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Abstract: In this paper, we study the nonparametric estimation of the expected shortfall regression
when the exogenous observation is functional. The constructed estimator is obtained by combining
the double kernels estimator of both conditional value at risk and conditional density function. The
asymptotic proprieties of this estimator are established under weak dependency condition. Precisely,
we assume that the observations are generated from quasi-associated functional time series and
we prove the almost complete convergence of the constructed estimator. This asymptotic result is
obtained under a standard condition of functional time series analysis. The finite sample performance
of this estimator is evaluated using artificial data.
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1. Introduction

The financial risk management is a challenging issue in stock investments. In applied
statistics, the Value at Risk (VaR) is a common model to fit this kind of risk. Furthermore,
the financial institutions have officialised the use of the VaR-function by Basel Accords
(1996, 2006). However, it is demonstrated in the literature that this model has some
drawbacks. In particular, the main concern is its insensitivity to the magnitude of the
extreme risk (see Acerbi and Tasche [1]). For this reason, the financial institutions have
enhanced the reliability of their risk management tools by adding the Expected Shortfall
(ES) model ( Basel III in 2014, [2]). It is well documented that this last alleviates the defects
of the VaR-model. Motivated by this superiority over the VaR model, the ES-model has
received growing consideration in multivariate statistics, namely, as a parametric model.
Alternatively, in this contribution, we focus on the functional statistics situation using the
nonparametric ideas.

Historically, the use of the expected shortfall model as a risk model was started by
Artzner et al. [3]. They proved the coherency property of this risk model. Yamai and
Yoshiba [4] conducted a comparative analysis between VaR and ES as financial risk models.
They conclude that the VaR has serious problems when the profit-loss distribution is
not Gaussian. They stated that the use of the ES-model is more appropriate in this kind
of situation. Furthermore, the feasibility of the ES as a financial risk model has been
popularised by Acerbi [5]. Since this precursor work, the ES-model is considerably used
in finance and/or insurance as a score function or as a constraint to optimise the asset
allocation (see, for instance, Krokhmal et al. [6] or Alexander et al. [7]). Of course, the
efficiency of this model in practice is linked to its estimation quality. In fact, the estimation
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of the ES has been investigated by many authors in the last decade using different statistical
approaches. The parametric approach based on the GARCH model seems more popular
than the other algorithms ( see, for example Wong [8] and the reference therein). As
recent advances in the ES-estimation, we cite Acereda et al. [9], which compares various
innovation distributions in GARCH-models to approximate ES. Nevertheless, some authors
have employed an alternative parametric approach based on the extreme values method to
estimate the expected-shortfall (see, for instance, Novales et al. [10], for a list of reference).
Concerning the nonparametric approach, the first results were obtained and Scaillet [11]. He
established the asymptotic properties of an estimator constructed by the kernel smoothing.
Cai and Wang [12] have proved the asymptotic normality and the strong consistency of a
kernel-based estimator. Yu et al. [13] focus on the bias correction of the ES kernel estimation
using the jackknife rule. Recently, an estimator based on the Bahadur-representation
was constructed and used by Wu et al. [14]. They obtained the Berry–Esséen bound
for the proposed nonparametric expected shortfall estimator. For an overview on the
recent advances and motivations on the expected shortfall model, we refer to Mohammed
et al. [15], Marri and Moutanabbir [16] or Jiang et al. [17], among others.

All these cited works construct their estimators using finite dimensional observations.
In this work, we consider the infinite dimensional situation. Such a case of so-called
functional statistics is actually in continuous progress. At this stage, the financial area
constitutes an attractive field for functional data modeling. The necessity to provide a
mathematical models allowing the real-time control of volatility and exploring the micro-
structure of the financial data are the principal motivations of the use of functional statistics
for financial time series data. However, most works use the parametric ideas to fit the
financial data as functional observations. For previous studies on this topic, we cite Muller
et al. [18], Kokoszka et al. [19] or Shang et al. [20]. Additional tools for financial risk
management based on functional data analysis can be found in Cai [21]. He provided a
sophistical algorithm to analyze the risk measurement of China’s financial market. As a
recent development in financial time series analysis by the functional date, we mention
Saart et al. [22]. They introduced a new approach-based functional principal components
analysis for modeling the time varying behavior of asset returns co-movements. Wang
et al. [23] combine the kernel estimation to approximate the long-term covariance func-
tion and employ the functional principal components analysis to fit and reconstruct the
volatility curve. They applied their study to China’s CSI 300 stock index. An alternative
approach to estimate the functional volatility was recently developed by Liang et al. [24].
Their estimation is based on the approximation of the total curvature of the functional
observation smoothed by some adequate basis functions. The framework of the present
work is the nonparametric functional modeling of the financial time series data. In this
context, the first work was investigated by Ferraty et al. [25]. They established the almost
complete consistency of the kernel estimator of the functional regression. Considering
the same functional model, Masry [26] proves the asymptotic normality under the strong
mixing dependency. The ergodic functional time series data case was studied by Laib
and Laouni [27]. However, the literature on the estimation of the functional expected
shortfall model is still limited. There is only one paper on this topic. It was published by
Ferraty et al. [28]. They proved the almost complete consistency of a kernel estimator of
the expected shortfall model under the strong mixing assumption. To that end, let us refer
to [29–31] for an overview on the recent tends and advances in functional statistics.

The main goal of this paper is to study the nonparametric estimation of the expected
shortfall regression as a financial risk model. The estimator is constructed by using the
double kernels estimator of the Conditional Distribution Function (CDF). Precisely, the
latter is used to define the kernel estimator of the conditional density as a derivative of
CDF and to build the kernel estimator of the VaR as the inverse of the CDF. Under weak
dependence conditions based on the quasi-association assumption, we establish the almost
complete convergence of the proposed estimator with a rate. It is worth noting that the
main difficulty on the nonparametric estimation of the expected shortfall model is the
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absence of the backtesting measure. Thus, the principal advantage of the constructed
kernel estimator is the possibility to provide the explicit expression of the estimator. Such
features makes its implantation in practice very easy and its computational time very fast.
Furthermore, we highlight the finite sample performance of the constructed estimator using
an empirical analysis.

The paper is organized as follows: The next section is dedicated to the general frame-
work of our functional time series setting. The main asymptotic properties of the con-
structed estimator is given in Section 3. Section 4 is devoted to discuss some computation-
abilities of the estimator. A real data application is presented in Section 5. Finally, the proof
of the auxiliary results is given in the Appendix A.

2. Methodology
2.1. The Quasi-Associated Functional Time Series Data Framework

Let (X1, Y1), . . . , (Xn, Yn) be n copies of a random vector, identically distributed as
(X, Y) and valued in H× IR, H is a separable real Hilbert space. We denote by 〈·, ·〉 the
inner product on H and by ‖ · ‖ its associated norm. We suppose that H has complete
orthonormal basis (ek)k≥1. The functional time series data considered in this work is
characterised by the quasi-association correlation (see, Bulinski and Suquet [32] for the real
case and Douge [33] for its definition in the Hilbert space ). All along this work, we assume
that the random pair Zi = {(Xi, Yi), i ∈ IN} is the stationary quasi-associated processes,
and we put λk as its covariance coefficient, as defined by:

λk := sup
s≥k

∑
|i−j|≥s

λi,j,

where

λi,j =
∞

∑
k=1

∞

∑
l=1
|Cov(Xk

i , Xk
j )|+

∞

∑
k=1
|Cov(Xk

i , Yj)|+
∞

∑
l=1
|Cov(Yi, Xl

j)|+ |Cov(Yi, Yj)|.

Xk
i denotes the kth component of Xi defined as Xk

i :=< Xi, ek >. Furthermore, the quasi-
associated functional time series of this contribution is carried out by the following assump-
tions

The covariance coefficient (λk)k∈IN such that λk ≤ Ce−ak, a > 0, C > 0. (1)

and
∃C, C′ > 0 such that IE[exp(|Y|)] < C ∀i 6= jIE

(
|YiYj| | Xi, Xj

)
≤ C′ < ∞. (2)

2.2. Model and Estimator

It is well known that the expected shortfall function is an alternative risk model
defined without a backtesting measure. Its definition is closely linked to the CVaR function
as the inverse of the conditional cumulative distribution. Therefore, to study the estimation
of the conditional expected shortfall, we assume that the regular version of the conditional
probability of Y given X exists. Moreover, we suppose that the conditional distribution of
Y given X is absolutely continuous with respect to the Lebesgue measure on IR and has a
bounded density. Specifically, for x ∈ H, we will denote by Fx the conditional cumulative
distribution function, (cdf.) of Y given X = x and by f x the conditional density of Y given
X = x.

Now, for p ∈ (0, 1), the Conditional Value at Risk of order p, denoted by CVaRp(x), is
defined by

Fx(CVaRp(x)) = 1− p. (3)

Of course the existence and unicity of CVaRp(x) can be insured by assuming the strict
monotony of the function Fx(·). Such a conditional model constitutes a preliminary step to
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estimate the conditional expected shortfall. Indeed, the conditional expected shortfall of
order p denoted by CESp(·) is defined by

∀p ∈ (0, 1) CESp(x) = IE
[
Y|Y > CVaRp(x), X = x

]
=

1
p

∫ ∞

CVaRp(x)
y f x(y)dy.

Thus, the kernel estimator of CESp(·) is constructed from the kernel estimation of both
conditional models f x and CVaRp(x). Both estimators are linked to the functional version
of the kernel estimator of the conditional cumulative distribution function Fx introduced
by [34], as follows

F̂x(y) = ∑n
i=1 K(a−1

n ‖x− Xi‖)H(b−1
n (y−Yi))

∑n
i=1 K(a−1

n ‖x− Xi‖)
(4)

where K is a kernel, H is a cdf and an (resp. bn) is a sequence of positive real numbers.
Now, from Equation (4), we deduce that the natural estimator of CVaRp(x) is :

F̂x(ĈVaRp(x)) = p. (5)

and of the conditional density f x is

f̂ x(y) = ∑n
i=1 K(a−1

n ‖x− Xi‖)H′(b−1
n (y−Yi))

bn ∑n
i=1 K(a−1

n ‖x− Xi‖)
. (6)

Thus, by a simple algebra, we express the kernel estimator of CESp(x), by

ĈESp(x) =
∑n

i=1 K(a−1
n ‖x− Xi‖)

(
bnG(b−1

n (V̂p(x)−Yi)) + Yi

(
1− H(b−1

n

(
V̂p(x)−Yi)

)))
p ∑n

i=1 K
(

a−1
n ‖x− Xi‖

) (7)

where
G(s) =

∫ ∞

s
uH′(u).

3. Main Results

Throughout this paper, we set by c or c′ some strictly positive generic constants, and
Nx a given neighborhood of x and by Sp(x) a given compact subset contains CVaRp(x). In
addition, we assume the operators IE[Y|X = x] and CESp(x) are a Holderian function of
exponent β0 > 0 and we consider the following assumptions:

(H1) P(X ∈ B(x, r)) = φx(r) > 0 where B(x, h) = {x′ ∈ F : d(x′, x) < h}.
(H2) ∃δ > 0, ∀(t1, t2) ∈ Sp(x)2, ∀(x1, x2) ∈ N2

x ,

|Fx1(t1)− Fx2(t2)| ≤ C2

(
d(x1, x2)

b1 + |t1 − t2|b2
)

, β1 > 0, β2 > 0.

(H3) ∀i 6= j,

0 < sup
i 6=j

IP
[
(Xi, Xj) ∈ B(x, h)× B(x, h)

]
= O(φ

1+a/(a+1))
x (h)).

(H4) The kernel function K(·) is a bounded continuous Lipschitz function on (0, 1) such
that

C11I[0,1](t) < K(t) < C21I[0,1](t).

(H5) The function H is of class C2 and its derivative H′ is a symmetric kernel function and
has compact support [−1, 1]
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(H6) There exist ξ ∈ (0, 1) and ξ1, ξ2, γ > 0 such that
log n5

n1−ξ−ξ1
≤ φx(an) ≤ 1

log n1+ξ2
≤ (anbn)2a/(a+1) and nγbn → 0.

Comments on the hypotheses.
Clearly, all these assumptions are classical in this context of functional time series

analysis. They are comparable similar to those considered by Douge (2010). Recall that
quasi-associated correlation constitutes a very weak dependence condition allowing one to
include many functional time series. Such consideration permits to increase the scope of the
application of the proposed functional model. We refer to Ango Nze et al. (2002) for a list
of the quasi-associated process including Bernoulli shifts class, Markov processes driven by
discrete innovations and the AR(1) process with ρ < 1/2 and Bernoulli innovation, among
others. They mentioned the GARCH process, which is common in the financial area and
satisfies the weak dependency assumption. Moreover, it is demonstrated in Chernick (1981)
that the autoregressive ρ = 0.1 and the innovation random variable as Binom(10, 0.25) is
not the α−mixing assumption but is quasi-associated because it can be treated as a linear
process with positive coefficients. On the other hand, the additional assumptions are
(H5) and (H6) and are closely related to the additional parameters that are the smoothing
parameter bn and the function H. All in all, they are technical assumptions necessary for
the simplicity of the proof. They are sufficient but not necessary. In particular, Condition
(H4) can be replaced by taking K, as the Rosenblatt kernel has a continuous derivative
function such that ∣∣∣∣∫ (K j)′(s)βx(s)ds

∣∣∣∣ ≤ C and j = 1, 2

where βx(s) = limr→0
φx(sr)
φx(r)

. Clearly such consideration can regroup more kernels not
necessary with compact support.

Theorem 1. Under the Hypotheses (H1)–(H6), we have,

∣∣∣ĈESp(x)− CESp(x)
∣∣∣ = O

(
aβ

n + bβ2
n +

√
log n

n1−ξ φx(an)

)
a.co. (8)

where β = min(β0, β1)

Proof of the Theorem 1. By a simple mathematical analysis (see [28]) we prove that

ĈESp(x)− CESp(x) =
1
p
(T̂n + bnŜn + CVaRp(x)Ĝn + Q̂n + pCVaRp(x)− pCESp(x))

where
T̂n = O(ĈVaRp(x)− CVaRp(x))2,

Ŝn =
∑n

i=1 K(a−1
n ‖x− Xi‖)G(b−1

n (CVaRp(x)−Yi))

∑n
i=1 K(a−1

n ‖x− Xi‖)
,

Q̂n =
∑n

i=1 K(a−1
n ‖x− Xi‖)Yi(1− H(b−1

n (CVaRp(x)−Yi)))

∑n
i=1 K(a−1

n ‖x− Xi‖)
and

Ĝn =
∑n

i=1 K(a−1
n ‖x− Xi‖)(1− H(b−1

n (CVaRp(x)−Yi)))

∑n
i=1 K(a−1

n ‖x− Xi‖)
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Firstly, we use the monotony of Fx and F̂x

O(ĈVaRp(x)− CVaRp(x)) = O

 sup
t∈Sp(x)

|F̂x(t)− Fx(t)|

.

Concerning the right term, we use the usual decomposition to write

F̂x(t)− Fx(t) =
1

F̂x
D

[(
F̂x

N(t)− IE
[

F̂x
N(t)

])
−
(

Fx(t))− IE
[

F̂x
N(t)

])]
− Fx(t)

F̂x
D

[
F̂x

D − IE
[

F̂x
D

]]
where

F̂x
N(t) :=

1
n IE[K1(x)]

n

∑
i=1

Ki(x)H(b−1
n (t−Yi)) and F̂x

D :=
1

n IE[K1(x)]

n

∑
i=1

Ki(x).

with Ki(x) = K(a−1
n ‖x− Xi‖).

Secondly, we use a similar decomposition to evaluate the quantities Ŝn, Ĝn and Q̂n.
The main difference is only in the numerators. The latter is denoted, respectively,

Ŝx
N =

1
n IE[K1(x)]

n

∑
i=1

Ki(x)G(b−1
n (CVaRp(x)−Yi)),

Ĝx
N = F̂x

D − F̂x
N(CVaRp(x))

Q̂x
N =

1
n IE[K1(x)]

n

∑
i=1

Ki(x)Yi(1− H(b−1
n (CVaRp(x)−Yi)))

Thus, the Theorem 1 is a consequence of the following intermediate results, of which
the proofs are given in the Appendix A.

Lemma 1. Under the hypotheses (H1), (H3), (H4) and (H6), we have,

sup
t∈Sp(x)

∣∣∣F̂x
N(t)− IE

[
F̂x

N(t)
]∣∣∣ = O

((
log n

n φx(h)

)1/2
)

, a.co.

Lemma 2. ( see [34]) Under Hypotheses (H1), (H2) and (H4)–(H6), we have,

sup
t∈Sp(x)

∣∣∣Fx(t)− IE
[

F̂x
N(t)

]∣∣∣ = O
(

aβ1
n + bβ2

n

)
.

Lemma 3. Under the hypotheses (H1), (H3), (H4) and (H6), we have,

∣∣∣Ŝx
N − IE

[
Ŝx

N

]∣∣∣ = O

((
log n

n φx(h)

)1/2
)

(9)

and

F̂x
D − IE

[
F̂x

D

]
= O

((
log n

n φx(h)

)1/2
)

a.co. (10)

Moreover

∑
n

IP
(

F̂x
D <

1
2

)
< ∞.
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Lemma 4. Under the hypotheses (H1), (H3), (H4) and (H6), we have,

∣∣∣Q̂x
N − IE

[
Q̂x

N

]∣∣∣ = O

((
log n

n1−ξ φx(h)

)1/2
)

, a.co.

Lemma 5. Under Hypotheses (H1), (H2) and (H4)–(H6), we have,∣∣∣IE[Ŝx
N

]∣∣∣ = O
(

aβ1
n + bβ2

n

)
,

and ∣∣∣pCESp(x)− IE
[

Q̂x
N

]∣∣∣ = O
(

aβ1
n + bβ2

n

)
.

4. A Simulation Study

The main purpose of this empirical analysis is to examine the behavior of the proposed
kernel estimator. More precisely, we aim to evaluate the impact of the different components
of the estimator. We divide the set of these parameters into components : structural
parameters and technical ones. The structural parameters concerns the nonparametric
model used to generate the observations (Xi, Yi)i and the technical parameters are the
kernels, the metric and the bandwidths (an, bn). So in the first illustration, we examine the
effect of the structural parameters while the technical ones are postponed in the second part.
Therefore, in the first part, we compare the performance of this estimator using different
conditional distributions and different sample size. To do this, we generate an artificial
data using the nonparametric regression relationship between the input and the output
variables, as follows

Yi = r(Xi) + εi for i = 1, . . . , n (11)

where the functional co-variates X are drawn by the following process

X(t) = cos(W3t3) + sin(W2t2) + Wt, W  ARMA(2, 2), and t ∈ [−π, π].

The coefficients of W are arbitrarily chosen equal to ar = c(0.8897,−0.4858), ma =
c(−0.2279, 0.2488) and σ2 = 0.1796. A sample of the regressors curves X(t) are plotted in
Figure 1.

Time

0 20 40 60 80 100

0
5

1
0

1
5

2
0

2
5

Figure 1. A sample of the functional curves.
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The interest variable Y is obtained by taking as the regression operator

r(x) = 2
∫ π

0

x2(t)
1 + x2(t)

dt.

Recall that, in this kind of mechanism to generate the simulated data, the conditional
distribution of Y given X = x is obtained by shifting the law of the white noise of εi by
the quantity r(x) . Thus, the theoretical expected shortfall as well as the true VaR function
can be is explicitly calculated. Thus, in this experiment, we simulate with two distribution
white noise εi. The first one is normal distribution (N(0, 1)) and the second one is the
Laplace distribution Laplace(0, 1).

Now, we describe the determination of the parameters involved in the estimator
ĈESp. Firstly, the optimal bandwidth an, bn is chosen locally by using the following cross-
validation rule:

(aCVopt(x), bCVopt(y)) = arg min
a,b∈Hn(x,y)

n

∑
i=1

∣∣∣Yi − ̂CVaR0.5(Xi)
∣∣∣, (12)

where Hn(x, y) is the set of the positive real numbers (a, b), such that the ball centred at x
with radius a and (respectively, the interval (y− b, y + b)) contains exactly k observations
of Xi (respectively, of Yi), k ∈ {5, 10, 15, . . . n/2}. Finally, we propose that the estimator was
computed by quadratic kernel on (0, 1) and we have used the L2 metric associated to the
PCA definition with m = 3 (see, Ferraty and Vieu [34])).

The efficiency of the estimation procedures is evaluated using the average absolute
error:

ASE =
1
n

n

∑
i=1

∣∣∣Êp(Xi)− Ep(Xi)
∣∣∣. (13)

The simulation study performed over 100 replications. The obtained errors are dis-
played in the following box-plot Figure 2. It concerns the ASE of the two considered
conditional distribution, of three values of sample size n = 50, 150, 300 and for p = 0.01.

Laplace Normal

0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0
0
.2

5
0
.3

0

Case n=50

Laplace Normal

0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0
0
.2

5

Case n=150

Laplace Normal

0
.0

0
0
.0

5
0
.1

0
0
.1

5

Case n=300

Figure 2. ASE with respect the sample size.

It clearly appears that the nonparametric estimation of the expected shortfall regression
depends on the conditional distribution of Y given X. In that sense, there are significative
difference in the quality estimation between the normality case and the non-normality
situation. Secondly, it is clear that the performance of the estimator increases with the
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values of the sample size n. However, all in all the estimator ĈESp has a satisfactory
performance for the small size in the case n = 50, and the execution time for the large
sample size n = 300 is fast. Even if the execution time of any routine code is related to the
characteristics of the microcomputer, for IdeaPad S340 with processor N4020, the function
Sys.time in R computes the execution time by o 0.34801 secs for n = 300.

The second illustration concerns the examination of the impact of the technical param-
eters in the estimator. We focus on the choice of the kernel K and the smoothing parameters
(an, bn). For this aim, we compare three kernels

K(t) = 3
2 (1− t2)1I[0,1] Quadratic on [0, 1],

K(t) = 1
β(2,3) t(1− t)21I[0,1] β− kernel on [0, 1],

K(t) = 1I[0,1] Uniform on [0, 1],

and three selectors of (an, bn). The first one is defined as Equation (12) and the two others’
rule defined by

(aCVopt(x), bCVopt(y)) = arg min
a,b∈Hn(x,y)

n

∑
i=1

Lp(Yi − ĈVaRp(Xi)), (14)

where Lp(t) = (2p− 1)t + |t| and

(aCVopt(x), bCVopt(y)) = arg min
a,b∈Hn(x,y)

n

∑
i=1
|ĈESp(Xi)− CESp(Xi)| (15)

where CESp(Xi) is the local empirical expected shortfall obtained from the fixed neigh-
bourhood of Xi that contains J closest curves to Xi. It is defined by

CESp(Xi) =
1
J

J

∑
i=1

Yi1IYi>ĈVaRp(Xi)
,

J is optimised over the subset {10, 15, 20, 30}. Next, we keep the same metric and the
same schema of the data generating of the first illustration; we change only the conditional
distribution which is related to the distribution of the white noise. Specifically, instead
of the normal and laplace distributions of the first part, we consider the student distri-
bution, which is more popular in financial time series data. The impact of the technical
parameters is checked using the ASE-error Equation (13) for n = 100 and three values
of p = 0.01, 0.05, andp = 0.1. An average of 100 replications of this error is given in the
following table.

The results of Table 1 proves that the technical parameters also have an important
effect on the estimation quality. The variability of the errors between different selectors
or different kernels is relatively significative. In particular, it seems that the selection of
the bandwidth parameter has more impact than the kernel function, in the sense that the
variability of ASE with respect to the three selectors of (an, bn) is more significative than
the kernels.
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Table 1. Comparison of ASE-error using different kernels and smoothing parameters.

Selector Kernel p = 0.01 p = 0.05 p = 0.1

Rule (12) Quadratic 0.094 0.083 0.088
β-kernel 0.089 0.078 0.084
Uniform 0.109 0.112 0.142

Rule (14) Quadratic 0.052 0.062 0.071
β-kernel 0.048 0.057 0.067
Uniform 0.074 0.079 0.088

Rule (15) Quadratic 0.041 0.048 0.061
β-kernel 0.039 0.043 0.059
Uniform 0.055 0.050 0.054,

5. Real Data Example

The object of this section is to evaluate the performance of the kernel estimator of the
expected shortfall regression using a real financial time series data. In the previous section,
we proved that the easy implantation of the constructed estimator for different kernels,
different bandwidths as well as different conditional models. We have observed, without
surprising, that its efficiency is strongly influenced by these parameters. Recall that the
main motivation of this kernel smoothing is to overcome the problem of the non-elicitability
of the expected shortfall model. However, in the multivariate statistics there exists some
alternative solutions based on jointly estimation the CVaRp(· · · ) and CESp(·) using some
adapted parametric scoring functions. Such solution has been studied by [35–37]. Thus
the main purpose of this section is to conduct a comparative empirical analysis between
our nonparametric functional approach based on the kernel smoothing and the cited
studies based on the semi-parametric multivariate techniques. It’s worth remembering
that the nonparametric functional tools is more appropriate that the parametric models
to fit the high-frequency data (see Ferraty and View [34]). So, we want in this paragraph
to highlight this feature of nonparametric functional data analysis. For this aim, we
consider as financial time series the interday return of the stock index Nikkei during
the period 11 October 1983 to 11 October 2022. The studied data was obtained from the
website https://fred.stlouisfed.org/series/NIKKEI225 (accessed on 14 September 2022).
Undoubtedly, this kind of financial times series data exhibits the principal characteristics
of financial data: volatility, non-normality, heavy tailed distribution, excess kurtosis, . . . .
In Figure 3, we plot the process of the return index r(t).

0 2000 4000 6000 8000 10000
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Figure 3. The daily return for the stock index.

https://fred.stlouisfed.org/series/NIKKEI225
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Often in financial times series analysis we aim to forecast a future values of the process
Z(t) = −100 log

(
r(t)

r(t−1)

)
index knowing its historical trajectory. In our functional context,

we formulate this forecasting problem by putting Yi = Y = Z(di) (the value of Z(.) at day
di) and the functional covariate Xi(t) = Z(t)t∈[di−R,di−1] that the historical values of the
index of the last R-days before di. In this empirical study, we conduct comparative study
using different values of R = 3, 6, 10, 30, 90. We point out that for the Multivariate Semi-
Parametric Model (MSPM), we use the code routine esreg from the R-package esrreg using
two types of specification functions that defined the scoring functions (see Dimitriadis and
Bayer [37] for more details in this approach). Recall that this kind of approach requires
a limited dimension of regressors. Therefore, we have combined this function with the
principal component analysis to reduce the dimension of the regressors when the R is
large. Next, for the Non-Parametric Functional Model (NPFM), we use the β-kernel and
we select the smoothing parameters by the rule (14). Moreover, we explore the functional
structure of the data by considering two situations: smoothing and non-smoothing cases.
In the smoothing case, we use the spline metric, whereas in the non-smoothing case, we use
the PCA-metric. We return to Ferraty and Vieu [34] for more details on the mathematical
formulation of the two metrics. In the following Figures 4 and 5 we display the initial
curves and their smoothed version one.

Time
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Figure 4. The initial curves; the case when R = 90.
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Figure 5. The smoothed curves; the case when R = 90.
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Furthermore, the performance of both models are examined for three values of p =
0.01, 0.05, 0.1 using the error defined by the mean absolute value, as follows

MAE(p) =
1
N

n

∑
j=1
|ĈESp(Xi)− C̃ESp(Xi)|

where C̃ESp(Xi) =
1
N

n

∑
j=1

Yi1IYi>ĈVaRp(Xi)
and N = ∑n

j=1 1I
Yi>ĈVaRp(Xi)

. The comparison

results are reported in the Table 2.

Table 2. Comparison of the MAE- error between Nonparametric functional model and semiparametric
multivariate model.

Model p R = 3 R = 6 R = 10 R = 30 R = 90

MSPM with 0.01 1.92 2.05 2.29 2.56 2.98
specification functions 0.05 1.75 1.96 2.16 2.29 2.81

G1(t) = 0 and G2(t) = et 0.1 1.67 1.84 1.93 2.07 2.28

MSPM with 0.01 1.81 1.96 1.07 1.43 1.78
specification functions 0.05 1.62 1.81 1.08 1.17 1.74

G1(t) = t and G2 = et

1+et 0.1 1.43 1.63 1.71 1.94 2.19

NPFM with 0.01 1.87 1.98 2.26 1.52 2.91
non-smoothing curves 0.05 1.71 1.89 2.09 2.22 2.76

0.1 0.65 1.79 1.88 2.01 2.23

NPFM with 0.01 2.35 1.04 1.13 2.32 2.09
smoothing curves 0.05 2.26 0.97 1.06 1.28 1.78

0.1 1.95 0.84 0.83 0.76 0.99

Unsurprisingly, we can observe that the semi-parametric approach has a good per-
formance for small R = 3, while the non-smoothing functional approach is equivalent to
MSPM for small R = 3, and its smoothing version has a substantial efficiency when it is
large R ≥ 30. However, the smoothing functional approach is not applicable of R ≤ 10.
Next, it appears clearly that the two approaches are impacted by the choice of the parame-
ters used in the estimation processing. In particular, the parametric approach is affected
by the choice of the specification functions associated to the scoring function. This is the
case when G1(t) = t and G2(t) = et

1+et seems more appropriate than the first case. It is he
same thing for the functional case: the smoothing case is better than the non-smoothing
case when R is large.

An additional check is performed using another backtest based on the cover test
developed by Bayer and Dimitriadis [38]. We apply the version, the so-called one-side
intercept expected shortfall regression backtest. Precisely, we compare our functional
approach to the GARCH specifications with Student-t using this cover-test. The latter is
available by the routine code esr-backtest from the R-package esrback. Here, we choose
α = 0.05. For our aim we split, randomly, many times (exactly 100 times), the data into
subsets (70% learning sample and 30% testing sample), and for each time we compute the
empirical p-values of both approaches when R = 90. In the following Figure 6, we display
the obtained empirical values versus the threshold α = 0.025 in the horizontal line.
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Figure 6. Comparison of the p-values between t-GARCH nonparametric functional approach.

The obtained results confirms the statement concluded by the table. In sense that the
nonparametric functional procedure is good solution of the high-frequency data associated
to large R. It’s worth noting that also of small large R the functional approach with the
PCA metric constitutes a competitive algorithm to the semi-parametric approach.

6. Conclusions

This contribution focuses on the nonparametric estimation of the expected shortfall
regression. An estimator based on the kernel method was constructed and its asymptotic
property was proved under a weak dependence condition. The easy implementation of
this estimator was checked using a simulated data. The empirical analysis incorporates
the theoretical part, where we observe that the efficiency of the estimator is linked to
various aspects including the regularity of the nonparametric models, the smoothness
of the functional regressor as well as the choice of the bandwidth parameters an and
bn. One of the main feature of the our estimator is the possibility to express its form
explicitly. Such a statement allows one to overcome the problem of the nonexistence of
the backtesting measure in this model. The present contribution offers also an important
number of prospects in the future. The first natural prospect is the establishment of the
asymptotic normality of the constructed estimator under the quasi-association assumption.
The generalisation of the present result to the spatial case constitutes an important open
question. In addition to the treatment of an alternative functional time series structure,
there is the use of other smoothing methods such as the kNN method, local linear approach
or the recursive algorithm, among others.
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Appendix A

In what follows, when there is no confusion, we will denote, for all i = 1, . . . , n, by:

Hi(y) = H(b−1
n (y−Yi)) and Gi(y) = G(b−1

n (y−Yi)).

Now, we state the following lemmas, which are needed to establish our asymptotic results

Lemma A1. (See, Kallabis and Neumann [39])
Let X1, . . . , Xn the real random variables such that IEXj = 0 and IP(|Xj| ≤ M) = 1, for all

j = 1, . . . , n and some M < ∞. Let σ2
n = Var

(
∑n

j=1 Xj

)
. Assume, furthermore, that there exist

K < ∞ and β > 0 such that, for all u-tuplets (s1, . . . , su) and all v-tuplets (t1, . . . , tv) with
1 ≤ s1 ≤ . . . ≤ su ≤ t1 ≤ . . . ≤ tv ≤ n, the following inequality is fulfilled :∣∣∣Cov(Xs1 . . . Xsu , Xt1 . . . Xtv)

∣∣∣ ≤ K2Mu+v−2ve−β(t1−su).

Then,

IP
(∣∣∣ n

∑
j=1

Xj

∣∣∣ > t
)
≤ exp

− t2/2

An + B
1
3
n t

5
2


for some An ≤ σ2

n and Bn =

(
16nK2

9An(1− e−β)
∨ 1
)

2(K ∨M)

1− e−β
.

Proof of Lemma 3. The proof of this lemma is based on the compactness of Sp(x). Indeed,
we use the fact that Sp(x) ⊂ ⋃dn

k=1 Sk where Sk = (tk − ln, tk + ln), dn = O(l−1
n ) =

O(n(2γ+1)/2). We define ty = arg mint∈{t1,...,tsn} |y− t|, we have

1
F̂x

D
sup

y∈Sp(x)

∣∣∣F̂x
N(y)− IEF̂x

N(y)
∣∣∣ ≤ 1

F̂x
D

sup
y∈Sp(x)

∣∣∣F̂x
N(y)− F̂x

N(ty)
∣∣∣︸ ︷︷ ︸

I1

+

1
F̂x

D
sup

y∈Sp(x)

∣∣∣F̂x
N(ty)− EF̂x

N(ty)
∣∣∣︸ ︷︷ ︸

I2

+
1

F̂x
D

sup
y∈Sp(x)

∣∣∣IEF̂x
N(ty)− IEF̂x

N(y)
∣∣∣︸ ︷︷ ︸

I3

. (A1)

• Concerning (I1): We use the Lipschitzian condition on H, we obtain

1
F̂x

D
sup

y∈Sp(x)

∣∣∣F̂x
N(y)− F̂x

N(ty)
∣∣∣ ≤ 1

F̂x
D

sup
y∈Sp(x)

1
n IE[K1(x)]

n

∑
i=1

∣∣Hi(y)− Hi(ty)
∣∣Ki(x),

≤ 1
F̂x

D
sup

y∈Sp(x)

C|y− ty|
bn

(
1

n IE[K1(X)]

n

∑
i=1

Ki(x)

)
,

≤ C
ln
bn

. (A2)

Because of (H6), we have
ln
bn

= o

(√
log n

n φx(an)

)
.
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Thus, for n large enough, we can write

IP

 1
F̂x

D
sup

y∈Sp(x)

∣∣∣F̂x
N(y)− F̂x

N(ty)
∣∣∣ > η

3

√
log n

n φx(an)

 = 0.

It follows that
1

F̂x
D

sup
y∈Sp(x)

∣∣∣F̂x
N(y)− F̂x

N(ty)
∣∣∣ = o

(√
log n

n φx(an)

)
(A3)

and
1

F̂x
D

sup
y∈Sp(x)

∣∣∣IEF̂x
N(y)− IEF̂x

N(ty)
∣∣∣ = o

(√
log n

n φx(an)

)
. (A4)

• Concerning (I2): It is clear that

IP

 sup
y∈Sp(x)

∣∣∣F̂x
N(ty)− EF̂x

N(ty)
∣∣∣ > η

3

√
log n

n φx(an)


= IP

(
max

ty∈{t1,...,tsn}

∣∣∣F̂x
N(ty)− EF̂x

N(ty)
∣∣∣ > η

3

√
log n

n φx(an)

)

≤ sn max
ty∈{t1,...,tsn}

IP

(∣∣∣F̂x
N(ty)− EF̂x

N(ty)
∣∣∣ > η

3

√
log n

n φx(an)

)
.

We write

F̂x
N(ty)− EF̂x

N(ty) =
n

∑
i=1

∆i.

with ∀1 ≤ i ≤ n,

∆i =
1

nIE[K1(x)]
(
Ki(x)Hi(ty)− IE

[
K1(x)H1(ty)

])
=

1
nIE[K1(x)]

χ(Xi, Yi),

with

χ(z, w) = H(b−1
n (ty − w))K(a−1

n ‖x− z‖))− IE
[
H1(ty)K1(x)

]
, z ∈ H, w ∈ IR.

So, the rest of the proof is based on the application of Lemma A1 on the variables ∆i.
To do that, we use the fact that (For any function f we denote by ‖ f ‖∞ the supremun
norm)

‖χ‖∞ ≤ 2C‖K‖∞‖H‖∞

Lip(χ) ≤ C(a−1
n ‖H‖∞Lip(K) + b−1

n ‖K‖∞Lip(H))

and we evaluate the covariance term

Cov(∆s1 . . . ∆su , ∆t1 . . . ∆tv), (s1, . . . , su, t1, . . . , tv)) ∈ INu+v.

We consider two cases:

– If t1 = su. By using the fact that IE
[∣∣H2

1(ty)K2
1(x)

∣∣] = O(φx(an)) and
IE[|K1(x)|] = O(φx(an)) to get

|Cov(∆s1 . . . ∆su , ∆t1 . . . ∆tv)| ≤
(

C‖H‖∞‖K‖∞

nIE[K1(x)]

)u+v
IE
[∣∣∣K2

1(x)H2
1(ty)

∣∣∣]
≤ φx(an)

(
C

nφx(an)

)u+v
. (A5)
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– If t1 > su, we use the quasi-association definition to write that

|Cov(∆s1 . . . ∆su , ∆t1 . . . ∆tv)| ≤
((

a−1
n Lip(K) + b−1

n Lip(H)
)
(nIE[K1(x)])−1

)2

(
C

nIE[K1(x)]

)u+v−2 u

∑
i=1

v

∑
j=1

λsi ,tj

≤
(

a−1
n Lip(K) + b−1

n Lip(H)
)2
(

C
nIE[K1(x)]

)u+v
vλt1−su

≤
(

a−1
n Lip(K) + b−1

n Lip(H)
)2
(

C
nφx(an)

)u+v
ve−a(t1−su). (A6)

On the other hand, we have,

|Cov(∆s1 . . . ∆su , ∆t1 . . . ∆tv)| ≤
(

C‖H‖∞‖K‖∞

nIE[K1(x)]

)u+v−2

×

(|IE[∆su ∆t1 ]|+ IE|∆su |IE|∆t1 |)

≤
(

C‖H‖∞‖K‖∞

nIE[K1(x)]

)u+v−2( C
nIE[K1(x)]

)2
×(

φ
(a+1)/a
x (an) + φ2

x(an)
)

≤
(

C
nφx(an)

)u+v
φ
(a+1)/a
x (an). (A7)

Furthermore, taking a 1
2(a+1) -power of Equation (A6), ( 2a+1

a+1 )-power of Equa-
tion (A7), we obtain for 1 ≤ s1 ≤ . . . ≤ su ≤ t1 ≤ . . . ≤ tv ≤ n :

|Cov(∆s1 . . . ∆su , ∆t1 . . . ∆tv)| ≤ φx(an)

(
C

nφx(an)

)u+v
ve−a(t1−su)/(2(a+1)).

The application of Lemma A1 requires also the evaluation of the variance term

Var

(
n

∑
i=1

∆i

)
=

n

∑
i=1

n

∑
j=1

Cov(∆i, ∆j)

= Var(∆1)

+
n

∑
i=1

n

∑
j=1
j 6=i

Cov(∆i, ∆j). (A8)

For the first term, we have

IE
[

H2
1(ty)K2

1(x)
]

= IE
[
K2

1(x)IE
[

H2
1(ty)|X1

]]
.

By integration on the real component y, we obtain

IE[[H2
1(ty)|X1] = O(1).

As, for all j ≥ 1, IE
[
K j

1(x)
]
= O(φx(an)), then

IE
[

H2
1(ty)K2

1(x)
]
= O(φx(an)).
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It follows that

Var(∆1) = O
(

1
nφx(an)

)
. (A9)

Concerning the covariance term in Equation (A8), we use the following decomposition

n

∑
i=1

n

∑
j=1
j 6=i

Cov(∆i, ∆j) =
n

∑
i=1

n

∑
j=1

0<|i−j|≤mn

Cov(∆i, ∆j)

+
n

∑
i=1

n

∑
j=1

|i−j|>mn

Cov(∆i, ∆j)

=: I + I I.

where (mn) is a sequence of a positive integer, which goes to infinity as n→ ∞.
Using the same idea as in Equation (A7), we prove that for all i 6= j

I ≤ Cnmnφ
(a+1)/a
x (an). (A10)

Since both kernels H and K are bounded and Lipschitz, we obtain

I I ≤
(

a−1
n Lip(K) + b−1

n Lip(H)
)2 n

∑
i=1

n

∑
j=1

|i−j|>mn

λi,j

≤ C
(

a−1
n Lip(K) + b−1

n Lip(H)
)2 n

∑
i=1

n

∑
j=1

|i−j|>mn

λi,j

≤ C
(

a−1
n Lip(K) + b−1

n Lip(H)
)2 n

∑
i=1

n

∑
j=1

|i−j|>mn

λi,j

≤ Cn
(

a−1
n Lip(K) + b−1

n Lip(H)
)2

λmn

≤ Cn
(

a−1
n Lip(K) + b−1

n Lip(H)
)2

e−amn . (A11)

Then, by Equations (A10) and (A11), we obtain

n

∑
i=1

n

∑
j=1
j 6=i

Cov(∆i, ∆j) ≤ C
(

nmnφ
(a+1)/a
x (an) + n

(
a−1

n Lip(K) + b−1
n Lip(H)

)2
e−amn

)
.

By choosing mn = log
(
(a−1

n Lip(K)+b−1
n Lip(H))

2

aφ
(a+1)/a
x (an)

)
, we obtain

1
nφx(an)

n

∑
i=1

n

∑
j=1
j 6=i

Cov(∆i, ∆j) → 0, as n→ ∞. (A12)

Finally, by combining results in Equations (A9) and (A12), we obtain

Var

(
n

∑
i=1

∆i

)
= O

(
1

nφx(an)

)
. (A13)
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So, the variables ∆i, i = 1, . . . , n satisfy the conditions of Lemma A1 for

Kn =
C

n
√

φx(an)
, Mn =

C
nφx(an)

and An = Var

(
n

∑
i=1

∆i

)
.

Thus,

IP

(∣∣∣F̂x
N(ty)− EF̂x

N(ty)
∣∣∣ > η

√
log n

nφx(an)

)

= IP

(∣∣∣ n

∑
i=1

∆i

∣∣∣ > η

√
log n

nφx(an)

)

≤ exp

−
η2 log n

(nφx(an))

(
Var(∑n

i=1 ∆i) +
log5/6 n

(nφx(an))(7/6)

)


≤ exp

−
η2 log n(

C +
log5/6 n

(nφx(an))(1/6)

)


≤ C′ exp
{
−Cη2 log n

}
Finally, for a suitable choice of η allows one to obtain

1
F̂x

D
sup

y∈Sp(x)

∣∣∣F̂x
N(ty)− EF̂x

N(ty)
∣∣∣ = Oa.co

(√
log n

n φx(an)

)
. (A14)

Proof of Lemma 2. The details of the proof of this lemma is omitted. It is similar to the
second part of Lemma 2. It suffices to replace H in the definition of ∆i either by G for the
statement or by 1 for the Equation (10). Concerning the last required result, we have

IP
(∣∣∣F̂x

D

∣∣∣ ≤ 1/2
)
≤ IP

(∣∣∣F̂x
D − 1

∣∣∣ > 1/2
)
≤ IP

(∣∣∣F̂x
D − IE

[
F̂x

D

]∣∣∣ > 1/2
)

and using Equation (10) to deduce that

∞

∑
n=1

IP
(∣∣∣F̂x

D

∣∣∣ ≤ 1/2
)
< ∞

which completes the proof of the last statement of this lemma.

Proof of Lemma 4. We write
Q̂x

N = Υ̃N + Υ̂N

with

Υ̃N =
1

n IE[K1(x)]

n

∑
i=1

Ki(x)Yi

and

Υ̂N =
1

n IE[K1(x)]

n

∑
i=1

Ki(x)Yi H(b−1
n (CVaRp(x)−Yi))

So, all it remains to show that
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∣∣∣Υ̃N − IE
[
Υ̃N

]∣∣∣ = O

((
log n

n1−ξ φx(h)

)1/2
)

, a.co

and ∣∣∣Υ̂N − IE
[
Υ̂N

]∣∣∣ = O

((
log n

n1−ξ φx(an)

)1/2
)

, a.co.

Because of the similarity between the proof of both terms, we focus only on the last one.
Furthermore, its proof is based on the same arguments as in Lemma 1; the main difference
is the additional variable Yi which is is not necessary bounded. To overcome this issue we
employ the truncation method and we define

Υ̂∗N =
1

n IE[K1(x)]

n

∑
i=1

K
(

a−1
n ‖x− Xi‖

)
Yi H(b−1

n (CVaRp(x)−Yi))1I|Yi |<µn with µn = nξ/6.

Then, the claimed result is a consequence of the following intermediates results

∣∣∣IE[Υ̂∗N ]− IE[Υ̂N ]
∣∣∣ = O

(√
log n

n1−ξ φx(an)

)
, (A15)

∣∣∣Υ̂∗N − Υ̂N

∣∣∣ = Oa.co.

(√
log n

n1−ξ φx(an)

)
(A16)

and ∣∣∣Υ̂∗N − IE[Υ̂∗N ]
∣∣∣ = Oa.co.

(√
log n

n1−ξφx(an)

)
. (A17)

Firstly, to prove Equation (A17) we write :

Υ̂∗N − IE
[
Υ̂∗N
]

=
n

∑
i=1

Λi

where
Λi =

1
n IE[K1(x)]

χ′(Xi, Yi),

with

χ′(z, w) = wH(b−1
n (ty − w))K(a−1

n ‖x− z‖))− IE
[
YH1(ty)K1(x)

]
, z ∈ H, w ∈ IR.

Clearly,

‖χ′‖∞ ≤ Cµn‖K‖∞‖H‖∞ and Lip(χ′) ≤≤ Cµn(a−1
n ‖H‖∞Lip(K) + b−1

n ‖K‖∞Lip(H)).

Once again, we apply the inequality of Kallabis and Newmann on Λi for which we must
evaluate asymptotically the quantities Var(∑n

i=1 Λi) and Cov(Λs1 . . . Λsu , Λt1 . . . Λtv), for all
(s1, . . . , su) ∈ INu and (t1, . . . , tv) ∈ INv. Both quantities are treated by the same techniques
as in the proof of (A13) and we obtain

Var

(
n

∑
i=1

Λi

)
= O

(
1

nφx(an)

)
.

and

|Cov(Λs1 , . . . Λsu , Λt1 , . . . Λtv)| ≤ φx(an)

(
Cµn

nφx(an)

)u+v
ve−a(t1−su)/(2(a+1)).
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So, we apply Theorem 2.1 of Kallabis and Newmann (2006, p. 2) for the variables Λi, i =
1, . . . , n where

Kn =
Cµn

n
√

φx(an)
, Mn =

Cµn

nφx(an)
and An = Var

(
n

∑
i=1

Λi

)
= O

(
1

nφx(an)

)
.

It follows that

IP

(∣∣∣Υ̂∗N − IE
[
Υ̂∗N
]∣∣∣ > η

√
log n

n1−ξφx(an)

)

≤ IP

(∣∣∣ n

∑
i=1

Λi

∣∣∣ > η

√
log n

n1−ξφx(an)

)

≤ exp

−
η2 log n/(2n1−ξ φx(an))(

Var(∑n
i=1 Λi) + Cµn(nφx(an))

− 1
3

(
log n

n1−ξ φx(an)

) 5
6
)


≤ exp

−
η2 log n

Cn−ξ + µnn−ξ/6
(

log5 n
nφx(an)

) 1
6


≤ C′ exp

{
−Cη2 log n

}
. (A18)

The suitable choice of η allows one to finish the proof of Equation (A17).
Now, to proving Equation (A15) use the Holder’s inequality to show that,

∣∣∣IE[Υ̂N

]
− IE

[
Υ̂∗N
]∣∣∣ ≤ 1

n IE[K1(x)]

∣∣∣∣∣IE
[

n

∑
i=1

Yi1I{|Yi |>µn}Ki(x)

]∣∣∣∣∣
≤ 1

IE[K1(x)]
IE
[
|Yi|1I{|Yi |>µn}K1(x)

]
≤ 1

IE[K1(x)]
IE
[
exp(|Y1|/4)1I{|Yi |>µn}K1(x)

]
≤

(
IE
[
exp(|Y1|/2)1I{|Yi |>µn}

]) 1
2
(

IE(K2
1(x))

) 1
2

≤ φ−1
x (an) exp(−µn/4)(IE[exp(|Y1|)])

1
2
(

IE(K2
1(x))

) 1
2

≤ Cφ−1/2
x (an) exp(−µn/4).

Since µn = nξ/6 then, we can write

∣∣∣IE[Υ̂N

]
− IE

[
Υ̂∗N
]∣∣∣ = o

((
log n

n1−ξφx(an)

)1/2
)

.

The last claimed result Equation (A16) is shown by using the Markov’s inequality. Indeed,
for all ε > 0

IP
[∣∣∣Υ̂N − Υ̂∗N

∣∣∣ > ε
]

= IP

[
1

nφx(an)

n

∑
i=1

Yi1I|Yi |>µn Ki| > ε

]
≤ nIP[|Y1| > µn]
≤ n exp(−µn)IE(exp(|Y|))
≤ Cn exp(−µn).
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Then,

∑
n≥1

IP

(∣∣∣Υ̂N − Υ̂∗N
∣∣∣ > ε0

(√
log n

n1−ξ φx(an)

))
≤ C ∑

n≥1
n exp(−µn). (A19)

The use of the definition of µn completes the proof of this Lemma.

Proof of Lemma 5. For the first term we start by writing

IEŜx
N =

1
IE[K1(x)]

IE
[
K1(x)

[
IE
[
G1(CVaRp(x))|X

]]]
. (A20)

Moreover, we have

IE
[
G1(CVaRp(x))|X

]
=
∫ ∞

−∞
G
(

b−1
n (y− z)

)
f X(z)dz,

and integrating by parts and using the fact that H′ is symmetric to deduce that

IE
(

H1(CVaRp(x))|X
)
=
∫ ∞

−∞
tH′(t)FX(CVaRp(x)− bnt)dt.

Thus, we have ∣∣∣∣IE(H1(CVaRp(x))|X
)
− Fx(CVaRp(x))

∫ ∞

−∞
tH′(t)dt

∣∣∣∣
≤
∫ ∞

−∞

∣∣∣FX(CVaRp(x)− bnt)− Fx(CVaRp(x))
∣∣∣dt.

Now, as
∫ ∞
−∞ tH′(t)dt = 0 then

∣∣IE(H1(CVaRp(x))|X
)∣∣ ≤ C

∫
|H′(t)|

(
aβ1

n + |t|β2 bβ2
n

)
dt. (A21)

We use the same arguments for the term IEQ̂x
N . Indeed, Observe that

IEQ̂x
N = IE[Υ̃N ] + IE[Υ̂N ].

It is shown in [34] that ∣∣∣IE[Υ̃N ]− IE[Y|X = x]
∣∣∣ ≤ Caβ1

n .

So, all it remains to evaluate IE[Υ̂N ]. To do that, we define Qx(z) =
∫ z

−∞
t f x(t)dt. and once

again use the integration by parts to write that

IE
(

H1(CVaRp(x))Y|X
)
=
∫ ∞

−∞
H′(t)QX(CVaRp(x)− bnt)dt.

Implies that∣∣IE(H1(CVaRp(x))|X
)
−Qx(CVaRp(x))

∣∣ ≤ C
∫
|H′(t)|

(
aβ1

n + |t|β2 bβ2
n

)
dt.

Finally∣∣∣pCESp(x)− IE
[

Q̂x
N

]∣∣∣ ≤ ∣∣∣IE[Υ̃N ]− IE[Y|X = x]
∣∣∣+ ∣∣∣IE[Υ̂N ]−Qx(CVaRp(x))]

∣∣∣
≤ C|

(
aβ1

n + |t|β2 bβ2
n

)
.

which yields the proof of this lemma.
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