
Supplementary Note: Input and output files.

Algorithm for reconstruction of mathematical frame models of bacterial transcription regulation was

implemented as Java program called “Operon equations”.

Input file is the plain text with tab as separator. The columns order is next: name of the operon, name of the

TF regulating operon in a same row, left and right positions of TFBS (absolute positions in genome of the sites)

and the TF regulation type (activator, repressor or dual role). The example of input file is shown in Figure S1.

Figure S1. Typical input file. 1st column –operon name, 2nd column – TF name, 3rd and 4th columns – left and

right TFBS positions, and 5th column – regulation type of the TF. The tab is used as column separator. The

"dual" value in regulation type is used when role of the TF is known both activator and repressor. The

“regulation” value is used if you have no information TF function. When TFBS positions are also unknown the

zero value is used (first 3 rows in an example). It means that there will be no intersections of selected TF with

other TFs of the operon.

The output file includes information about generated or blocked states and the number of variables. The file

also contains parameter description and equation (4) from the main text. Example of the output file is

presented in Figure S2.

aceEF ArcA 0 0 repressor
aceEF FNR 0 0 repressor
ada-alkB Ada 0 0 repressor
ada-alkB Ada 2308477 2308504 activator
agaR AgaR 3276705 3276728 repressor
agaR AgaR 3276735 3276758 repressor
alaS AlaS 2820102 2820135 repressor
araBAD AraC 70109 70126 activator
araBAD AraC 70130 70147 dual
araBAD AraC 70184 70201 repressor
araBAD AraC 70204 70221 repressor
araBAD AraC 70342 70359 repressor
araBAD CRP 70158 70179 activator
betIBA ArcA 328584 328598 repressor
betIBA ArcA 328652 328666 repressor
betIBA BetI 328605 328625 repressor

Figure S2. Example of output file. Mathematical model for the aceEF operon is shown. For this case TFBS

positions are unknown so it is no positional intersections (blocked states) between TFBS and all states are

generated and added to equation.

We also tested the program with different input data. We have considered how the computation time

depends on the number of TFs that can bind to their binding sites in a single operon. We also considered

when TFs can overlap and when they cannot. Detailed information is presented in Table S1. As you can see,

as TF increases, the number of parameters generated increases, and as a consequence the computation time

increases. Therefore, we have set the upper limit in the program for the number of TFs per operon to 15.

Table S1. Program running time depending on the number of TFs and positions of binding sites per operon

Number of TF Calculation time Number of parameters Blocked states

1 < 1 min 5 no

2 < 1 min 12 no

3 < 1 min 28 no

4 < 1 min 64 no

5 < 1 min 144 no

6 < 1 min 320 no

7 < 1 min 704 no

8 < 1 min 1536 no

9 < 1 min 3328 no

10 ~ 1-2 min 7168 no

10 < 1 min 767 yes

11 ~ 13 min 15360 no

11 ~ 1-2 min 1151 yes

12 ~ 16 min 16986 yes

13 > 84 h 50189 yes

Mathematical model transcription of the operon: aceEF
Generated states: 3
Blocked states: 0
======================
variables:
1 ArcA ; 0 0 repressor
2 FNR ; 0 0 repressor
parameters: 12
V_0 ; Initial rate
a_basal ; Basal activity
k_1 ; ArcA activity
k_2 ; FNR activity
n_11 ; ArcA(#1) Hill parameter
level_1 ; ArcA(#1) rate activity parameter
n_1h1 ; ArcA(#1) Hill parameter
n_2h1 ; ArcA(#1) FNR(#2) Hill parameter
w12 ; cooperation parameter
level_12 ; ArcA(#1) FNR(#2) activity parameter
n_21 ; FNR(#2) Hill parameter
level_2 ; FNR(#2) rate activity parameter
Numerator =
a_basal+(level_1*((ArcA/k_1)^n_11))+(level_12*w12*((ArcA/k_1)^n_1h1)*((FNR/k_2)^n_2h1))+(level_2*((FNR/k_2)^n_21))
Denominator = 1+((ArcA/k_1)^n_11)+(w12*(ArcA/k_1)^n_1h1*(FNR/k_2)^n_2h1)+((FNR/k_2)^n_21)
f = V_0*Numerator/Denominator

The most of parameters denote the degree of Hill, because that have to unique in each case.

Commented code, as well as test data are available in the Github repository at

github.com/tlakhova/Operon_equations.

