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Abstract: Transcription regulation plays an important role in bacterial activity. The operon concept
coined by François Jacob and Jacques Monod has had a considerable effect on investigations into
gene expression regulation, including modeling. However, most such studies have considered the
regulation models devised manually for one or several operons. For that reason, the objective of the
present study was automated genome model reconstruction for different bacteria. The suggested
algorithm accounted for all possible interactions of transcription factors and their binding sites in
an operon’s promoter region. Transcription factor enumeration was performed using the deep-
first search technique. The obtained models are of interest for those involved in the research of
transcription factor regulatory effects on bacterial gene expression in microbiology and biotechnology.

Keywords: mathematical frame model; Hill’s generalized functions; bacterial transcription regulation
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1. Introduction

The mathematical modeling of gene expression regulation (transcription and transla-
tion) has been greatly affected by the operon concept coined by François Jacob and Jacques
Monod, who considered it to be a technique of organizing the transcribed genes united
within one or several promoters (DNA region to launch RNA synthesis) [1]. Mathematical
studies from researchers investigating the regulation effect on gene expression started to
appear just a few years after the concept had been published [2–4].

Most such models describe the behavior of the most well-studied lactose and tryp-
tophan operons of Escherichia coli [5,6]. Currently, models are built using standard dif-
ferential [7–9] and delay differential equations [10–13], Hill’s equations [12,14], and their
generalized version [15–17], stochastic equations [18,19], Boolean network models [20],
etc. Such models can describe the interaction of a transcription factor (TF) and a promoter
of a certain operon [21,22], TF binding/separation rates in relation to a number of them
interacting [23], promoter activity [24,25], impact of transcriptional read-through on gene
expression [26], etc.

However, most of the mentioned models have been built manually for one or several
operons of certain model organisms. In this paper, we suggest an approach to the automated
generation of genome-scale mathematical frame models of bacterial transcription regulation.
Such models are not without interest, because they enable investigation of TF effects on
bacterial gene expression.

For the sake of demonstration, we applied the suggested approach to the well-known
lactose operon and observed how the biological information is converted into mathematical
information (Figure 1). The lactose operon has been chosen for being the first discovered
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and the most-studied of their kind. The figure demonstrates how cistrons (coding proteins
of DNA sequences) are transcribed by mRNA followed by proteins (different kinds of
lactose).
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Figure 1. Lac-operon: from the biochemical scheme to a mathematical model. (a) Depiction of the 
operon and promoter’s structure. Here, CAP and LacI are transcription factors (TFs); TFBS is a tran-
scription factors biding site (DNA region in the promoter to which TF binds); lacZ, lacY, and lacA 
are the genes included in the operon; operon and operonA are the operon’s inactive and active 
forms, respectively. Repressor (LacI) binding converts the active into the inactive form, and the ac-
tivator (CAP) acts in the opposite way, and simultaneous CAP and LacI binding leaves the operon 
inactive. (b) Graphical representation of a transcription regulation network (TRN) where the yellow 
and purple nodes are genes and TFs, respectively, and the arrowed and capped edges mark synthe-
sis and regulation. (c) A mathematical TRN-based model describing lac-operon regulation. 
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Figure 1. Lac-operon: from the biochemical scheme to a mathematical model. (a) Depiction of the
operon and promoter’s structure. Here, CAP and LacI are transcription factors (TFs); TFBS is a
transcription factors biding site (DNA region in the promoter to which TF binds); lacZ, lacY, and
lacA are the genes included in the operon; operon and operonA are the operon’s inactive and active
forms, respectively. Repressor (LacI) binding converts the active into the inactive form, and the
activator (CAP) acts in the opposite way, and simultaneous CAP and LacI binding leaves the operon
inactive. (b) Graphical representation of a transcription regulation network (TRN) where the yellow
and purple nodes are genes and TFs, respectively, and the arrowed and capped edges mark synthesis
and regulation. (c) A mathematical TRN-based model describing lac-operon regulation.

In our approach, transcription regulation was described by Hill’s generalized func-
tions [27], whereas the general models were represented through standard differential
equations. The basis of the model was the transcription regulation network (TRN) of a
considered bacterium. The TRN is a combination of all the inter-related elements such as
TFs, target genes, and the regulatory interactions between them [28,29]. In their graphical
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representation, the target genes were nodes and the regulatory interactions were non-
weighted edges directed either from a TF to a gene (in case of regulation) or from a gene
to a TF (in the case of synthesis). The networks were reconstructed based on available
information about the structures of operons and their regulators.

This paper presents an algorithm for the reconstruction of mathematical frame models
and its software implementation named Operon_Equation.

2. Materials and Methods

First, we considered a TF-assisted transcription regulation process. In such a case,
one TF may correspond to several binding cites in several promoters, or one promoter
may have several binding sites (TFBSs), i.e., the synthesis can be regulated by either one or
several TFs. Commonly, promoters are relatively short; thus, the binding sites sometimes
overlap, and sometimes they do not (Figure 2). In the first case, the TFs, which bind to their
sites, will not be able to bind simultaneously, and will have to compete for the site.
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for every operon depends on possible TFBS positions. During enumeration, the TFBS po-
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Figure 2. Possible location of two neighboring TFBSs. The first TFBS is marked blue; the second is
marked red. The black line is DNA, where the 5′ to 3′ direction of strand DNA is called the leading
strand. (I,II) cases where two TFBS are located in the promoter region that do not overlap, (III,IV)
cases are where one TFBS can be embedded in the other, and (V,VI) cases are where one TFBS
partially overlaps the other.

For that reason, the modeling should account for all possible regulation scenarios and
consider both the number of TFs and whether they bind free or competed binding sites.

Our solution utilized the deep-first search (DFS) [30] technique for the enumeration of
TFs and their possible binding combinations. We organized the enumeration in such a way
that the subtree can be traversed as far as possible. Figure 3 demonstrates trees for a case
of three TFs for a single operon. First, the branch with the first TF is traversed, and then
the same procedure is implemented for the second TF (except for the variants that were
accounted for in the first branch involving the first TF), and so on. Figure 3a shows the
complete tree for the three TFs, whereas in Figure 3b there are not two vertices, because
the sites of the second and third TFs overlap. The number of enumeration variations for
every operon depends on possible TFBS positions. During enumeration, the TFBS position
relative to a transcription start site is neglected; in other words, it is not important from
what TF enumeration begins: the results will be the same.
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Figure 3. DFS schemes where the solid arrows mark a direct traversal, and the dotted arrows mark
a reverse traversal: (a) all kinds of bindings for 3 TFs, whose TBFSs do not overlap; (b) all kinds of
bindings for 3 TFs with overlapping TF2 and TF3 binding sites.

For the mathematical models in question, Hill’s generalized functions were selected [27]
because they enable minimization of the description complexity of modeled processes in an
absence of detailed knowledge of their development. We used them to describe interactions
between TFs, which combinatorially regulate synthesis from operons. This type of function
enables us to take parameters into account, such as the effect of a particular TF, a group of
TFs, or to consider the activity of a TF, without further complicating the construction of the
mathematical formula.

Hill’s generalized functions are a kind of rational non-negative function which can
generally be expressed as:

h(x|x ∈ X) =
∑α δα ∏x∈Xα

(x/kα)
nα,x

1 + ∑α ∏x∈Xα
(x/kα)

nα,x , (1)

where kα is an efficiency coefficient that determines the generalized efficiency of the x ∈ Xα

factor group on a given process; nα,x is Hill’s coefficient describing the nonlinearity degree
of the effect of x on a process; and δα is an activity coefficient that determines a type of the
effect of x on a process. All the parameters in the equation are non-negative. Parameter
kα is dimensional, its dimensionality is consistent with x, and parameters nα,x and δα are
dimensionless values.

In 2.2 of [31], a formal description of the fractional functions of various regulators is
presented in more detail, including the TF.

3. Results
3.1. Algorithm Description

The idea behind the suggested algorithm is to account for all possible TF/binding
site interactions in an operon’s promotor region and to automate this procedure for every
operon in a genome In general, the algorithm is executed as follows such is presented on
the Figure 4:
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Figure 4. The execution scheme of the algorithm to generate regulation transcription models for
an operon, where ‘generated’ means TFs which can bind TFBSs simultaneously (cases I and II in
Figure 2) and ‘blocked’ means that they are incapable of doing so (cases III–VI in Figure 2).

For the purposes of discussion, the algorithm can be subdivided into the following steps:

1. Select an operon;
2. Set the abasal and V0 parameters;
3. Define the number of TFs. If it is one, generate a model; otherwise continue with step 4;
4. At TF ≥ 2, check if the binding sites intercross. If they do, neglect this option;

otherwise, a summand is generated;
5. Repeat step 4 for every TF defined;
6. Generate the general formula;
7. Return to step 1.

The number of TFs is directly determined from the transcriptional regulatory network,
which is fed into the input in text format. An example of such a file can be seen in
Supplementary File S1. Depending on how much of the bacterium in question has been
studied, different numbers may be known.

The general formula is generated as follows. First, for each TF, we generate a summand
for the numerator and then for the denominator, i.e., we expand the fraction:

Total equation = V0
abasal + num1(TF1) + num12(TF1, TF2) + . . .
1 + denum1(TF1) + denum12(TF1, TF2) + . . .

, (2)

where num1(TF1) and denum1(TF1) are summands of the numerator and denominator,
respectively. These summands are consistently generated for the TF1 during one iteration
of the algorithm. On the next iteration, the algorithm generates num12(TF1, TF2) then
denum12(TF1, TF2) for interactions TF1 and TF2, and so on.

3.2. Approbation

To demonstrate how the algorithm is executed, consider the operon of fabA E. coli
taken from RegulonDB (https://regulondb.ccg.unam.mx/index.jsp (accessed on 7 October

https://regulondb.ccg.unam.mx/index.jsp
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2022)). The operon’s description is given in Table 1. It has two TFs (FabR and FadR) whose
sites do not intercross.

Table 1. Transcription regulation of the fabA E. coli operon from RegulonDB where TFBSs mark the
absolute positions of binding sites in a genome.

Operon TF Function TFBS

fabA FabR Repressor 1,016,509 1,016,526
fabA FadR Activator 1,016,528 1,016,544

Theoretically, there are three binding options for this operon: FabR binds with a site
(Figure 5a); FadR binds with a site (Figure 5b); or they bind simultaneously (Figure 5c).
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At the first step, the abasal parameter determining the level of the operon’s constitutive
expression is set together with V0, the operon’s initial synthesis rate. Then, the TFBSs
are checked for overlapping. In our case, the binding sites did not intercross; thus, we
assumed that FabR and FadR could bind simultaneously. Then, we considered the first
case (Figure 5a), when just FabR affects the synthesis. In this case, FabR is attributed
parameters level1 and k1; then, the summand is generated first for the numerator:

num1 = level1

(
FabR1

k1

)n1

, (3a)

where level1 is a parameter to control a transcription activation level via FabR; k1 is the
efficiency constant of FabR’s effect on the transcription activation level; and n1 is Hill’s
coefficient to characterize the nonlinearity degree of FabR’s effect on the transcription
activation level.

Then, for the denominator, the corresponding summand is generated in the following
form:

denum1 =

(
FabR1

k1

)n1

, (3b)

Thus, the summands (3a) and (3b) as the parts of the Equation (3c) nominator and de-
nominator, respectively, form the result of the first iteration of the algorithm (2), describing
the regulation of FabR only.

V0

abasal + level1
(

FabR1
k1

)n1

1 +
(

FabR1
k1

)n1
, (3c)

Before considering the second case (Figure 5c), when FabR and FadR jointly affect the
operon, parameter w12, where index 1 describes the effect of FabR, index 2, describing that
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of FadR, is assigned. The summand is also generated first for the numerator like Equation
(4a), then for the denominator like Equation (4b).

num12 = level12·w12

(
FabR1

k1

)n12
(

FadR2

k2

)n21

, (4a)

where level12 is the parameter determining the level of joint FabR/FadR effect on the
transcription; k1,2 are the constants of FabR/FadR effect efficiency in relation to transcription
level; n12, n21 are Hill’s coefficients characterizing the nonlinearity degree of the FabR/FadR
effect; and w12 is a parameter responsible for the joint FabR/FadR effect.

denum12 = w12

(
FabR1

k1

)n12
(

FadR2

k2

)n21

, (4b)

As a result, after the second iteration, the following summand is generated:

V0

abasal + level1
(

FabR1
k1

)n1
+ level12·w12

(
FabR1

k1

)n12
(

FadR2
k2

)n21

1 +
(

FabR1
k1

)n1
+ w12

(
FabR1

k1

)n12
(

FadR2
k2

)n21
(4c)

The summands (4a) and (4b), as the parts of the Equation (4c) nominator and denom-
inator, respectively, describe the co-regulation of the operon of the two TFs: FabR and
FadR.

At the following iteration, parameters level2 and k2 are assigned to FadR (Figure 5b)
and the generated summands as (3a–3b). Thus, the general formula of operon fabA is
written as:

f = V0·
abasal + level1

(
FabR1

k1

)n1
+ q12

(
FabR1

k1

)n12
(

FadR2
k2

)n21
+ level2

(
FadR2

k2

)n2

1 +
(

FabR1
k1

)n1
+ w12

(
FabR1

k1

)n12
(

FadR2
k2

)n21
+

(
FadR2

k2

)n2
, (5)

where q12 = level12·w12 is used to reduce the formula’s arrangements, and the other
parameters remain the same.

Hence, the general formula to describe transcription regulation in operon fabA is
expressed as:

dx
dt

= f , (6)

where x is the mRNA concentration synthesized from operon fabA and f is derived from
Equation (5).

In order to demonstrate how the method works, we took the regulatory data of the
bacterium Pseudomonas aeruginosa PAO1 (GenBank: AE004091.2) from the Prodoric database
(https://www.prodoric.de/ (accessed on 7 October 2022)) [32]. For P. aeruginosa PAO1,
information is stored on 45 confirmed TRN (including sigma factor 54), which regulates
220 operons. In total, 220 frame models were generated using our algorithm, which can be
viewed in the Supplementary Materials (File S2 and Archive S1).

The considered algorithm was implemented as Operon_equations software written in
Java, which is available at github.com/tlakhova/Operon_equations. As input data, these
require a table-oriented file. Examples of the input and output files can be seen in the
Supplementary Materials (File S1, Archive S2 and Supplementary Note).

We also tested the program with different input data. For this, we used a personal
computer with the following characteristics: AMD FX-6330 Six-Core Processor, 16 GB RAM.

We considered how the computation time depends on the number of TFs that can bind
to their binding sites in a single operon. We also considered when TFs can overlap and
when they cannot. Detailed information is presented in Supplementary Table S1. Therefore,
we set the upper limit in the program for the number of TFs per operon to 15.

https://www.prodoric.de/
github.com/tlakhova/Operon_equations
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The software enables one to build the models based on the information about bio-
logically significant bacterial strains obtained from the Kurchatov Genomic Centre of the
Institute of Cytology Genetics, Novosibirsk, Russian Federation.

4. Discussion

This paper presents an algorithm for the generation of frame models describing genetic
regulation in bacteria. This solution is of high potential in terms of building a mathematical
frame model of transcription regulation at genomic scale for different kinds of bacteria,
including non-model ones. In the algorithm, one model describes transcription regulation
in a single operon, which provides a close view on its behavioral patterns and changes in
the metabolic pathways. The obtained model can be specified through the experimental
data found in dedicated databases and publications.

Understanding the contribution of the transcription factors in the regulation will open
an additional field of research for genetic engineers and biotechnologists when modifying
bacterial strains.

5. Patents

The program for automatic reconstruction of mathematical models of microbial gene
transcription regulation (MicroTranscriptMod). No 2022660245, 01.06.2022.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/math10234480/s1, The Supplementary Materials contain input
and output text files both test data and for P. aeruginosa PAO1. We explain what is in these files in
Note S1.
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