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Abstract: Forecasting the electricity demand of buildings is a key step in preventing a high concen-
tration of electricity demand and optimizing the operation of national power systems. Recently, the
overall performance of electricity-demand forecasting has been improved through the application
of long short-term memory (LSTM) networks, which are well-suited to processing time-series data.
However, previous studies have focused on improving the accuracy in forecasting only overall
electricity demand, but not peak demand. Therefore, this study proposes adding residual learning to
the LSTM approach to improve the forecast accuracy of both peak and total electricity demand. Using
a residual block, the residual LSTM proposed in this study can map the residual function, which is the
difference between the hypothesis and the observed value, and subsequently learn a pattern for the
residual load. The proposed model delivered root mean square errors (RMSE) of 10.5 and 6.91 for the
peak and next-day electricity demand forecasts, respectively, outperforming the benchmark models
evaluated. In conclusion, the proposed model provides highly accurate forecasting information,
which can help consumers achieve an even distribution of load concentration and countries achieve
the stable operation of the national power system.

Keywords: electricity demand forecast; peak electricity; residual learning; long short-term memory;
building electricity

MSC: 68T07

1. Introduction

It is important to accurately forecast the electricity demand of consumers at all times
based on the building’s electricity tariff structure to reduce their demand charges. In
South Korea, the electricity tariff system for buildings uses the peak load demand per
hour from the previous year as the contract demand and divides the demand charges into
off-peak, mid-peak, and on-peak time [1]. Furthermore, the electricity-tariff system uses a
method for calculating the energy charge that imposes a weighted charge on electricity-load
consumption based on the amount of time electricity is used. When the maximum power
used exceeds the contract demand, a surcharge of 1.5–2.5 times the basic rate is imposed
based on excessive consumption [2]. Accordingly, consumers must devise strategies to
avoid increased electricity surcharges, considering the energy consumption of the building
and adjusting their electricity demand to prevent the peak load from exceeding the contract
demand by accurately forecasting peak-usage time and amount. Additionally, consumers
must attempt to shift the concentrated demand during peak-time periods through other
time-zones based on an accurate electricity-demand forecast [2].

If the concentration of energy consumption exceeds the supply capacity because
of a mismatch between demand and supply at the peak, it may cause significant social
problems such as blackouts. Supply reserves should be secured by adding facilities, possibly
involving construction and maintenance costs for additional power plants [3,4]. According
to the Korea Electric Power Corporation’s (KEPCO) 2020 electricity statistics, building
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power sales increased from 2006 to 2020, accounting for 24% of total power sales in 2020 [5].
Additionally, peak demand is expected to increase at an average annual rate of 1.8%, with
peak demand in 2034 expected to be more than 1.25 times that of 2020 [6]. Therefore,
building energy consumption accounts for a significant portion of the national energy
consumption, and this proportion is gradually increasing. Developing an accurate power-
forecast model can reduce and distribute the peak demand of individual buildings, which
is expected to help with the national power-system planning and operation by improving
the regional electricity-demand concentration patterns.

Consumers must be able to forecast electricity demand for load shifting. Accordingly,
the country provides public services for forecasting the electricity consumption of indi-
vidual buildings, such as the KEPCO’s Power Planner and the electricity trading service
provided by the Korea Power Exchange (KPX). These services help consumers forecast
electricity demand and plan the power used to predict costs and electricity consumption
based on future electricity demand and past consumption patterns such as the previous
day and month. Most public services forecast electricity consumption based on statistical
techniques, such as multiple linear regression (MLR) and customer baseline load (CBL) [7].
These public services help reduce electricity costs and enable the efficient distribution
of electricity by projecting costs and consumer usage. However, the statistical models
provided by public services cannot predict fluctuations in electricity demand. Excess
power consumption cannot accurately help forecast electricity demand because it fluctuates
depending on uncertain external factors [6]. Advanced forecasting models must learn
nonlinear electricity-demand patterns and accurately predict peak demand because the
statistical model used shows a large difference between the predicted and observed values.

Several studies, e.g., [8–26], have been conducted to improve the accuracy of the
electricity-demand forecast using multivariate time-series analysis. Various methods rang-
ing from statistical techniques that can interpret the linear relationship between input
variables and observed values to machine-learning techniques that can learn nonlinear
relationships have been used. A recent study [27] suggested using deep learning to design
network structures in accordance with the characteristics of the input data. In particular,
recurrent neural networks (RNNs) outperformed conventional machine-learning models in
forecasting electricity demand through the analysis of sequence data such as the electricity
demand time series, e.g., [12,13,16,17,26]. Most previous studies attempted to improve the
overall forecast performance through deep-learning models, but no study has yet aimed
to improve the hourly forecast performance through a deep-learning model. Thus, a new
deep learning-based model needs to be developed which can improve the performance of
both overall hourly electricity-demand forecasts and peak-load forecasts.

Therefore, this study proposes using residual LSTM to improve the overall predictive
demand performance by minimizing residuals generated while predicting a building’s
peak demand through residual learning. The proposed model uses residual blocks in the
main LSTM and is implemented as residual networks. Minimizing residuals in the main
LSTM can be used to map hypotheses. The proposed model was compared with deep
learning-based prediction methods, such as multilayer perceptron (MLP), LSTM, CNN
LSTM, and RICNN, for hourly electricity demand and peak-demand prediction to evaluate
its prediction performance. The electricity-demand data collected from a building in Seoul
in 2017 and 2018 were used as the dataset for training, optimizing, and validating the
proposed forecast model. The main contributions of this study are summarized as follows:

• The residual LSTM can help consumers reduce demand charges by distributing the
concentration of electricity demand based on accurate forecasting performance;

• The residual LSTM can help consumers in individual buildings to distribute the
concentration of electricity demand during peak hours, reduce electricity demand
concentration at the regional level, and contribute to the stable operation of the national
power system.
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2. Literature Review

In the past few years, several studies have been conducted to predict the short-term
electricity load demand for buildings. The short-term demand forecast for buildings is based
on statistical models, e.g., [9,15,22,24] and machine-learning models, e.g., [8,10,18,20,21,23].
Recent studies using deep learning models, e.g., [11–14,16,17,19,25,26] have improved the
predictive performance. Table 1 lists electricity demand forecasting methods that have been
proposed based on the three aforementioned model categories.

Table 1. Literature review.

Category Refs. Input Variable(s) Time Step Method(s) Prediction
Objective

Statistical-based
Modeling [22]

Historical lighting load, Weather
information,

Occupant information
30 min MLR Peak demand

[24] Historical Load, Weather
information, Time information 15 min

Polynomial regression,
Similar day approach,

MLR
Load demand

Machine
learning-based

modeling
[10]

Historical lighting load, Weather
information,

Occupant information
Hourly ANN, SVR

Lighting load
demand, Peak

lighting demand

[18] Historical Load,
Weather information Hourly ANN Load demand,

Peak demand

[21] Historical Load,
Weather information Hourly Voting ensemble Load demand,

Peak demand

Deep
learning-based

modeling
[12] Historical Load,

Weather information Hourly LSTM Load demand

[13] Historical Load 30 min LSTM Load demand

[26] Historical Load,
Weather information Hourly LSTM Load demand

[16] Historical Load,
Weather information Hourly CNN-LSTM Load demand

[17] Historical Load, Weather
information, Time information 30 min RICNN Load demand

Some studies have used statistical models, such as MLR or auto-regression and moving
average (ARMA), to forecast building consumption demand that can learn linear relation-
ships between variables. Fan et al., [22] predicted the peak demand of residential buildings
using a general linear model (GLM) to identify which variables have the major effect on
forecasting single demand peaks, obtaining a MAPE of 4.6% when forecasting peak de-
mand in 30-min intervals. Ke et al., [24] predicted the short-term electricity load demand of
campus buildings using direct curve fitting by polynomial regression, similar day approach,
and MLR. After comparison, the similar day approach had a mean absolute percentage
error (MAPE) of 3.37%, better than polynomial regression and MLR for direct curve fitting.
When the observed relationship between the input variable and electricity demand is linear,
this statistical model performs well. However, it is difficult to assign an appropriate model
parameter for electricity-demand data with nonlinear relationships [3,15,28,29].

New models have been developed because of technological advancement. Machine-
learning models such as artificial neural networks (ANN), support vector regression (SVR),
and ensemble models have been used to learn the nonlinear relationship of electricity-
demand data. Liu and Chen [10] predicted lighting energy consumption in office buildings
using ANN and SVR, with an R2 of 0.9273 for SVR, indicating a higher forecast accuracy
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compared to ANN. Kim et al., [18] predicted the peak electricity demand of an educational
building using various statistical and machine-learning forecasting models to identify
which variables have a major impact on the peak-demand forecast. After comparing
the performances of the different methods, the ANN resulted in a MAPE of 4.89% when
forecasting hourly demand peaks, which was a higher accuracy than those of the other
statistical and machine-learning models evaluated. Fan et al., [21] predicted the electricity
demand of non-residential buildings using an ensemble model to improve the predictive
performance of a single machine-learning model. The MAPE for the ensemble model was
2.32% for the hourly electricity-demand forecast and 2.85% for the peak-demand forecast,
indicating a higher accuracy than other statistical and machine-learning models used as
base learners. Therefore, the machine-learning model can learn nonlinear data relationships
to improve the predictive performance of electricity demand [30]. However, because the
previous machine-learning model cannot transform the model architecture based on the
characteristics of the input variables [27], it cannot effectively learn the relationship between
the electricity-demand observation and the exogenous variable with a time series feature.

In a recent study, deep-learning models such as LSTM and CNN were used to learn
data with sequential and spatial characteristics. Luo and Oyeldele [12] employed a LSTM
to study forecasting of electricity demand of educational buildings, the results of which
calculated a MAE value of 2.4 for their model, which renders it more reliable than MLP,
a machine-learning approach. Jin et al., [13] used LSTM to forecast electricity demand of
residential buildings. They reported that LSTM, a deep-learning approach, gave lower
prediction errors than MLP and SVM for their time-series data. To compare the forecast
performance of various LSTM models, Ullah et al., [26] compared the electricity-demand
forecast results of residential buildings using the LSTM and BILSTM. As a result, the
LSTM showed higher accuracy than the BILSTM with a MAPE of 1.4574% in hourly
electricity-demand forecasts. Kim and Cho [16] predicted the electricity demand of a
residential building using the CNN LSTM model with a CNN layer before the LSTM layer
to extract complex and difficult-to-understand features from input variables. CNN LSTM
had a MAPE of 32.83%, exhibiting higher predictive performance than MLR and LSTM.
Additionally, Kim et al., [17] used the RICNN model that combined the CNN layer and the
LSTM layer to learn the hidden-state vector of the future and previous times to determine
the electricity demand of the building complexes. The RICNN model had a MAPE of
4.48–8.79%, higher than the MLP and LSTM trained with the same data. The overall
performance of these deep-learning models in forecasting electricity demand improved
due to the use of model architectures consistent with the characteristics and input variables
of the electricity load demand. However, previous studies that have applied deep-learning
models have not aimed to enhance the performance of peak-demand forecasts.

Recent studies on the prediction of the short-term electric load demand of buildings
that have suggested using deep-learning models based on LSTM or a variant of it, have
demonstrated excellent performance in time-series forecasting, e.g., [12,13,16,17,26]. Such
LSTM-based models can improve the accuracy when forecasting components of weather
data and electricity demand by learning the relationship between the input variables and
the electricity demand data [31]. However, previous studies have not considered the
residual load derived from various probabilistic factors, including the behavior of the
building occupants, among the components of electricity demand. The residual load,
which changes probabilistically according to the behaviors, needs, and desires of occupants,
is a major cause of peak demand [32]. Therefore, a method is needed for learning and
predicting the pattern in the residual load to improve the performance of both peak and
total electricity demand forecasting. It is expected to improve the performance of data
forecasts with unexpected values by improving the performance of peak-demand forecasts.

3. Methodology

In this study, we propose the use of an LSTM-based deep learning architecture that
uses a residual block to learn and accurately predict the residual load in the total electricity
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demand of buildings. The model learns the overall electricity demand through an LSTM
layer suitable for forecasting time series, and the residual load, which is not forecast by
the LSTM, through a residual block. The residual LSTM consists of a residual block, an
LSTM layer, and a dense layer. First, the proposed model learns the sequential features
of electricity-demand data through an LSTM layer appropriate for time series prediction.
Second, the model uses the residual block to intensively learn the residual load. Finally,
the model outputs the final prediction value through the dense layer. Figure 1 shows the
structure of the residual LSTM proposed in this study.
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3.1. Long Short-Term Memory (LSTM)

LSTM is a variant of recurrent neural network (RNN) with modifications to the cells.
A general RNN is a model suitable for learning data with recursive characteristics of storing
the result calculated for each time point in the internal memory of each cell. Equation (1) is
calculated in the RNN prediction process:

ht = tanh(Whhht−1 + Wxhxt + bh) (1)

where ht denotes the output value of the RNN; Wh denotes the weight; bh denotes the bias;
and xt denotes the input vector. The RNN is used to calculate the output value ht of the
cell at time t using the value ht−1 calculated from the input vector xt−1 at time t−1, which
can learn the relationship between before and after data with a recursive characteristic.
However, in RNN, as the network depth increases owing to the use of multiple cells, h and
Wh are repeatedly multiplied, and the long-time gradient accumulation value decreases to
zero, causing a vanishing-gradient problem [33]. LSTM uses a cell that stores a calculation
result in an internal memory through input, forget, and output gates to solve this problem.
Figure 2 shows the cell structure of the LSTM. Equations (2)–(8) are calculated during the
LSTM prediction process.

f l
t = σ(W l

f ∗ [h
l
t−1, xl

t] + bl
f ) (2)
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il
t = σ(W l

i ∗ [hl
t−1, xl

t] + bl
i) (3)

ol
t = σ(W l

o ∗ [hl
t−1, xl

t] + bl
o) (4)

cl
t = (cl

t−1 × f l
t ) + (tan h(W l

c ∗ [hl
t−1, xl

t] + bl
c × il

t) (5)

hl
t = tan h(cl

t)× ol
t (6)

σ(x) =
1

1 + e−x (7)

tanh(x) = 1− 2
e2x + 1

= 2σ(2x)− 1 (8)

where f l
t , il

t, and ol
t denote the forget, input, and output gates, respectively; cl

t denotes
the cell state; hl

t denotes the cell output; σ(x) denotes the activation function; and tanh(x)
denotes the hypertangent. LSTM can solve the vanishing-gradient problem through the
following process. First, the forget gate decides whether to store the value of cl

t−1 by
outputting the value calculated in the previous cell as a value of zero or one. Subsequently,
the input gate stores the information on xt. xt stored through the input gate and the cell
state cl

t−1 at time t−1 are used to update cl
t, the cell state at time t, thus facilitating using

information stored through cells at a later point from the first cell to the cell at time t.
Finally, the output gate outputs hl

t, which is the cell’s output value at time t, using xt and cl
t

updated through the input gate. Therefore, the vanishing-gradient problem can be solved
by updating the cell state to prevent data with a large order difference from vanishing.
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3.2. Residual Learning

He et al., [34] presented a residual network (ResNet) as the first example of residual
learning. Residual learning is performed through a residual block with a structure through
which an input vector is shortcut-connected to an output layer. Figure 3a shows the
structure of a normal deep learning network, while Figure 3b shows the structure of a deep
learning network composed of residual blocks.

The equation for residual learning created by the residual block is expressed as follows:

H(x) = F(x) + x (9)

where x is the input vector for the first layer, H(x) denotes the output function computed
by the stack layer, and F(x) denotes the residual function learned by a residual block.
A normal deep-learning network calculates H(x) to represent an input vector through a
learning process. However, the deep learning network with a residual block calculates



Mathematics 2022, 10, 4486 7 of 17

H(x) as a linear combination of F(x) and x. The result is calculated through the residual
block, as shown in Equation (9).
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In the backpropagation process, increasing the number of layers to improve the
learning performance of a deep learning model causes a vanishing-gradient problem.
Conversely, residual learning can prevent the vanishing-gradient problem by adding at
least a value of one to the gradient, as the gradient value must be at least one [35,36].

3.3. Residual LSTM

Prakash et al., [37] proposed residual LSTM, using the residual block structure in-
troduced by He et al., [34], to resolve the accuracy degradation caused by the vanishing
gradient of LSTM. The proposed model consists of two LSTM layers and a shortcut connec-
tion, as shown in Figure 4, connected by a red dotted line. Additionally, an upper LSTM
input vector is connected to an output layer through a skip connection.

Compared with the LSTM layer model, residual LSTM has two advantages. First,
residual LSTM can learn a residual through a residual function. In the residual LSTM
shown in Figure 4, the output function of the residual block is derived as Equation (10) and
transformed as Equation (11):

H(xl
t) = F(xl

t) + xl
t (10)

F(xl
t) = H(xl

t)− xl
t (11)

where H(xl
t) denotes the output function of a residual block; F(xl

t) denotes the residual
function; and xl

t denotes the input vector. As shown in Figure 4, F(xl
t) can be transformed

into an equation that expresses the difference between H(xl
t) of the residual block and xl

t,
which is the same as the residual, the difference between the forecasted and observed values.
Residual LSTM learns by approximating F(xl

t) to zero to H(xl
t) ≈ xl

t, for finding H(xl
t)

that best expresses xl
t. Therefore, residual LSTM can directly learn the residual through

the residual-learning process. Second, residual LSTM can solve the vanishing-gradient
problem that occurs with an increasing network depth.

In the learning performance-improvement method, a deep learning model increases
the network depth by adding the most representative layer. As the network depth increases,
the backpropagation process encounters a vanishing-gradient problem, preventing the
model parameters from being updated. The residual LSTM connects the LSTM layers
of the network in parallel through a shortcut connection to allow xl

t used in the upper
LSTM layer to be used in the lower LSTM layer regardless of the network depth. Therefore,
residual LSTM can solve the accuracy-degradation problem of the model by solving the
vanishing-gradient problem that occurs when adding the LSTM layer. A hyperparameter
optimization algorithm was used to construct an optimized model architecture suitable for
the experimental data. The residual LSTM adds a dropout layer that prevents the model
from overfitting owing to the regularization effect [38].
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4. Experimental Procedure
4.1. Data Collection and Preprocessing

This study proposed a predictive model applicable to all non-residential buildings.
In South Korea, since 2017, the installation of sensors has been made mandatory in newly
built or expanded public buildings of 10,000 m2 or more. However, according to statistics
from the Korea Energy Agency, only 128 buildings had sensors installed in 2021, with the
majority having none. Therefore, this study selected a non-residential building in South
Korea without sensors and examined the predictive performance of the proposed model
using the building’s electricity-demand data.

To build the forecasting model proposed in this study, external data that can be
collected without using a sensor other than a power meter were used as the input variables.
After reviewing previous studies [9,11,14,16,17,21,23,39], we selected 17 input variables
to predict the electricity demand of buildings based on the external data. Variables that
affected the maximum power demand were also chosen in this study to accurately predict
the maximum power demand. Different electricity rates and time zones affect peak demand
because consumers try to avoid peak demand to reduce demand charges [17]. Therefore, the
data for the peak-time zone of the electricity-rate system were selected as an input variable
in this study. Three types of input variables were selected: (1) weather variables affecting
the electricity consumption of home appliances consuming considerable power in buildings,
such as air conditioners and heaters; (2) time variables affecting the repeating pattern of
electricity-load consumption depending on time, date, and holidays; and (3) electricity-rate
variables affecting electricity usage plans of consumers, based on electricity rates by the
time of electricity use. Table 2 presents the input variables used for the electricity-demand
forecast in this study.
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Table 2. Raw data input variable description.

Categories Variable Description References

Weather variable
Wind speed Wind speed (numeric) [11,16]
Temperature Adjusted temperature (numeric) [9,11,14,16,23,39]
Humidity Humidity (numeric) [11,14,16,23,39]

Sequence variable

Month_x Sine value at the month (numeric) [15,16,21,23,39]
Month_y Cosine value at the month (numeric) [15,16,21,23,39]
Day_x Sine value on the day (numeric) [14–17,21,29]
Day_y Cosine value on the day (numeric) [14–17,21,29]
Hour_x Sine value at the hour (numeric) [11,14–16,23]
Hour_y Cosine value at the hour (numeric) [11,14–16,23]
Holiday Weekdays/holidays status (encoded vector) [16,21,39]
Monday Monday (encoded vector) [9,11,16,17,23,39]
Tuesday Tuesday (encoded vector) [9,11,16,17,23,39]
Wednesday Wednesday (encoded vector) [9,11,16,17,23,39]
Thursday Thursday (encoded vector) [9,11,16,17,23,39]
Friday Friday (encoded vector) [9,11,16,17,23,39]
Saturday Saturday (encoded vector) [9,11,16,17,23,39]
Sunday Sunday (encoded vector) [9,11,16,17,23,39]

Electricity rate variable
Off-peak Off-peak status (encoded vector) [17]
Mid-peak Mid-peak status (encoded vector) [17]
On-peak On-peak status (encoded vector) [17]

This study used building electricity-demand data retrieved from the power data-
sharing center of KEPCO [40] to train a predictive model after de-identification. The
weather variables were obtained from the Korea Meteorological Administration (KMA)
weather-data open portal [41], and the electricity-rate variables were based on the KEPCO’s
electricity-rate system [1]. All the data were collected hourly from 1 January 2017 to 31
December 2018. Finally, the collected data were confirmed to include more than 2000
observations, with no missing values. The collected data were normalized to an interval
(0, 1) to prevent the forecast model from overlearning a specific input variable [42]. The
normalization equation is as follows:

x′ =
x− xmin

xmax − xmin
(12)

where x denotes the original data; xmin denotes the minimum value of x; xmax denotes the
maximum value of x; and x′ denotes the data after normalization.

4.2. Benchmark Models

Four deep-learning models were chosen as benchmark models to validate the superi-
ority of the proposed model. The first benchmark model was MLP, the simplest predictive
model among neural networks. MLP is widely used in data mining because it can learn
complex nonlinear relationships between data. Additionally, MLP was used in some related
studies that predicted electricity demand [15,20].

Second, this study used LSTM as a benchmark model because it is a deep learning
model designed to process sequential data. Therefore, in several studies [16,17,43], LSTM
has been used as a benchmark model to verify the model proposed for time-series predic-
tion, such as electricity demand. CNN LSTM was chosen as a benchmark model in this
study because of its more complex architecture, combining CNN, LSTM, and RICNN. CNN
LSTM can learn input features through CNN layers [16]. RICNN can use the hidden-state
vector through the CNN layer [17]. These were chosen as benchmark models because they
outperformed the LSTM model, which has been used in several studies in the electricity
demand-prediction field. For brevity, detailed descriptions of the benchmark model can be
found in previous studies [11,15–17].
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4.3. Hyperparameter Setting

In this study, the hyperparameters of the proposed and benchmark models were
optimized using the electricity-demand data. This study divided the data into three
datasets to optimize hyper-parameters, as shown in Figure 5. The data for the 12 months
of 2017 were used as the training set, the data from July to September 2018 were used as
the verification set, and the data from October to December 2018 were used as the test set.
Figure 5 shows that the test set was located after the validation and training sets to prevent
any value from being used in the training of the proposed model [44].
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In this study, the hyperparameters of the proposed and benchmark models were
optimized using the grid search. The grid search applied all hyperparameter combinations
to each model. During the first step, each model was trained on the training sets and then
evaluated with the validation sets for the root mean square error (RMSE). The hyperparam-
eter with the lowest RMSE was selected. Table 3 summarizes the hyperparameter space
(HP-space) of the proposed and benchmark models.

Table 3. Hyper-parameters for the proposed and benchmark models.

Model Hyper-Parameter Parameter Grid Best Parameters

MLP

Epochs [100, 200, . . . 5000] 500
Batch size [16, 32, . . . 512] 256
Filter size [16, 32, . . . 512] 512
Stacks of dense layers [1, 2, 3, 4] 4

LSTM

Epochs [100, 200, . . . 5000] 100
Batch size [16, 32, . . . 512] 64
Filter size [16, 32, . . . 512] 256
Stacks of dense layers [1, 2, 3, 4] 1
Stacks of LSTM layers [1, 2, 3, 4] 2

CNN LSTM

Epochs [100, 200, . . . 5000] 100
Batch size [16, 32, . . . 512] 128
Filter size [16, 32, . . . 512] 128
Stacks of dense layers [1, 2, 3, 4] 4
Stacks of LSTM layers [1, 2, 3, 4] 2
Stacks of CNN layers [1, 2, 3, 4] 2
Filter size of CNN [16, 32, . . . 512] 16
Kernel size of CNN [1, 2, 3, 4, 5, 6, 7] 1
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Table 3. Cont.

Model Hyper-Parameter Parameter Grid Best Parameters

RICNN

Epochs [100, 200, . . . 5000] 200
Batch size [16, 32, . . . 512] 512
Filter size [16, 32, . . . 512] 128
Stacks of dense layers [1, 2, 3, 4] 4
Stacks of LSTM layers [1, 2, 3, 4] 2
Stacks of CNN layers [1, 2, 3, 4] 2
Filter size of CNN [16, 32, . . . 512] 16

RLSTM

Epochs [100, 200, . . . 5000] 1000
Batch size [16, 32, . . . 512] 128
Filter size [16, 32, . . . 512] 128
Stacks of dense layers [1, 2, 3, 4] 2
Stacks of LSTM layers [1, 2, 3, 4] 2
Stacks of residual blocks [1, 2, 3, 4] 2
Stacks of LSTM layers in the block [1, 2, 3] 1
Dropout rate [0.1, 0.2, . . . 0.9] 0.8

Additionally, this study made the following two adjustments to the proposed and
benchmark models. Following previous studies, this study adopted the Adam opti-
mizer [45] and mean square error (MSE) as model parameter optimization tools and
the loss function as common settings [44].

4.4. Performance Measure

This study used three parameters to assess the performance of each prediction model:
mean absolute error (MAE), expressed using Equation (13); MAPE, expressed using Equa-
tion (14); and RMSE, expressed using Equation (15):

MAE =
1
n

n

∑
t
|yt − ŷt| (13)

MAPE =
1
n

n

∑
t

|yt − ŷt|
yt

× 100 (14)

RMSE =

√
1
n

n

∑
t
(yt − ŷt)

2 (15)

where yi and ŷi denote the actual and forecasted electricity consumption, respectively, at
time t; and n denotes the number of observations.

5. Results and Discussion

In this study, we verify whether residual learning through residual LSTM can experi-
mentally improve the forecast performance of the peak and overall electricity demands of
buildings. The experimental results confirmed the forecast errors for peak and total electric-
ity demands, and residual LSTM and benchmark models were compared. Accordingly, the
results of the experiment are presented in this section. The results section is divided into
two parts: the first section confirms the model’s peak-demand forecast results; the second
confirms the total electricity demand and hourly forecast results.

5.1. Peak-Demand Forecast Results

Experiments were conducted to derive forecast performance for peak demand by
aggregating peak demand among electricity demand generated during one day in the
test set. Table 4 presents the forecast errors for peak demand of residual LSTM and
benchmark models, such as MLP, LSTM, CNN LSTM, and RICNN. These models were
compared considering three error metrics: MAE, MAPE, and RMSE. Table 3 shows that
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residual LSTM had the best forecast performance, with the lowest error across all error
metrics, demonstrating that residual learning improves peak-demand forecast performance.
Meanwhile, all error metrics showed that CNN LSTM had a higher prediction error than
LSTM, indicating that using a CNN method to learn relational features between input
variables does not improve peak-demand forecast performance.

Table 4. Performance of the prediction models for the next-day peak-electricity demand.

Measure MLP LSTM CNN LSTM RICNN RLSTM

MAE 8.71 7.16 8.32 8.28 6.86
MAPE 17.21 12.73 14.32 14.58 11.7
RMSE 11.85 10.75 11.13 12.17 10.5

The text in bold denotes the best performance for each performance measure.

The accuracy of the forecast model is critical in peak-demand forecasting to ensure
that the forecasted value is not underestimated. Consumers are likely to plan additional
electricity usage during peak times if the predictive model underestimates peak demand.
Additional electricity consumption during peak hours may result in a surcharge if con-
sumption exceeds contract demand [20], possibly resulting in an inflated base rate because
consumers choose higher contract demand than necessary during the electricity rate con-
tracting process. Accordingly, the errors of the underestimated cases were derived in this
study to confirm the performance of the underestimate in the test data at the peak time.

Table 5 shows the forecast model error for underestimated cases at peak time, with
the residual LSTM having the best predictive performance. Comparing the peak-demand-
forecast results shows that residual LSTM reduced the error in all error metrics, whereas
LSTM, CNN LSTM, and RICNN increased errors in some error metrics. These results
indicate that the residual LSTM can predict the peak demand more accurately, particularly
when peak demand is underestimated. Therefore, consumers can successfully reduce
demand charges because residual LSTM prevents excessive consumption.

Table 5. Next-day forecast results when underestimated at peak times.

Measure MLP LSTM CNN LSTM RICNN RLSTM

MAE 8.06 8.38 8.79 8.60 6.76
MAPE 14.30 12.77 13.11 13.58 9.81
RMSE 10.54 10.79 10.70 11.41 9.48

The text in bold denotes the best performance for each performance measure.

5.2. Overall and Hourly Forecast Results

The experiments were conducted to verify the overall results of residual LSTM. Ac-
cordingly, the forecast performances of residual LSTM and four benchmark models were
compared. The overall results of peak-demand forecast performance were compared using
the same three error metrics used for the peak-demand forecast. Table 6 shows the experi-
mental results for the overall electricity-demand prediction model. In terms of MAE and
RMSE, residual LSTM outperformed the benchmark models, and in terms of MAPE, resid-
ual LSTM outperformed CNN LSTM. Based on the overall performance results, residual
LSTM was considered a reliable method for forecasting electricity demand with low errors.

Table 6. The performance of the prediction models for the next-day electricity demand.

Measure MLP LSTM CNN LSTM RICNN RLSTM

MAE 5.17 4.48 3.98 4.48 3.99
MAPE 15.71 13.41 11.76 13.85 12.57
RMSE 8.46 7.7 6.95 7.73 6.91

The text in bold denotes the best performance for each performance measure.
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Although an accurate overall electricity-demand forecast is important for consumers
in individual buildings to establish electricity plans, an accurate forecast of peak demand
helps in the distribution of the peak times. Distributing the peak in each building can help
prevent the problem of energy consumption exceeding supply capacity by improving the
regional electricity-demand concentration patterns. Conversely, from the perspective of
the consumer and the country, the accuracy of the off-peak forecast does not significantly
impact developing the electricity-usage plan. Therefore, it is necessary to examine the
predictive performance for the on-peak period by dividing the period according to the
energy consumption.

South Korea classifies the period for electricity use based on the total energy consump-
tion of the country to manage the supply of energy. Electricity demand is managed by
dividing the period into off-peak, mid-peak, and on-peak [1]. The period for electricity
used by KEPCO is presented in Table 7. In this study, only data from October, November,
and December were used as the test set to examine the performance of the forecast model.
The time zone of these three months focused on confirming the forecast performance for
the on-peak periods of 10:00–12:00, 17:00–20:00, and 22:00–23:00.

Table 7. Peak times classified by hour and month.

Demand Category
Months

3, 4, 5, 6, 7, 8, 9 10, 11, 12, 1, 2

Off-peak 23:00–09:00 23:00–09:00

Mid-peak
09:00–10:00 09:00–10:00
12:00–13:00 12:00–17:00
17:00–23:00 20:00–22:00

On-peak 10:00–12:00 10:00–12:00
13:00–17:00 17:00–20:00

22:00–23:00

Table 8 shows the average MAPE of the hourly forecast. Residual LSTM shows the
best performance in five time steps out of six on-peak periods, indicating that residual
LSTM can accurately predict power demand during on-peak periods. In mid-peak periods,
residual LSTM and CNN LSTM had similar forecast performance; however, CNN LSTM
had slightly better forecast performance in off-peak periods. Considering the differences in
forecast performance for each period, the superiority of residual LSTM and CNN LSTM
cannot be confirmed in terms of overall performance. Nevertheless, residual LSTM is a
forecast model with a higher utility than other benchmark models for consumers and the
country because it is capable of accurately predicting electricity demand during on-peak
periods for electricity-demand management.

Table 8. MAPE results by hour for each tested model. The text in bold denotes the best performance
for each hour.

Demand
Category Time MLP LSTM CNN LSTM RICNN RLSTM

Off-peak 00–01 5.98 5.84 4.86 10.14 7.70
Off-peak 01–02 4.50 3.90 3.61 6.20 3.79
Off-peak 02–03 2.65 4.53 3.11 5.60 3.78
Off-peak 03–04 3.42 2.66 2.02 5.26 2.11
Off-peak 04–05 2.03 4.08 3.09 5.33 4.31
Off-peak 05–06 2.73 4.16 3.36 5.95 2.46
Off-peak 06–07 2.05 3.44 2.02 7.19 1.69
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Table 8. Cont.

Demand
Category Time MLP LSTM CNN LSTM RICNN RLSTM

Off-peak 07–08 7.79 7.99 4.15 8.46 6.73
Off-peak 08–09 32.63 27.53 22.15 24.47 20.71
Mid-peak 09–10 86.66 73.59 52.01 64.13 63.88
On-peak 10–11 215.70 181.13 133.74 166.87 119.80
On-peak 11–12 218.89 171.39 128.67 154.80 124.27
Mid-peak 12–13 155.41 117.90 84.15 110.31 102.64
Mid-peak 13–14 180.79 146.21 111.94 124.99 112.55
Mid-peak 14–15 174.24 137.29 108.60 129.43 110.62
Mid-peak 15–16 170.17 125.94 112.62 140.29 112.44
Mid-peak 16–17 132.50 120.99 120.62 140.63 97.78
On-peak 17–18 110.24 101.95 94.28 116.46 82.56
On-peak 18–19 93.40 84.51 70.68 80.30 68.48
On-peak 19–20 54.67 41.24 44.01 43.16 39.77
Mid-peak 20–21 31.19 27.05 24.44 29.76 24.21
Mid-peak 21–22 14.20 11.98 10.81 18.19 12.67
On-peak 22–23 7.76 7.60 7.80 20.68 11.62
Off-peak 23–24 9.04 8.81 7.85 17.22 9.20

The text in bold denotes the best performance for each time zone.

5.3. Statistical Tests

Using the Friedman test, we statistically compared the performance of the proposed
model with those of the benchmark models. The Friedman test is a statistical method that
evaluates the statistical differences between the performances of two or more forecasting
algorithms [46,47]. The null (H0) and alternative (H1) hypotheses of the Friedman test are
as follows:

• Null hypothesis (H0): The forecasting models have the same performance;
• Alternative hypothesis (H1): The performance of at least one model is statistically

different from those of the other forecasting models.

Friedman tests with a significance level of α = 0.05 were performed for the error data
of the five algorithms considered in the study. Tables 9 and 10 summarize the results of
these tests for the overall and peak forecast performances. The results of both tests revealed
the existence of significant differences between the proposed and benchmark models.

Table 9. Friedman test results for performance of next-day electricity demand.

Compared Models Friedman Test

n = 2208 α = 0.05

RLSTM vs. MLP H0; e1 = e2 = e3 = e4 = e5
RLSTM vs. LSTM
RLSTM vs. CNN LSTM F = 92.3
RLSTM vs. RICNN P = 0.000 (Reject H0)

Table 10. Friedman test results for performance of next-day peak-electricity demand.

Compared Models Friedman Test

n = 92 α = 0.05

RLSTM vs. MLP H0; e1 = e2 = e3 = e4 = e5
RLSTM vs. LSTM
RLSTM vs. CNN LSTM F = 10.82
RLSTM vs. RICNN P = 0.000 (Reject H0)
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6. Conclusions

This study proposed using residual LSTM to accurately predict the peak demand of
a building to improve the forecast performance for the total electricity demand. Resid-
ual LSTM consists of an architecture in which LSTMs and residual blocks were applied
for learning time-series data and residual learning, respectively. This structure allows
residual LSTM to map the hypothesis more easily for the electricity demand by mini-
mizing the residual. The proposed model was compared with existing models based on
the electricity-demand data from a non-residential building considering peak-demand-
forecast performance and overall forecast performance. Peak-demand forecasting shows
that residual LSTM outperforms benchmark models, thus improving the overall electricity
demand-forecast accuracy.

Based on the above results, the key findings and contributions of this study can be
summarized as follows:

• The historical electricity demand and weather data between January 2017 and De-
cember 2018 were obtained for the area where the building used in the experiments
was located;

• Three performance metrics, namely, MAPE, MAE, and RMSE, were used for assessing
the performance of models when forecasting peak and next-day electricity demand;

• The peak-demand forecast by the MLP, LSTM, CNN LSTM, RICNN, and residual
LSTM models were 11.85, 10.75, 11.13, 12.17, and 10.5 kW, respectively. Similarly, the
RMSEs of the next-day electricity demand predicted by the models were 9.46. 7.7, 6.95,
7.73, and 6.91 kW, respectively;

• The performance evaluation of the models showed that the proposed residual LSTM
was more accurate than MLP, LSTM, CNN LSTM, and RICNN in peak-demand
forecasting;

• Regarding next-day electricity demand forecast, the performance of the proposed
model was better for on-peak time slots with high electricity demand;

• This study demonstrates an improvement in performance when applying residual
LSTM for forecasting the electricity demand of buildings;

• The proposed model can help distribute concentrated electricity demand and operation
of the national power system for buildings.

For future studies, we suggest constructing predictive models for various forecast
resolutions, such as a week, month, and a year later, to manage peak demand at the regional
level. Second, we recommend adding a feature-selection process to the residual LSTM,
which should improve the forecast performance of the model by identifying important
variables while forecasting electricity demand.
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