulated as follows.

Proposition 3. Let there be no trading constraints; the condition of no sure arbitrage NDSA
be fulfilled. Suppose that the functions g;(-) are convex and Ki(-) are convex polyhedra,
t=1,...,N.
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(1) If the condition
0 ¢ ri(conv(A)) forany A C ext(K¢(+)), suchas |A| < n, (11)

is fulfilled, then we have the following:

- there is an optimal mixed strategy Qj () with zero mean and supp(Qj(-)) C
ext(K¢(-)) satisfying the condition of maximum cardinality of support, that is,
[supp(Q () = n +1;

- compacts K¢(+) are full-dimensional, that is, dim K;(-) = n; and

- the robust condition of no arbitrage opportunities RNDAO is fulfilled.

(2)  If, in addition, prt(~) contains a single element, that is, Ptopt(‘) = {Qj(-)}, the
compact-valued mappings Ky (-) are continuous, t = 1,..., N, then multi-valued map-
ping x — supp(Q; (+)) can be decomposed into n non-coincident continuous everywhere
branches, each of which is a vertex of one of the K (-) n-simplex (the n-simplex is a solid
polyhedron in R" with n + 1 vertices (which are the extreme points of this polyhedron))
containing 0. (There can be several such n-simplexes.)

The statement of Proposition 3 should be reformulated as follows.

Proposition 3. Assume that the functions vi(-) t = 0,...,N are convex everywhere
on (R")!. Let there be no trading constraints; the condition of no sure arbitrage NDSA
is fulfilled. Suppose that the functions g;(-) are convex and Kq(-) are convex polyhedra,
t=1,...,N.

(1) If the condition
0 ¢ ri(conv(A)) forany A C ext(K¢(+)), suchas |A| < n, (11)

is fulfilled, then we have the following:

- there is an optimal mixed strategy Qj () with zero mean and supp(Qjf(-)) C
ext(K¢(-)) satisfying the condition of maximum cardinality of support, i.e.,
|supp(Qf (1)) =n+1

- compacts K(-) are full-dimensional, i.e., dim K (-) = n; and

- the robust condition of no arbitrage opportunities RNDAO is fulfilled.

(2)  If, in addition, P{"" (-) contains a single element, i.e., P{"*(-) = {QF ()}, the compact-
valued mappings Ky (-) are continuous, t = 1, ..., N, then multivalued mapping x —
supp(Qj(+)) can be decomposed into n non-coincident continuous everywhere branches,
each of which is a vertex of one of the Ky (-) n-simplex (the n-simplex is a solid polyhedron
in R" with n 4 1 vertices (which are the extreme points of this polyhedron)). containing 0.
(There can be several such n-simplexes).

5. In the original paper reference no.6 is as follows:
Smirnov, S.N. Guaranteed deterministic approach to superhedging: Equilibrium in
the case of no trading constraints. J. Math. Sci. 2020. accepted.
It should be updated as follow:
Smirnov, S.N. Guaranteed deterministic approach to superhedging: Equilibrium in
the case of no trading constraints. |. Math. Sci. 2020, 248, 105-115.

The author would like to apologize for any inconvenience caused to the readers by
this mistake and the changes to the text.
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