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Abstract: Fuzzy information granulation transfers the time series analysis from the numerical plat-
form to the granular platform, which enables us to study the time series at a different granularity. In
previous studies, each fuzzy information granule in a granular time series can reflect the average,
range, and linear trend characteristics of the data in the corresponding time window. In order to get
a more general information granule, this paper proposes polynomial fuzzy information granules,
each of which can reflect both the linear trend and the nonlinear trend of the data in a time window.
The distance metric of the proposed information granules is given theoretically. After studying the
distance measure of the polynomial fuzzy information granule and its geometric interpretation, we
design a time series prediction method based on the polynomial fuzzy information granules and
fuzzy inference system. The experimental results show that the proposed prediction method can
achieve a good long-term prediction.

Keywords: polynomial fuzzy information granule; fuzzy inference system; time series prediction
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1. Introduction

Time series prediction has been a classic machine learning task widely studied in
recent years, and it has been applied to many fields, such as business [1], engineering [2],
energy [3], and so on. It is hoped that some prediction methods can be used to find the
internal association rules of the time series to predict the future changes.

Popular time series prediction methods include classical time series models, such
as linear regression, autoregression, and moving average [4,5], as well as artificial intel-
ligence methods, such as support vector regression (SVR) [6], artificial neural networks
(ANNs) [7], nonlinear autoregressive (NAR) [8], recurrent neural networks (RNNs) [9,10],
long short-term memory (LSTM) networks [11,12], and so on. The classical time series
models usually require the data to be analyzed to meet the ergodicity, stationarity, and
other assumptions [13], and these strict conditions may not always hold for real world
data. Although many intelligent methods such as SVR and ANNs come with the ability to
capture the nonlinear relationship between the input and output variables, and have been
applied to solve many real-word problems [14–17], the quality of their prediction depends
very much on the data set to be processed [18]. These numerical prediction methods are
computationally expensive and more suitable for a short-term prediction. In addition, the
lack of interpretability of these numerical methods has become the main barrier in their
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wide acceptance in time series prediction applications. These methods, as well as their
results, are not easy to be understood by humans.

The fuzzy information granulation of the time series [19,20] is one of the feasible
methods to solve the above shortcomings. In this method, a time series is firstly divided
into some meaningful time windows in the time dimension, and then a fuzzy information
granule (FIG) is established on each time window. In this way, a time series is transformed to
a sequence of FIGs, each of which is a fuzzy set, and the time series can be now analyzed at
the granular level by directly manipulating the FIGs. The combination of an FIG with fuzzy
reasoning [21], a support vector machine [22], and other artificial intelligence algorithms
for data mining [23–25] has become one of the research hotspots in recent years.

An FIG is usually represented by a fuzzy set, whose membership function is defined
on the real number axis. Common forms of the membership functions of FIGs include the
interval membership function, triangular membership function, and Gaussian membership
function [26–28], and the corresponding FIGs are called Interval FIG(IFIG), Triangular
FIG(TFIG), and Gaussian FIG(GFIG) in this paper, respectively. These types of FIGs can
reflect the characteristics of the average and range of the temporal data in a time window,
but fail to reflect the trend characteristic of the data.

As a modification, the linear fuzzy information granule (LFIG) [29] is represented by
a fuzzy set whose membership function is defined both on the real number axis and the
time axis. Like the LFIG, the polar fuzzy information granule (polar FIG) [30] defines its
membership function in two-dimensional polar coordinates. Compared with the FIG, the
added dimension in the membership functions of the LFIG and the polar FIG makes them
possible to express the linear changing trends of the samples in the time window. However,
both modifications failed to reflect the nonlinear trends of the samples.

In [31], a novel Gaussian-type time-variant FIG, named the generalized zonary time-
variant FIG (GZTFIG), was proposed which can reflect the nonlinear trend of data changing.
However, the form of the GZTFIG is a bit complex. In addition, GZTFIGs have a lack of
specificity [32], that is, their semantics are not so clear.

To solve this problem, based on [29,31], this paper introduces a novel FIG, namely,
the polynomial fuzzy information granule (PFIG), which represents the temporal samples
in a time window by three kinds of parameters: (1) the length of the time window, (2) a
polynomial center line, and (3) the degree of data deviation from the center line. Temporal
samples can be reasonably characterized by the polynomial center line with an adjustable
order. In the sense of the Hausdorff distance, the distance formula of the PFIG is derived
theoretically. In particular, we prove that the distance of the two Gaussian PFIGs has a
concise formula expression and intuitive geometric interpretation. Therefore, the PFIG
is a well-defined information granule with a good distance property, which is hopeful to
become an effective tool in time series granulation and prediction.

The remainder of this paper is organized as follows. Section 2 introduces traditional
fuzzy information granules and their distance measure. Section 3 introduces PFIGs as well
as their distance measure. It can be proved that the distance of Gaussian PFIGs have a
simple formula, which corresponds to a reasonable geometric interpretation. Section 4
presents a long-term prediction method for the time series based on the distance measure
of PFIGs and fuzzy inference system with an interpolation scheme. Section 5 describes
three experiments to verify the effectiveness and feasibility of the proposed model. Finally,
Section 6 provides the conclusions and offers some thoughts on future studies.

2. Fuzzy Information Granules and Their Distance

In this section, we briefly introduce the construction method of some common FIGs
along with their distance measurement. These concepts are useful for defining the novel
type of granule (PFIG) given in Section 3.
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2.1. Fuzzy Numbers and Their Distance Measurement

A fuzzy set (class) A in X is characterized by a membership (characteristic) function
fA(x) which associates with each point in X a real number in the interval [0,1] [33]. Fuzzy
numbers are special fuzzy sets. A fuzzy set A is called a fuzzy number if its membership
function A(x) satisfies the following conditions [34]:

(a) A is normal: there exists a number x0 ∈ R, such that A(x0) = 1;
(b) A is convex: A(ωx1 + (1−ω)x2) ≥ min{A(x1), A(y2)}, ∀ω ∈ [0, 1], ∀x1,x2 ∈ R;

(c) A is upper semicontinuous: ∀ε > 0, ∃δ > 0, if x ∈
.

U(x0, δ), then A(x)− A(x0) < ε.
(d) A is compactly supported: the closure of the set {x|A(x)〉0} is compact.

Figure 1 shows examples of one-dimensional and two-dimensional fuzzy numbers.
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Fuzzy numbers generalize classical real intervals. Accordingly, the distance of the
fuzzy numbers can also be extended from the Hausdorff distance of the real number
intervals. Named after Felix Hausdorff, the Hausdorff distance is a generalized metric in
the family of closed sets, which measures the maximum distance of a set to the nearest
point in the other set [35]. Let A(λ) = {x ∈ R|u(x) ≥ λ} be the λ-level set (or called λ-cut)
of fuzzy number A. Since the λ-level sets A(λ) and B(λ) of fuzzy numbers A and B are
classical real intervals, their Hausdorff distance can be written as:

d(A(λ), B(λ)) = max

{
sup

x∈A(λ)

inf
y∈B(λ)

d(x, y), sup
y∈B(λ)

inf
x∈A(λ)

d(x, y)

}
, (1)

where d(x, y) represents the distance of real numbers x and y. Based on such a distance for
real sets, the Hausdorff distance of fuzzy numbers A and B can be defined as [36]:

d(A, B) =
∫ 1

0
d(A(λ), B(λ))dλ. (2)

2.2. Fuzzy Information Granules and Their Distance

Constructing an FIG A to represent a group of temporal data y = {y1, y2, · · · , yn}
should comply with the following two fairly conflicting conditions [32]. The first condition
is called representativeness, that is, A should embrace enough data in y. In another word,
the total membership of y belonging to A, ∑ n

i=1 A(yi), should be as large as possible, so that
A has a good data coverage. The second condition is called specificity, that is, A should be
specific enough. This is accomplished by keeping the support of A as compact (small) as
possible, so that A has a better semantic clarity [32]. According to the types of membership
functions, FIGs can be divided into Interval FIGs (IFIGs), Triangular FIGs (TFIGs), Gaussian
FIGs (GFIGs), etc. Denote the membership function of an FIG A as A(x; γ), where γ is the
parameter set of the membership function of the corresponding type. The optimal value of
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γ can be determined by optimizing both the representativeness and the specificity of the
FIG A(γ) through the optimization methods described below [32].

2.2.1. Interval Fuzzy Information Granules and Their Distance

An IFIG, denoted as AI(a, b) or I(a, b), comes with the following membership function:

AI(x; a, b) = I(x; a, b) =
{

1, x ∈ [a, b],
0, else.

(3)

Let γ = {a, b} be the parameter set of this membership function, a and b are the
left and right boundary points of the interval-type membership function, which can be
determined by the following optimization model:

max
a,b

∑yi
(2 · I(yi; a, b)− 1)
|b− a| . (4)

The numerator part of Equation (4) is related to the number of data y that belong to the
IFIG I(a, b). Maximizing the numerator part can make I(a, b) achieve the best data coverage
or representativeness. The denominator part of Equation (4) is related to the support of A.
Minimizing the denominator part can make I(a, b) achieve the best specificity.

As far as the distance of two IFIGs is concerned, according to Equations (1) and (2),
the distance of I1(a1, b1) and I2(a2, b2) can be written as:

d(I1, I2) = max{|a1 − a2|, |b1 − b2|}. (5)

2.2.2. Triangular Fuzzy Information Granules and Their Distance

A TFIG, denoted as AT(a, m, b) or T(a, m, b), comes with the following membership function:

AT(x; a, m, b) = T(x; a, m, b) =


x− a
m− a

, a < x < m,
x− b
m− b

, m ≤ x < b,

0, else.

(6)

Let γ = {a, m, b} be the parameter set of T(a, m, b), where a, m, and b are called the
“left extreme point”, the “normal point”, and the “right extreme point”, respectively. m can
be determined as the median of y, and the extreme points a and b can be determined by the
following optimization model [37]:

max
a,b

∑yi≤m
yi−a
m−a

m− a
+

∑yi>m
b−yi
b−m

b−m
. (7)

The numerator part of Equation (7) is related to the total membership degrees of y
belonging to A, which reflects the representativeness of T(a, m, b) to y. Maximizing the
numerator part can make T(a, m, b) achieve the best representativeness. The denominator
part of Equation (7) is related to the support of A. Minimizing the denominator part can
make T(a, m, b) achieve the best specificity.

As far as the distance of two TFIGs is concerned, according to Equations (1) and (2),
the distance of T1(a1, m1, b1) and T2(a2, m2, b2) can be written as:

d(T1, T2) =
1
2

max{|(a1 − a2) + (m1 −m2)|, |(b1 − b2) + (m1 −m2)|}. (8)
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2.2.3. Gaussian Fuzzy Information Granules and Their Distance

A GFIG, denoted as AG(µ, σ) or G(µ, σ), comes with the following membership function:

AG(x; µ, σ) = G(x; µ, σ) = exp

(
− (x− µ)2

2σ2

)
. (9)

Let γ = {µ, σ} be the parameter set of G(µ, σ), where µ and σ can be estimated by the
mean value and standard deviation of y, respectively. The GFIG has a clear meaning, and
compared with the TFIG, the GFIG has less parameters with simpler parameter determina-
tion methods. According to the extension principle [38], the linear operation of GFIGs has
a concise calculation property. That is:

Theorem 1 ([29]). For any two GFIGs G1(µ1, σ1), G2(µ2, σ2) and any two real numbers
ω1, ω2 ∈ R, we have

ω1G1(µ1, σ1) + ω2G2(µ2, σ2) = G(ω1µ1 + ω2µ2, ω1σ1 + ω2σ2). (10)

Furthermore, the Hausdorff distance of two GFIGs G1(µ1, σ1) and G2(µ2, σ2) can be
concisely written as [29]:

d(G1, G2) = ∆u +

√
2π ∆σ

2
, (11)

where ∆µ = |µ1 − µ2| and ∆σ = |σ1 − σ2|.

3. Polynomial Fuzzy Information Granules and Their Distance Metric
3.1. Polynomial Fuzzy Information Granules

Suppose we are going to granulize a time series y = {(t, yt), t = 1, 2, · · · , τ} as shown
in Figure 2a. The IFIG, TFIG, and GFIG obtained by the corresponding granulation meth-
ods given by Equations (4), (7), and (9) in Section 2 are shown in Figure 2b–d, respec-
tively. Because the membership functions of the IFIG, TFIG, and GFIG (as shown in
Equations (3), (6), and (9)) are time-independent, their membership values of (t, yt) depend
only on yt. As a result, these FIGs can properly reflect the average and range informa-
tion of y. However, they fail to reflect the changing trends of the time series, since the
time-varying relationship between yt and t is ignored.
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One way to remedy this defect is to add the time variable t to the membership functions
of the FIGs. The two-dimensional membership function of an FIG can be obtained by
shifting the one-dimensional membership function in Figure 2 along the time axis. Follow
this mechanism, the LFIGs [29] accomplish this goal by making the membership function
of the GFIG (as shown in Figure 2d) change linearly over time. The two-dimensional
membership function of the LFIG is shown in Figure 3.
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Motivated by the time variant LFIG, we define a novel class of FIG called polynomial
fuzzy information granules (PFIG) in this paper. In order to fully reflect the time-varying
characteristics of the data in the time window, a reasonable PFIG should contain three types
of parameters:

• The length of the time series y, i.e., the size of time window, τ;
• A time-variant p-order center (regression) curve line yt = f (t, β) = β0 + β1t+ · · ·+ βptp

that reflects the changing of the time series;
• The parameters reflecting the deviation degree of the temporal data from the center line.

Definition 1. (PFIG) For a time series y = {(t, yt), t = 1, 2, · · · , τ}, a fuzzy information granule
P(β, τ, γ) representing y is called a PFIG of order p, if its membership function P((t, x); β, τ, γ)
has a center curve line:

f (t, β) = β0 + β1t + · · ·+ βptp, t ∈ [0, τ], (12)

and P((t, x); β, τ, γ) can be written as:

P((t, x); β, τ, γ) = A( f (t, β); γ), t ∈ [0, τ], (13)

where A is a fuzzy number, A(x, γ) is its membership function, γ is a parameter set of the PFIG
that reflects the deviation degree of the data from the center line, and the length of the time series τ
is called the granularity of the PFIG.

Recently, Luo proposed a novel generalized zonary time-variant FIG (GZTFIG) in [31],
which is able to reflect the nonlinear trends of the time series. The membership function of
a GZTFIG is defined as:

f
(

x; βn, βn−1, · · · β1, β0, σ, β
0
, β0, τ

)
= f

(
x; βntn + βn−1tn−1 + · · ·+ β1t + β0, σ

)
= exp

(
− (x−(βntn+βn−1tn−1+· · ·+β1t+β0))

2

2σ2

)
, β0 ∈

[
β

0
, β0

]
,

where
[

β
0
, β0

]
reflects the data fluctuation interval in the current time window.

[
β

0
, β0

]
can be determined by making all the data in y locate in the zonary area between the upper
boundary βntn + βn−1tn−1 + · · ·+ β1t + β0, and the lower boundary βntn + βn−1tn−1 +
· · ·+ β1t + β

0
.
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Different from the GZTFIGs proposed in [31], the proposed PFIG no longer restricts its
membership function to be Gaussian. Users can choose any appropriate type of membership
function to construct a PFIG according to the characteristics of the time series. For the
following three reasons, the PFIG uses the center curve line, instead of the zonal central
region in the GZTFIG to reflect the changing trends of a time series. First, the width of the
zonal region β0 − β

0
is to reflect the degree of data deviation from the center line. However,

this feature can also be reflected by the parameter γ in the PFIG, which is more concise.
Secondarily, compared with GZTFIGs, the process of determining the zonary area is to
avoid being in the PFIG. Thus, the construction of the PFIG is simpler. Last but not the
least, the central zonary area of a GZTFIG is determined by translating the central line
upward and downward, so that all the data are included in the zonary area. This operation
increases the representativeness of the GZTFIG but decreases its specificity.

Using the definition of PFIGs, we can give the definitions for three special kinds of
PFIGs, namely interval-type PFIGs (IPFIGs), triangular-type PFIGs (TPFIGs), and Gaussian-
type PFIGs (GPFIGs).

Definition 2. (IPFIG). A PFIG P(β, τ, γ) = Ip(β, τ, r) is called an IPFIG of order p, if its
membership function P((t, x); β, τ, γ) can be written as:

Ip((t, x); a(β, t, r), b(β, t, r)) =
{

1, x ∈ [a(β, t, r), b(β, t, r)],
0, else,

where a(β, t, r) = f (t, β)− r and b(β, t, r) = f (t, β) + r are the left and right boundary points of
the interval-type membership function at t ∈ [0, τ], respectively; f (t, β) = β0 + β1t + · · ·+ βptp

represents the center curve line of PFIG; and r is the radius of this interval.

Definition 3. (TPFIG): A PFIG P(β, τ, γ) = Tp(β, τ, r1, r2) is called a TPFIG of order p if its
membership function P((t, x); β, τ, γ) can be written as:

Tp((t, x); a(β, t, r1), m(β, t), b(β, t, r2)) =


x− a
m− a

, a(β, t, r1) < x < m(β, t),
x− b
m− b

, m(β, t) ≤ x < b(β, t, r2),

0, else,

where m(β, t) = f (t, β) = β0 + β1t + · · ·+ βptp represents the center curve line of the PFIG,
and a(β, t, r1) = m(β, t)− r1 and b(β, t, r2) = m(β, t) + r2 are the left and right extreme points
of the triangular membership function at t ∈ [0, τ], respectively.

Definition 4. (GPFIG): A PFIG P(β, τ, γ) = Gp(β, τ, σ) is called a GPFIG of order p if its
membership function P((t, x); β, τ, γ) can be written as:

Gp((t, x); β, τ, σ) = exp

(
− (x− µ(t, β))2

2σ2

)
, (14)

where µ(t, β) = f (t, β) is the center line of PFIG, and σ is the standard deviation that reflects the
degree of data deviation from the center line.

The construction of a GPFIG is straightforward. The center line µ(t; β) can be estimated
by the polynomial regression of the temporal data y = {(t, yt), t = 1, 2, · · · , τ}, and σ can
be estimated by:

σ2 =
1
τ

τ

∑
t=1

(yt − µ(t; β))2. (15)

According to the above definitions, the temporal data in Figure 2a can be represented
by a second order GPFIG as shown in Figure 4. Compared with the IFIG, TFIG, and GFIG
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shown in Figure 2b–d, the GPFIG can better reflect the changing trends in the temporal
data, as shown in Figure 2a.

Mathematics 2022, 10, x FOR PEER REVIEW 8 of 21 
 

 

shown in Figure 2b–d, the GPFIG can better reflect the changing trends in the temporal 
data, as shown in Figure 2a. 

 
Figure 4. A Gaussian PFIG. 

When the order of a PFIG is 0, the PFIG degenerates into the same type of FIGs intro-
duced in Section 1, and when the order of a GPFIG is 1, the center line of the GPFIG be-
comes a linear function 𝑓(𝑡, 𝜷) = 𝛽 + 𝛽 𝑡. Accordingly, the GPFIG degenerates into the 
LFIG proposed by [29]. Therefore, PFIGs, including GPFIGs, are a generalization of LFIGs. 

A GPFIG is an information granule with good properties. From its definition, it can 
be found that the number of parameters of a GPFIG is small, its meaning is clear, and the 
Gaussian-type FIG has excellent operation properties, as shown in Theorem 1. In addition, 
the GPFIG is also easy to understand, given a GPFIG 𝐺 ((𝑡, 𝑥); 𝜷, 𝜏, 𝜎), we can imagine a 
time series of length 𝜏, distributed around a center curve line 𝑓(𝑡, 𝜷), 𝑡 ∈ [0, 𝜏], with 𝜎 as 
the deviation degree of the temporal data from the center line. Therefore, the GPFIG is a 
good tool to construct the information granule to describe a group of temporal data. For 
this reason, our experiments in Section 5 will focus only on the GPFIG. 

3.2. Distance Metric of Polynomial Fuzzy Information Granules 
By comparing Figure 4 and Figure 1b, we can find that the PFIG is a special type of 

two-dimensional fuzzy set. For a PFIG 𝑃(𝜷, 𝜏, 𝜸), its membership function is a two-dimen-
sional convex surface. As shown in Figure 5, the 𝜆-level set of 𝑃(𝜷, 𝜏, 𝜸) is: 𝑃(𝜆) = (𝑡, 𝑥) 𝑃 (𝑡, 𝑥); 𝜷, 𝜏, 𝜸 ≥  𝜆 , (16)

which can be regarded as a two-dimensional closed interval in the time-number plane (𝑡-𝑥 plane). 

 
Figure 5. The 𝜆-level set of a PFIG. 

Similar to Equation (2), define the distance of two PFIGs 𝑃 (𝜷 , 𝜏, 𝜸 )  and 𝑃 (𝜷𝟐, 𝜏, 𝜸 ) as the sum of all the distances of the 𝜆-level sets [36]: 𝑑(𝑃 , 𝑃 ) = 𝑑(𝑃 (𝜆), 𝑃 (𝜆)) d𝜆, (17)

𝜆-level set 𝑃(𝜆) 
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When the order of a PFIG is 0, the PFIG degenerates into the same type of FIGs
introduced in Section 1, and when the order of a GPFIG is 1, the center line of the GPFIG
becomes a linear function f (t, β) = β0 + β1t. Accordingly, the GPFIG degenerates into the
LFIG proposed by [29]. Therefore, PFIGs, including GPFIGs, are a generalization of LFIGs.

A GPFIG is an information granule with good properties. From its definition, it can
be found that the number of parameters of a GPFIG is small, its meaning is clear, and the
Gaussian-type FIG has excellent operation properties, as shown in Theorem 1. In addition,
the GPFIG is also easy to understand, given a GPFIG Gp((t, x); β, τ, σ), we can imagine a
time series of length τ, distributed around a center curve line f (t, β), t ∈ [0, τ], with σ as
the deviation degree of the temporal data from the center line. Therefore, the GPFIG is a
good tool to construct the information granule to describe a group of temporal data. For
this reason, our experiments in Section 5 will focus only on the GPFIG.

3.2. Distance Metric of Polynomial Fuzzy Information Granules

By comparing Figures 4 and 1b, we can find that the PFIG is a special type of two-
dimensional fuzzy set. For a PFIG P(β, τ, γ), its membership function is a two-dimensional
convex surface. As shown in Figure 5, the λ-level set of P(β, τ, γ) is:

P(λ) = {(t, x)|P((t, x); β, τ, γ) ≥ λ}, (16)

which can be regarded as a two-dimensional closed interval in the time-number plane
(t-x plane).
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Similar to Equation (2), define the distance of two PFIGs P1(β1, τ, γ1) and P2(β2, τ, γ2)
as the sum of all the distances of the λ-level sets [36]:

d(P1, P2) =
∫ 1

0
d(P1(λ), P2(λ))dλ, (17)
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where d(P1(λ), P2(λ)) is the Hausdorff distance of two-dimensional closed intervals P1(λ)
and P2(λ), which can be written as:

d(P1(λ), P2(λ)) = max

{
sup

z1∈P1(λ)

inf
z2∈P2(λ)

d(z1, z2), sup
z2∈P2(λ)

inf
z1∈P1(λ)

d(z1, z2)

}
, (18)

where z1 = (t1, x1) ∈ P1(λ) and z2 = (t2, x2) ∈ P2(λ).
The calculation of Equation (18) is very complex and is computationally difficult to im-

plement. To solve this problem, we should redefine d(P1(λ), P2(λ)) based on the following
considerations. The Hausdorff distance is mainly used for the distance measurement of the
general multidimensional real intervals, where every dimension is usually independent
of the other dimensions. However, since the temporal data (1, y1), (2, y2), · · · , (τ, yτ) are
special two-dimensional data, where yt can be regarded as a function of the time t, these
temporal data should have a distance definition different from Equation (18).

As shown in Figure 6, cut the λ-level set P(λ) at t = t0, we get a cutting segment L(λ, t0):

L(λ, t0) = {(t, x)|t = t0, (t, x) ∈ P(λ)}, (19)

which is a one-dimensional closed interval.
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According to Equation (1), the Hausdorff distance of two cutting segments L1(λ, t)
and L2(λ, t) at time t is:

d(L1(λ, t), L2(λ, t)) = max

{
sup
x∈L1

inf
y∈ L2

d(x, y), sup
y∈ L2

inf
x∈L1

d(x, y)

}
. (20)

Then, the distance between P1(λ) and P2(λ) can be regarded as the sum of the distances
of all these cutting segment pairs at all t′s, that is:

d(P1(λ), P2(λ)) =
∫ τ

0
d(L1(λ, t), L2(λ, t))dt. (21)

In this way, the distance of two PFIGs can be found by substituting Equation (21)
to Equation (17). The distance of any different type of PFIGs can be calculated when
the corresponding membership function P((t, x); β, τ, γ) in Equation (13) is selected. In
particular, the distance of two Gaussian PFIGs have the following expression.

Theorem 2. (Distance of GPFIGs): the Hausdorff distance of two GPFIGs, namely Gp1(β1, σ1, τ)
and Gp2(β2, σ2, τ), can be written as the area between their center lines f1(t, β1) and f2(t, β2),
and a term proportional to the difference of σ1 and σ2, that is:

d
(
Gp1, Gp2

)
=
∫ τ

0
|µ1(t, β1)− µ2(t, β2)|dt +

√
2π|σ1 − σ2|

2
τ, (22)
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where µ(t, β) = f (t, β) is the center line of the GPFIG.

Proof. According to Equation (14), the λ-level set of GPFIG Gp(β, σ, τ) can be written as:

P(λ) = {(t, x)|P((t, x); β, τ, γ) ≥ λ}
= {(t, x)|G−r ≤ x ≤ G+

r , 0 ≤ t ≤ τ},

where G−λ = µ(t, β)−
√

2 ln(1/λ)σ, and G+
λ = µ(t, β) +

√
2 ln(1/λ)σ. By Equation (19),

the cutting segment of P(λ) at time t can be written as L(λ, t) =
[
G−λ , G+

λ

]
. Substitute it

into Equations (20) and (21) and we can get the following distance metric for λ-level sets
P1(λ) and P2(λ).

d(P1(λ), P2(λ)) =
∫ τ

0 d(L1(λ, t), L2(λ, t))dt

=
∫ τ

0

(
|µ1(t, β1)− µ2(t, β2)|+

∣∣∣∣∣
√

2 ln
(

1
λ

)
σ1 −

√
2 ln
(

1
λ

)
σ2

∣∣∣∣∣
)

dt

=
∫ τ

0 |µ1(t, β1)− µ2(t, β2)|dt +

√
2 ln
(

1
λ

)
|σ1 − σ2|τ.

Substitute it into Equation (17) and the distance between Gp1(β1, σ1, τ) and Gp2(β2, σ2, τ)
can be written as:

d
(
Gp1, Gp2

)
=
∫ 1

0 d(P1(λ), P2(λ))dλ

=
∫ 1

0

(∫ 1
0 |µ1(t, β1)− µ2(t, β2)|dt +

√
2 ln
(

1
λ

)
|σ1 − σ2|τ

)
dλ

=
∫ 1

0 |µ1(t, β1)− µ2(t, β2)|dt +
√

2πτ

2
|σ1 − σ2|.

2

Obviously, the first term of Equation (22) is the integral of the distance difference
between two center lines f1(t, β1) and f2(t, β2) in [0, τ], which represents the distance
caused by the center lines. As illustrated in Figure 7, the geometric meaning of this term
is the area between the two center lines. The second term is

√
2πτ/2 times of |σ1 − σ2|,

which represents the distance caused by data deviations. Therefore, the distance between
two GPFIGs is determined by their center lines on the one hand, and the data deviations
on the other. This is consistent with our intuition.

Mathematics 2022, 10, x FOR PEER REVIEW 10 of 21 
 

 

where 𝜇(𝑡, 𝜷) = 𝑓(𝑡, 𝜷) is the center line of the GPFIG. 

Proof. According to Equation (14), the 𝜆-level set of GPFIG 𝐺 (𝜷, 𝜎, 𝜏) can be written as: 𝑃(𝜆) = (𝑡, 𝑥) 𝑃 (𝑡, 𝑥); 𝜷, 𝜏, 𝜸 ≥  𝜆= {(𝑡, 𝑥)|𝐺 ≤ 𝑥 ≤ 𝐺 , 0 ≤ 𝑡 ≤ 𝜏}, 
where 𝐺 = 𝜇(𝑡, 𝜷) − 2 ln(1 𝜆⁄ ) 𝜎 , and 𝐺 = 𝜇(𝑡, 𝜷) + 2 ln(1 𝜆⁄ ) 𝜎 . By Equation (19), 
the cutting segment of 𝑃(𝜆) at time 𝑡 can be written as 𝐿(𝜆, 𝑡) = [𝐺 , 𝐺 ]. Substitute it 
into Equations (20) and (21) and we can get the following distance metric for 𝜆-level sets 𝑃 (𝜆) and 𝑃 (𝜆). 𝑑 𝑃 (𝜆), 𝑃 (𝜆) = 𝑑 𝐿 (𝜆, 𝑡), 𝐿 (𝜆, 𝑡) d𝑡

= |𝜇 (𝑡, 𝜷𝟏) − 𝜇 (𝑡, 𝜷𝟐)| + 2 ln 1𝜆 𝜎 − 2 ln 1𝜆 𝜎 d𝑡
= |𝜇 (𝑡, 𝜷𝟏) − 𝜇 (𝑡, 𝜷𝟐)|d𝑡 + 2 ln 1𝜆 |𝜎 − 𝜎 |𝜏.

 

Substitute it into Equation (17) and the distance between 𝐺 (𝜷 , 𝜎 , 𝜏)  and 𝐺 (𝜷 , 𝜎 , 𝜏) can be written as: 𝑑 𝐺 , 𝐺 = 𝑑(𝑃 (𝜆), 𝑃 (𝜆)) d𝜆
= |𝜇 (𝑡, 𝜷𝟏) − 𝜇 (𝑡, 𝜷𝟐)|d𝑡 + 2 ln 1𝜆 |𝜎 − 𝜎 |𝜏 d𝜆
= |𝜇 (𝑡, 𝜷 ) − 𝜇 (𝑡, 𝜷 )| d𝑡 + √2𝜋𝜏2 |𝜎 − 𝜎 |.

 

□ 
Obviously, the first term of Equation (22) is the integral of the distance difference 

between two center lines 𝑓 (𝑡, 𝜷 ) and 𝑓 (𝑡, 𝜷 ) in [0, 𝜏], which represents the distance 
caused by the center lines. As illustrated in Figure 7, the geometric meaning of this term 
is the area between the two center lines. The second term is √2𝜋𝜏 2⁄  times of |𝜎 − 𝜎 |, 
which represents the distance caused by data deviations. Therefore, the distance between 
two GPFIGs is determined by their center lines on the one hand, and the data deviations 
on the other. This is consistent with our intuition. 

  
(a) (b) 

Figure 7. The area between the two center lines. (a) The area of two center lines when they have no 
intersection between [0,τ], (b) the area of two center lines when they have an intersection between 
[0,τ]. 

Figure 7. The area between the two center lines. (a) The area of two center lines when they have no in-
tersection between [0,τ], (b) the area of two center lines when they have an intersection between [0,τ].



Mathematics 2022, 10, 4495 11 of 21

When PFIGs degenerate into LFIGs, the distance given by Equation (22) is consistent
with the distance of LFIGs given in [29], i.e.,

d
(
Gp1(β1, σ1, τ), Gp2(β2, σ2, τ)

)
=



1
2

τ2∆β1 + τ∆β0 +

√
2πτ

2
∆σ, if t∗ < 0,

∆β0
2

2∆β1
+

(∆β0 − τ∆β1)
2

2∆k
+

√
2πτ

2
∆σ, if t∗ ∈ [0, τ],

−1
2

τ2∆β1 + τ∆β0 +

√
2πτ

2
∆σ, if t∗ > τ,

where β1 = (β10, β11), β2 = (β20, β21), and f (t, β1) = β10 + β11t, f (t, β2) = β20 + β21t
are the center lines of the two LFIGs, respectively. ∆β0 = |β10 − β20|, ∆β1 = |β11 − β21|,
and t∗ = −(β10 − β20)/(β11 − β21) represents the intersection of the two center lines.
∆σ = |σ1 − σ2| is the difference of two data deviations.

4. Granular Time Series Prediction Method Based on Fuzzy Inference
4.1. Granule Based Fuzzy Inference

Given a time series y = {(t, yt), t = 1, 2, · · · , N}, divide it into n consecutive time
windows, and then construct an FIG on each time window, and we can obtain a granular
time series {A1, A2, · · · , An}. Such a granular time series can induce a fuzzy inference
system (FIS) by the following way.

Select q + 1 consecutive FIGs: At, At+1, · · · , At+q−1, At+q, and take the first q FIGs
as the antecedents of a fuzzy rule, and the last one as the consequent, then these q + 1 FIGs
imply a q-input 1-output fuzzy rule:

Rule t : At, At+1, · · · , At+q−1 → At+q.

A time series containing n FIGs can form a total of n− q rules. These rules constitute
the rule base of the FIS.

As shown in Figure 8, when we use the last q FIGs An−q+1, · · · , An−1, An of this
granular time series as the inputs, then the output of the FIS, namely Ân+1, can be used to
predicted the future values of the original time series. Similar to the process of a Mamdani-
type FIS, Ân+1 can be written as a linear combination of all the consequents of the rules,
that is:

Ân+1 =

n−q

∑
t=1

ωt At+q, (23)

where ωt is the weight of rule t, which can be measured by the Hausdorff distance between
the FIS’ inputs An−q+1, · · · , An−1, An, and the antecedents of the t-th rule, At, · · · , At+q−2,
At+q−1. That is, ωt can be written as:

ωt =
1

D
(

An−q+1, At
) 1

D
(

An−q+2, At+1
) · · · 1

D
(

An−1, At+q−1
) , t = 1, 2, · · · , n− q.

Normalize these weights, then Ân+1 can be computed from the granular time series
by Equation (23).

After obtaining a future FIG (data) Ân+1, it is incorporated into the original time series
to form a new time series

{
A1, A2, · · · , An, Ân+1

}
to predict the next FIG (data) Ân+2.

Through this closed loop forecasting process, we can predict the values of any length in
the future by using the previous predictions as the input. Closed loop forecasting allows
us to predict an arbitrary number of time steps, but this can easily lead to large errors
because the previous predictions are not the true values during the forecasting process,
and the forecasting errors from a previous process can cumulatively affect the subsequent
forecasting processes.
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4.2. Flow Chart of the Proposed Algorithm

The pseudo-code of the time series prediction algorithm combining FIS and GPFIGs is
given in Algorithm 1 as follows:

Algorithm 1: Time series prediction algorithm based on FIS and GPFIGs.

Input: A numerical time series y = {(t, yt), t = 1, 2, · · · , N} of length N; the granularity (length
of time window) τ and the polynomial order p of PFIG. Number of antecedents q of the fuzzy
rules in the FIS.
Output: the next FIG Ĝp,n+1.

(1) Delete the first N −mod(N, τ) elements, i.e., let y = y(N −mod(N, τ) : end);
(2) Determine the length of granular time series, i.e., let n = length(y)/τ;
(3) For i = 1 : n;
(4) [βi, σi] = pth−OrderPolynomialFitting(y(iτ + 1 : (i + 1)τ), p);
(5) End

(6) Construct a granular time series
{(

i, Gp,i(βi, τ, σi)
)

, i = 1, 2, · · · , n
}

;

(7) For i = 1 : n− q;
(8) ωi =

1
D(Gp,n−q+1,Gi)

· 1
D(Gp,n−q+2,Gi+1)

· · · · · 1
D(Gp,n−1,Gi+q−1)

;

(9) End;

(10) Ĝp,n+1 =
n−q
∑

i=1

(
ωi

∑
n−q
t=1 ωt

Gi+q

)
.

5. Experimental Research

To test the effectiveness of the perdition algorithm combining an FIS and GPFIGs
(GPFIG-FIS), the forecasting results of the proposed method are compared with eight
competing models in this section.

5.1. Data Description and Experimental Scheme

Three kinds of time series with a pseudo periodicity are selected for the experiment
in this section. These data include: (1) the time series of the daily minimum temperature
in Melbourne from 1981 to 1990 (this time series is from: https://www.kaggle.com/

https://www.kaggle.com/datasets/sayedathar11/minimum-daily-temperatures-in-melborne19811990
https://www.kaggle.com/datasets/sayedathar11/minimum-daily-temperatures-in-melborne19811990
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datasets/sayedathar11/minimum-daily-temperatures-in-melborne19811990, accessed on
15 August 2022); (2) Tetouan city power consumption time series (this time series is from:
https://archive.ics.uci.edu/ml/datasets/Power+consumption+of+Tetouan+city, accessed
on 15 August 2022); and (3) American Heart Association electrocardiograms (ECG) time
series (this time series dataset is purchased from: https://www.ecri.org/american-heart-
association-ecg-database-usb, accessed on 1 June 2020).

Two kinds of indexes, the root mean-square error (RMSE) and symmetric mean
absolute percentage error (SMAPE), are used to measure the effect of the time series
prediction methods:

• Root mean-square error:

RMSE =

√
∑n

t=1(ŷ(t)− y(t))2

n
.

• Symmetric mean absolute percentage error:

SMAPE =
1
n

n

∑
t=1

|ŷ(t)− y(t)|
1
2 (|ŷ(t)|+ |y(t)|)

× 100.

where n indicates the number of data to be predicted, and y(t) and ŷ(t) indicate the true
and predicted values of the time series at time t, respectively.

The following eight prediction methods are selected for a comparison with the GPFIG-
FIS method proposed in this paper, among which the first four methods are numerical
prediction methods, and the last four methods are methods based on ordinary FIGs and FIS:

• AR(q): Numerical q-order auto regressive model (auto regressive, AR):

y(t) = φ1y(t− 1) + φ2y(t− 2) + · · ·+ φqy(t− q) + εt,

where φ1, φ2, · · · , φq can be calculated from the training data by linear regression.

• NAR(q): the q-order NAR is a q-input 1-output feedforward network, whose input is a

vector xt
def
= {y(t− 1), y(t− 2), . . . , y(t− q)} consisting of q data before time t in the

given training sequence, and output is the datum in time t, yt = y(t). The NAR uses
a sigmoid transfer function in the hidden layer and a linear transfer function in the
output layer. The number of hidden neurons as well as the number of hidden layers is
set to 10.

• SVR(q): numerical q-order support vector machine regress model (support vector
regress, SVR) [39]:

ŷ(t) = w1y(t− 1) + w2y(t− 2) + · · ·+ wqy(t− q) + b,

where parameters w =
(
w1, w2, · · · , wq

)
and b are determined by the following support

vector machine regression model:

min
w

1
2

wTw + C
1
l

l

∑
t=1

(ξt + ξ∗t ),

s.t.
(

wTxt + b
)
− yt ≤ ε + ξt,

yt −
(

wTxt + b
)
≤ ε + ξ∗t ,

ξt, ξ∗t ≥ 0,

where l is the number of training samples, xt and yt are the same as in NAR(q);

• LSTM: a sequence-to-sequence regression LSTM network, where the responses are
the training sequences with values shifted by one time step. The LSTM updates the
cell and hidden states using the hyperbolic tangent function and uses the sigmoid
function as the gate activation function. The number of hidden units is set to 128.

https://www.kaggle.com/datasets/sayedathar11/minimum-daily-temperatures-in-melborne19811990
https://www.kaggle.com/datasets/sayedathar11/minimum-daily-temperatures-in-melborne19811990
https://archive.ics.uci.edu/ml/datasets/Power+consumption+of+Tetouan+city
https://www.ecri.org/american-heart-association-ecg-database-usb
https://www.ecri.org/american-heart-association-ecg-database-usb
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• IFIG-FIS: the FIS prediction method based on the IFIG. Equations (4) and (5) are used
to granulate the time series, and the FIS with q-input is used for the prediction.

• TFIG-FIS: the FIS prediction method based on the TFIG. Equations (7) and (8) are used
to granulate the time series, and the FIS with q-input is used for the prediction.

• GFIG-FIS: the FIS prediction method based on the GFIG. The average and standard
deviation of the corresponding window data are used as the parameters in constructing
the GFIG, and the FIS with q-input is used for the prediction.

• LIFG-FIS: the FIS prediction method based on the LFIG. The linear regression line and
the estimate of the error variance are used as the parameters in constructing the LIFG,
and the FIS with q-input is used for the prediction.

5.2. The Experimental Results
5.2.1. Daily Minimum Temperature Dataset

The time series of daily maximum temperature in Melbourne City from 1981 to 1990 is
shown in Figure 9. The time series contains a total of 3650 data, and the first 2928 data are
selected as the training samples to predict the daily maximum temperature for the next 183,
366, and 549 days (i.e., days after 2928).
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Figure 9. Time series of daily maximum temperature.

For each prediction method, the number of FIS input q is set to three. Since this time
series has a natural time cycle, in constructing the granular time series, the size of the time
window is set to 183 days, which is about half a year. Additionally, the order of the GPFIG
is set as three. Table 1 shows the RMSE and SMAPE indexes by the GPFIG-FIS and other
methods for a long-term forecasting.

Table 1. Comparison of the prediction indexes of daily minimum temperature.

Index Time
(Day) AR NAR SVR LSTM IFIG-FIS TFIG-FIS GFIG-FIS LFIG-FIS GPFIG-FIS

RMSE
2929–3112 9.83 6.79 6.49 4.30 8.76 6.67 6.45 4.44 4.19
2929–3295 14.76 7.01 6.54 4.25 7.57 6.39 6.18 4.27 4.14
2929–3478 17.23 6.83 6.4 4.25 7.86 6.31 6.11 4.19 4.04

SMAPE
2929–3112 42.02 27.58 24.74 14.32 28.14 21.67 22.38 14.66 14.11
2929–3295 62.34 30.63 27.23 15.51 24.48 21.27 21.97 14.71 14.48
2929–3478 74.18 29.9 26.73 14.87 25.85 21.74 22.47 14.66 14.28

Note: a value in bold font indicates that the corresponding method achieves the best index among all the methods.
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For brevity, Figure 10 shows the predicted values of several prediction methods with
better prediction results. It can be found that compared with the numerical prediction
methods, the LFIG-FIS and GPFIG-FIG get better prediction results. Because of the length
of the time window, which is about half a year, it has a clear meaning in this experiment,
the FIGs constructed by the LFIG-FIS and GPFIG-FIG can reflect the main characteristics of
the data in each time window very well, which is beneficial to eliminate the influence of
random noises in this time series. When these FIGs are regarded as linguistic variables to
construct fuzzy inference rules, a reasonable FIS can be obtained. However, since numerical
prediction methods are easily disturbed by noise, they cannot get accurate results for a
long-term prediction.
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Note that the time series used in this experiment has a clear increasing or decreasing
trend in each time window. Because of this, both the LFIG-FIS and GPFIG-FIS that contain
trend parameters could accurately reflect these changing trends. Therefore, compared
with the other FIG-based prediction methods, the LFIG-FIS and GPFIG-FIS can get better
prediction results. Among them, the GPFIG-FIS is slightly better than the LFIG-FIS because
it can more accurately reflect the changing trends in each time window.

5.2.2. Power Consumption Time Series

The average power consumption data of the three urban areas every 10 min are
collected in the two weeks from 16 to 30 December 2017 in Tetuan, Morocco. As shown in
Figure 11, this time series contains 2016 data, and the previous 1920 data are used as the
training data set, to predict the last 96 data.

Set the number of FIS input q = 3 for the various methods. The length of the time
window is set as 16, about one ninth of a day, in constructing various kinds of FIGs.
Additionally, the polynomial order of the PFIG is set as three. Table 2 shows the RMSE and
SMAPE indexes of various methods in predicting the data in the last six time windows
(96 points altogether).
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Table 2. Comparison of the prediction indexes of electricity consumption in Tetuan.

Index Time
(10 min) AR NAR SVR LSTM IFIG-FIS TFIG-FIS GFIG-FIS LFIG-FIS GPFIG-FIS

RMSE

1909–1926 3479 3128 5556 2934 1630 1155 1033 1087 692
1927–1944 2800 2749 4130 2909 1647 1394 1306 854 565
1945–1962 3030 3896 3415 3522 1394 1146 1077 718 482
1963–1980 3803 4765 3347 3343 1790 1701 1676 1141 691
1981–1998 6020 6815 4504 3755 1687 1603 1547 1101 744
1999–2016 6500 7273 4526 3828 1823 1657 1617 1065 754

SMAPE

1909–1926 19.11 16.68 32.89 16.87 8.27 5.55 5.12 5.17 3.36
1927–1944 13.77 13.35 20.14 14.79 7.64 6.22 5.99 3.68 2.62
1945–1962 14.92 18.04 14.94 17.29 6.12 4.42 4.33 2.88 2.07
1963–1980 16.89 21.15 13.29 15.36 7.08 5.48 6.38 4.21 2.7
1981–1998 22.99 27.07 17.05 16.61 6.66 5.33 5.81 4.16 2.95
1999–2016 25.47 29.38 17.38 16.65 6.97 5.68 6.11 4.08 3.02

Note: a value in bold font indicates that the corresponding method achieves the best result among all the methods.

For brevity, Figure 12 shows the predicted values of four prediction methods with
better prediction results. Figure 12 and Table 2 show that, compared with the numerical
prediction methods, the FIG-based prediction methods, namely the IFIG-FIS, TFIG-FIG,
LFIG-FIS, and GPFIG-FIG can have more accurate prediction results, among which the
LFIG- and GPFIG-based methods can reflect the time-varying trend very well. Therefore,
they have better RMSE and SMAPE indexes when dealing with long-term prediction. In
predicting the values of different time periods in the future, the GPFIG-FIS always has
the best RSME and SMAPE indexes. A reason for this result is that, compared with the
previous experiment, the power consumption time series display more complex trend
changes in each time window, and the GPFIG with a high-order polynomial center line can
better describe these changes. Consequently, the prediction indexes of the GPFIG-FIS are
also significantly better than other methods such as the LFIG-FIS.
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5.2.3. American Heart Association Electrocardiogram Time Series

The American Heart Association (AHA) ECG datasets collect voltage values at a sam-
pling rate of 250 Hz. A complete ECG waveform contains about 250 sampling points. So,
when constructing various FIGs, the length of the time window is set as 25, which is about
one-tenth of a whole waveform. Figure 13 plots a time series containing 4250 sampling points.
The first 4000 sampling points (including about 16 waveforms) are used as the training set
to predict the last 250 sampling points (about 1 waveform).
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Set the number of the FIS input q = 10 for each prediction method. Due to the
complexity of the ECG waveform, the polynomial order of the PFIG is set as four. Table 3
shows the RMSE and SMAPE indexes of the various prediction methods.
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Table 3. Comparison of the prediction indexes of ECG time series.

Index Time (4
ms) AR NAR SVR LSTM IFIG-FIS TFIG-FIS GFIG-FIS LFIG-FIS GPFIG-FIS

RMSE

4001–4025 87.91 22.74 41.06 26.83 7.33 7.43 7.7 7.2 7.96
4026–4050 99.24 40.4 48.48 22.58 8.61 10.67 13.03 12.01 11.84
4051–4075 102.95 52.92 51 94.60 12.23 12.34 13.82 12.93 12.1
4076–4100 102.58 67.47 50.23 85.65 12.68 12.85 14.2 12.27 11.31
4101–4125 124.51 129.95 83.39 114.43 70.03 64.81 64.07 59.72 30.74
4126–4150 131.99 164.89 93.48 130.28 107.32 80.48 76.25 65.06 29.18
4151–4175 122.86 163.78 89.79 139.07 100.47 76.09 72.11 60.88 28.41
4176–4200 127.1 154.01 111.27 157.61 95.37 73.1 69.92 60.01 28.8
4201–4225 121.25 160.38 105.42 149.67 93.44 69.98 66.71 56.75 27.4
4226–4250 117.79 169.45 100.35 142.36 88.9 66.46 63.34 53.9 26.14

SMAPE

4001–4025 95.44 22.32 45.72 28.70 6.48 6.75 6.36 6.31 7.43
4026–4050 106.77 39.06 52.28 22.25 7.59 9.55 11.5 10.69 10.63
4051–4075 111.88 52.56 55.11 59.09 10.77 11.42 12.75 11.87 11.2
4076–4100 113.48 67.23 54.62 56.81 11.84 12.38 13.52 11.25 10.38
4101–4125 114.54 91.74 60.64 66.26 25.84 23.55 24.93 27.62 19.71
4126–4150 113.47 127.12 56.93 81.95 70.16 26.25 32.58 33.95 19.31
4151–4175 106.49 164.82 67.18 150.81 71.01 31.95 37.2 35.64 23.8
4176–4200 109.68 149.17 81.82 160.37 67.17 32.85 37.63 36.3 24.15
4201–4225 107.33 174.87 79.45 152.83 73.07 37.05 40.11 35.21 23.45
4226–4250 107.68 190.28 74.94 141.83 68.52 34.43 36.93 32.6 22.05

Note: A value in bold font indicates that the corresponding method achieves the best result among all the
methods.

For brevity, Figure 14 shows the predicted values of several prediction methods
with better results. It can be found from Figure 14 and Table 3 that, compared with
numerical prediction methods, the prediction methods based on the FIG and FIS have
better prediction results.
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The changing trends of the ECG time series are more complex than previous experi-
ments. As is shown in Figure 14, this time series is very stable in the first four time windows,
and then there are sharp fluctuations from the fifth time window. Correspondingly, in the
first four time windows, the RSME and SMAPE indexes of the GPFIG-FIS are almost the
same with those of the other FIS-based methods. However, from the fifth time window,
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the predictive indexes of the GPFIG-FIS are significantly better than the other prediction
methods. The main reason for this result is that GPFIG can accurately describe the changing
trends in the ECG data through its high-order polynomial center line. In summary, for the
ECG time series with complex changing trends, the GPFIG-FIS method can obtain better
long-term prediction results.

6. Summary

The PFIGs can accurately describe the key time-varying nonlinear trends of the
time series, and thus are a suitable type of FIGs in granulating a time series. A PFIG
has three parameters, namely the length of the time window, the centerline of the adjustable
order polynomial, and the degree of the data deviation, which have a good interpretability
and are easy to understand.

The distance metric of PFIGs is derived theoretically. It shows that the distance of
two Gaussian PFIGs can be reasonably interpreted as the sum of the area between their
central polynomial lines, and the difference in their data deviation degrees, which has a
good geometric meaning.

This paper also designs a fuzzy inference prediction method based on the GPFIG and
their distance metric to verify the effectiveness of the proposed GPFIG. The experiments
show that for those time series with pseudo periods, the proposed GPFIG-FIS method can
achieve better prediction results compared with some numerical prediction methods such
as the AR, NAR, SVR and LSTM, and some fuzzy inference methods based on other types
of FIG. This conclusion shows that the proposed GPFIG has a good practicability.

The PFIG time series constructed in this paper is composed of several PFIGs of an
equal granularity. A question associated with the granulation method in this paper is how
to choose the optimal granularity of these PFIGs. Without sufficient periodic knowledge
of the time series to be transformed in advance, it may be difficult to determine the
best granularity.

A further generalization of the PFIG can improve the ability of the granular time series
in representing the complicated time series. How to use this new PFIG to deal with a
real-world prediction problem may be a subject of future research.
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