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Abstract: In recent years, deep learning has been successfully applied to medical image analysis
and provided assistance to medical professionals. Machine learning is being used to offer diagnosis
suggestions, identify regions of interest in images, or augment data to remove noise. Training models
for such tasks require a large amount of labeled data. It is often difficult to procure such data due
to the fact that these requires experts to manually label them, in addition to the privacy and legal
concerns that limiting their collection. Due to this, creating self-supervision learning methods and
domain-adaptation techniques dedicated to this domain is essential. This paper reviews concepts
from the field of deep learning and how they have been applied to medical image analysis. We also
review the current state of self-supervised learning methods and their applications to medical images.
In doing so, we will also present the resource ecosystem of researchers in this field, such as datasets,
evaluation methodologies, and benchmarks.

Keywords: deep learning; medical image analysis; self-supervised learning; diagnosis; brain cancer;
tuberculosis; Alzheimer’s disease
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1. Introduction

As humanity moves into the digital era in which digital technology becomes inte-
grated into every aspect of our lives, the medical field has been no exception. Powered
by the crossover of multiple emergent technologies such as big data processing, cloud
infrastructures, deep learning, and GPU computing, medical applications for machine
learning systems have enabled a lot of contributions from the scientific community.

In addition to the technological enablement of applying deep learning techniques
to the medical field, the fundamental need for such a direction has recently also become
very clear. With the Western world facing an aging population that requires additional
care, and as healthcare systems are becoming increasingly understaffed, we are faced with
the risk of overworked medical workers, which decreases the quality of treatments [1–3].
This is coupled with a non-stop increase in the cost of healthcare in our society [4] which,
if left unaddressed, will mean reduced access to medical care for low-income families.
Additionally, human specialists are fundamentally limited by factors such as subjectivity,
exhaustion, and high variance between experts, in addition the limits of the analytical
capabilities of our biological senses and brain. These factors constitute sufficient motivation
to conduct research into technology to automate and enhance healthcare services, from
reducing costs by replacing human processes with AI to increasing access by offering
automated services over the Internet. Deep learning systems can also improve the quality
of diagnosis and treatment, either by replacing human experts with AI which do not suffer
from exhaustion and which can be monitored for relevant metrics such as biases and
variance, or by helping doctors with tools to augment data, identify points of interest, and
suggest relevant known treatments to increase overall efficiency.

The current interest in these systems is driven by the scientific community and does
not appear to have experienced successful adoption among medical professionals. The
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number of papers applying deep learning to medical tasks has seen a drastic increase in
recent years, as can be seen in Figure 1, for the data obtained from Google Scholar using
the keyword “Deep learning in the medical field”. As analyzed by [5], the numbers of deep
learning publications found in the Springer database and the IEEE digital library for the
period 2006–2019 are shown in Figure 2.

Figure 1. Published manuscripts that use the deep learning approach in medical health informatics.

Figure 2. Publication analysis in Springer database and the IEEE digital library.

Despite the many contributions brought to the field, these approaches seem to be
experiencing a roadblock due to being used in the field. This can be caused by a multitude of
factors, but the main ones are the inherent lack of explainability of deep learning models [6]
which affects their accountability and makes these systems hard to trust for clinical use. This
is still a very active subject that is under constant research by the broader deep learning
research community, so while there are currently only limited tools to understand the
decision-making processes of neural network models, constant progress is being made in
this direction. The issue of trust and accountability will hopefully be addressed at some
point in the future. Another factor that might slow down the deployment of deep learning
systems is the great complexity of the two fields. Both deep learning and medical research
are very dynamic domains which are among the most active research fields at the moment.
The immense volume of contributions in the field leads to constantly changing states of the
art and best practices; while these help push the two fields independently, interdisciplinary
alignment becomes extremely difficult as researchers focused on both of them face the
difficult challenge of keeping their knowledge up to date.
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In this paper, we will approach the subject from the perspective of the computer
scientist. In Section 2, after introducing the concepts of machine learning and explaining
the difference between supervised, unsupervised, and self-supervised learning, we will
present a short description of artificial neural networks and the most relevant types of
neural network structures that are actively used. In Section 3, we will review the field of
self-supervised learning applied to computer vision. We will emphasizing the importance
of these methods for current and future research directions. We will describing the classes
of self-supervision algorithms, their benefits, and limitations. In Section 4, we will review
how deep learning has been applied to the field of medical imaging, and we will also
present how self-supervised learning methods in particular have been adapted and discuss
the elevated impact that work on these methods can have on medical image analysis tasks.
In addition to presenting the relevant concepts from this field, we will also present the
ecosystem of datasets, tools, and communities which should prove useful to prospective
researchers in deep learning medical image analysis. We hope that this will help improve
alignment between the two fields and reduce the aforementioned interdisciplinary friction
caused by the dynamic natures of these subjects. Section 5 will present an overview of the
ecosystem of working in this field, describing the hardware, tools, and datasets used in
this research.

2. Overview of Deep Learning Methods

In this section, we will attempt to provide a short introduction to the relevant types of
neural networks and architectures currently used in the deep learning research community.
While traditional machine learning algorithms can be and have been successfully used in
the medical field, we will keep our discussion focused on deep learning methods according
to the purpose of this work.

2.1. Machine Learning

Machine learning is a sub-field of artificial Intelligence, which studies ways to build
intelligent programs which do not require explicit programming and can learn dynamically
from the data it is given. Generally speaking, machine learning algorithms would be
classified as either being supervised or unsupervised. Supervised learning trains a model
by utilizing both the input data as well as a target label. The general purpose of supervised
learning is to teach the algorithm to output the associated label for a given sample. While
the labels themselves can take various forms from categorical and numerical values to
more complex structures such as segmentation maps or augmented images, supervised
learning is often thought of as learning an input–output function or relation by training on
examples of such pairs.

Unsupervised learning refers to algorithms that utilize data without using labels and
are generally used to analyze a set of data to discover patterns in it. The classic example
of an unsupervised algorithm is clustering, it uses the data to identify latent structures
in the data. One important nuance related to unsupervised learning is its relation to self-
supervised learning as the two classifications have often been confused. Self-supervision,
just like unsupervised models, only utilizes the input data, but they do so by automatically
constructing labels directly from the input. For example, using the input sample as the
label for the model. Recently, the understanding of the concept utilized by researchers
seems to move towards classifying self-supervision as a subset of supervised learning
since the fundamental model training mechanism is the same regardless of how the label
is constructed. Using self-supervision together with supervised learning has the benefit
of allowing the use of unlabeled data which is easier to obtain, and needed less labeled
samples to train a model. Prominent deep learning research figure Yann LeCun describes
it as:

I now call it “self-supervised learning” because “unsupervised” is both a loaded and
confusing term. In self-supervised learning, the system learns to predict part of its input
from other parts of its input. In other words, a portion of the input is used as a supervisory
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signal to a predictor fed with the remaining portion of the input. Self-supervised learning
uses way more supervisory signals than supervised learning, and enormously more than
reinforcement learning. That is why calling it “unsupervised” is misleading.

2.2. Artificial Neural Networks

Artificial neural networks (ANN) are a type of machine learning algorithm that try
to imitate the biological structure of how neurons function. The majority of ANN models
are trained in a supervised or self-supervised manner, while the specific exceptions of
unsupervised learning such as self-organizing maps [7] or growing neural gas networks [8]
do exist. In the literature, some self-supervised models are sometimes referred to as
unsupervised, although our current understanding of the concepts would consider that to
be incorrect.

A neural network is composed of neurons whilst a neuron is composed of its parame-
ters in the form of weights and biases together with an activation function, as can be seen in
Figure 3. The neuron receives one or more inputs and calculates the output as σ(wTx + b),
where σ is the activation function, usually a non-linear function such as the sigmoid or
tanh functions, w is the set of weights, b is the set of biases that the neuron learns, and x is
the input data for the neuron. The output of a neuron is also referred to as the activation.

x2 w2 Σ f

Activate
function

y
Output

x1 w1

x3 w3

Weights

Bias
b

Inputs

Figure 3. Neuron structure.

Multiple neurons together are referred to as a layer. Stacking multiple neural layers
forms the traditional multi-layered perceptron (MLP) where the output of the previous
layer of neurons constitutes the input for the next layer, as can be seen in Figure 4.

These models are trained by means of gradient descent coupled with backpropagation,
For this, the loss for a given sample and its label is calculated by comparing the output
of the model with the expected label. The loss function indicates the performance of the
network and using gradient descent, the weights of the model are optimized to reduce
its value. The training process iterates through a dataset in a series of batches of samples,
updating the parameters at each step. Repeating this process makes the model learn to
predict the correct label for a given sample since it has been trained to generate an output
similar to the expected target.

Deep neural networks, networks that stack many layers have historically been hard to
train. The first successful approach to training such a model was achieved by pretraining
the model layer by layer or by carefully engineering the model architecture such that it
does not lead to exploding or vanishing gradients [9].

Training deeper models has been enabled by the appearance of residual neural net-
works [10]. Through the use of residual connections, neural network modules did not have
to learn to “carry” the input along the forward pass since the input would be carried by the
skip connection. As a consequence, this allows gradient back-propagation on much deeper
networks without vanishing, since it can flow through the residual connection, as shown in
Figure 5.
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Figure 4. Multilayered perceptron.

Figure 5. Residual block. Source, accessed on 22 September 2022 : https://miro.medium.com/max/713/
1*D0F3UitQ2l5Q0Ak-tjEdJg.png.

The main classes of neural network architectures which have appeared over the years
are recurrent neural networks (RNNs), convolutional neural networks (CNNs), and the
recent attention/transformer-based models. They each have different characteristics which
lead them to specific use-cases, although researchers have adapted them to be used in
various unexpected tasks. For example, even if CNNs were developed to be used on image
datasets, they have also been successfully used for natural language processing (NLP)
tasks [11].

2.3. Recurrent Neural Networks

Recurrent neural networks were developed to capture temporal relations in the data.
RNNs use their internal state (memory) to process the variable-length sequences of inputs
such as time series data or sequences of words in a sentence. They do this by adding
recurrent connections to neuron cells, using the same cell to process incoming sequential
data, an example unrolling from the calculation made by an RNN cell processing a sequence
of of inputs (x0, x1, . . . xt), as shown in Figure 6. Their main purpose was to process NLP
and time-series data.

https://miro.medium.com/max/713/1*D0F3UitQ2l5Q0Ak-tjEdJg.png
https://miro.medium.com/max/713/1*D0F3UitQ2l5Q0Ak-tjEdJg.png
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Figure 6. Recurrent neural structure.

The most popular approach was introduced by [12] known as long short-term memory
(LSTM). While effective at mitigating the gradient vanishing problem, its complex structure
(Figure 7) and the fact that it requires iterative calculations made it hard to use in scaled-up
models which are trained on large datasets.

σ σ Tanh σ
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ht
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Figure 7. LSTM cell.

2.4. Convolutional Neural Networks

Convolutional networks have been developed to model visual data. Fully connected
neural networks have to learn the potential appearance of a pattern in the data for each
possible position in an image. The convolutional mechanism uses the same weights to
analyze an entire feature map, making the algorithm detect features in data wherever they
are present in the image (Figure 8). Because of this translation invariance, convolutional
neural networks do not require as many parameters to learn data, and as such, are less
prone to overfitting. Another big advantage of convolutional networks over fully connected
ones is the fact that the size of the input data does not matter anymore, as they can use the
same number of weights for different images and the model will still be able to detect the
relevant features.

Due to the shared-weights architecture, CNNs can extract a lot more features with
the same number of weights as a fully connected network. This, combined with residual
connections, has enabled CNNs to be scaled up without suffering from gradient vanishing
problems or overfitting. There are successful implementations that use tens of millions of
parameters without overfitting (Figure 9).
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Figure 8. Illustration of a convolutional layer.
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Figure 9. Model size plotted against Imagenet accuracy showing improved parameter efficiency [13].

CNNs have been a primary focus of deep learning researchers for multiple years now;
as such, there have been many contributions that improve their performance or adapt them
to various tasks. Models have tended to become deeper while utilizing smaller convolu-
tional kernels. This trade-off has enabled to maintain the same number of parameters while
allowing the model to capture more complex non-linear relations in the data. The smaller
memory footprint and lower computing costs have also enabled the usage of CNNs on
mobile devices. There are typically three types of CNNs used:

1. Classification models use convolutional layers to extract higher-level features, after
which a linear layer is used to classify a given sample using these higher-level features
into categorical labels;

2. Segmentation models are generally fully convolutional networks, which do not use
any fully connected layers. The final layer of the model outputs a pixel label for each
input pixel;

3. Generative models are similar to segmentation models in the sense that they generally
output a value for each input pixel. The difference is that they do not output a label
for the pixel but a value that is from the input domain space. These models are used
to either generate novel data that resemble real-world images or to augment a given
input sample, e.g., to by improving the clarity of details ([14]) or by enlarging regions
of interest in the input image.
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CNN architectures have been used to great success for both the natural world and
medical imaging but have also seen use in NLP tasks due to their great parameter efficiency.

2.5. Attention-Based Models

While convolutional neural networks are still the main architecture used for imaging
tasks, attention-based models have become the method of choice in the NLP field. Initially
introduced in their current form with the transformer model [15], transformers have some
important characteristics which have enabled their success. Transformer models utilize
an attention mechanism that essentially makes decisions for each input by dynamically
looking at all the other inputs to determine the context. The self-attention mechanism has
great applicability in sequenced data due to the fact that it is able to capture the context
while analyzing each part of the sequence, as shown in Figure 10.

Figure 10. Self-attention mechanism. Source, accessed on 18 September 2022: https://miro.medium.
com/max/3000/1*_92bnsMJy8Bl539G4v93yg.gif.

Fully connected layers or convolutional layers will always combine the input values
in the same way, aggregating the signals similarly even when the input differs. However,
by using self-attention, the way input signals are aggregated is determined dynamically
when forward propagating by looking at all the input sequences.

This increase in context understanding comes with a high increase in computing require-
ments, which becomes clear when analyzing how attention is calculated: Attention(Q, K, V) =

so f tmax(QKT√
dk
)V. The Q, K, V, vectors (query, key, value in Figure 10, respectively) are

obtained by passing the input thought separate linear layers, usually noted as WQ, WK, WV .
The dk term represents the size of the vectors, which is used to scale the dot product such
that the resulting score ensures that the properties of Q and K have a mean of 0 and a
variance of 1. The use of the scaled dot-product makes the computation intractable for
a large number of keys and queries. This issue is being actively researched and several
proposals of how to approximate the attention mechanism in an efficient manner have been
proposed, such as [16,17].

Attention-based models have seen great success when used in language models. This
is performed by feeding a sequence to the model and asking it to output the most likely
value to follow in the sequence. By doing this, the model can be trained in a self-supervised
manner since labeled data are not required. For NLP tasks, this has enabled the creation of
gigantic models since they are able to utilize any natural language text available, such as
Wikipedia data, books, news, etc., without having to manually craft labels for these vast
volumes of samples. One such recent example is OpenAI’s GPT-3 model [18], which with
careful engineering, was able to successfully fit a 175 billion parameter model.

https://miro.medium.com/max/3000/1*_92bnsMJy8Bl539G4v93yg.gif
https://miro.medium.com/max/3000/1*_92bnsMJy8Bl539G4v93yg.gif
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A more interesting recent development in the last two years was the discovery that
attention models can be successfully applied to non-sequence data such as images. They
have been successfully used for image classification and segmentation as well as object
detection, with these models becoming the new state of the art for not only NLP but also
computer vision [19–22]. As transformers have almost completely replaced LSTM for NLP,
it would appear that attention mechanisms are going to replace CNNs for computer vision
tasks as well. The current limitation is the fact that images are composited of many pixels
and this high number of inputs to the network makes traditional attention approaches
intractable from both a computing perspective as well as from a memory requirement
perspective; however, many new contributions have proposed solutions to these issues.

3. Self-Supervised Learning for Computer Vision
3.1. Motivation

Humanity as a whole is increasingly collecting more data and types of data into ever-
growing digital archives. These include anything from images, videos, music, and books to in-
app user behavior, biometrics, environmental data, and more. This process has been constantly
accelerating as the costs of computing and storage hardware have enabled companies and
governments to feasibly gather all these data and extract their economic value.

In parallel with the aforementioned big data push, CNNs have been enabled by
innovations in both algorithms and GPU hardware. These two technologies have worked
together to produce drastic improvements in many applications, from recommender sys-
tems, fraud detection, and malware detection to chatbots, creative, textual and visual tools,
design, and more.

While these developments have taken place fairly recently, achieved by using DL ar-
chitectures and methods which can better leverage more computing power (e.g., transform-
ers [15,20]) and larger datasets, naively training a model to perform a task in a supervised
manner has a fundamental problem limiting further performance improvements. While
computing and storage can and is scalable with technological improvements and economic
capital, quality data labeling is limited by human capital. This issue was not a problem at
the beginning since the amount of data needed to be labeled was manageable and increased
dataset sizes could be matched by adding more human labelers.

As discussed earlier, the rate of data collection seems to be constantly accelerating and
the types of data collected becoming more specific, requiring specialists to correctly label
them (e.g., medical, biometric, driving). This appears to be a limiting factor since, arguably,
human labeling cannot be scaled to the same degree as data collection. In order to push
forward the state of the art in deep learning applications, we will have to develop methods
that enable models to extract useful information from data without supervision.

It is important to note that, extrapolating current technological improvements and
data gathering trends into the future, the percentage of unlabeled compared to labeled data
we have access to will only continue to increase. It is arguably the case that the importance
of developing and improving unsupervised and self-supervised methods will be the main
driving factor for improvement in the field of machine learning going forward.

3.2. General Computer Vision Methods

In this section, we will present an overview of the types of self-supervised techniques
for computer vision that exist and successful examples of them in the literature. We will
also present what attempts have been made to apply SSL to medical data.

As a general description, SSL is at the intersection between supervised learning and
unsupervised learning. Particularly, SSL does not use labeled data or learn from then, but
it does train using “pretext” tasks in a supervised manner. Pretext tasks are tasks that
generate their own labels from the data, and these labels are referred to as pseudo-labels.

Self-supervised learning is primarily focused on the designing, training process, and
pretext tasks which would force the model to learn general features from the data. Despite
several types of such methods existing, the main fundamental issue they need to address is
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model collapse to trivial constant solutions. This problem arises in self-supervision since
the labels that are used are generated by our algorithm, which does not necessarily reflect a
meaningful classification in the sample domain.

The taxonomy of how different methods are classified is not completely settled in the
literature, which has led to some works often having contradicting descriptions. Despite
this confusion, we will try to separate and define the different types of self-supervised
methods by what would be the most useful differentiation, which we consider to be the
way each technique constructs pseudo-labels from the input data. We will not be describing
every individual method in the literature but we will be exemplifying the underlying
mechanism that makes the same class of methods work.

3.2.1. Predictive Methods

As among the first self-supervised methods to be successfully applied to computer
vision, predictive methods work by constructing a classification or regression pretext task.

CNN Exemplar [23] is one of the earlier proposed methods of this type. This method
works by choosing a small number of samples from the dataset and generating multiple
transformations of these samples. Each sample from this augmented dataset will have the
index of the original sample it was constructed from as a label, as can be seen in Figure 11.
Afterward, a model is trained on this artificially constructed image classification problem.

Figure 11. Example of CNN exemplar pseudo-labels (DOI: 10.7717/peerjcs.1045/fig-4).

The most widespread type of predictive methods are different types of geometric
transformation predictions.

In a practical sense, geometric transformation predictive methods usually alter the
input sample in some way such as rotations, shuffling, contrast, etc. and the task of the
model is to predict what transformation has occurred. The most widespread method is
known as Jigsaw [24].

Jigsaw work, by dividing the input images into patches, usually a 3-by-3 grid, gen-
erates a permutation of these patches to generate a scrambled image. The model’s task
is to predict which permutation was applied to the original image, which is represented
as a classification task where the label is the index of the permutation in the collection, as
seen in Figure 12. There are several limitations, such as the fact that there are too many
possible permutations, requiring a method to select a subset of them to work with, but
this introduces a new problem of selecting “good” permutations. A similar method that
inspired the jigsaw is predicting the relative position [25], for a given anchor and sample
patch from an image, as the model has to predict where the sample patch is positioned
relative to the anchor.

Another example of a predictive method is rotation prediction [26], which follows
the same logic of predicting which transformation a sample suffered, but in this case, the
transformations are different rotation angles.
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Figure 12. Example of Jigsaw pretext task (DOI: 10.7717/peerjcs.1045/fig-5).

3.2.2. Generative Methods

Generative methods are methods that work by asking the model to generate credible
artificial data points. There is an increased amount of interest in these methods from the
general public due to their applications in AI art generation. One recent work capable of
generating images, which has been made easily available, has been Stable Diffusion [27].
This model was extensively trained by Stability AI and pretrained versions have been made
available under an open source license. This has led to many extensions and improvements
of the implementation and the model is now capable of generating very high-quality images
on consumer-grade GPUs, examples of which can be seen in Figure 13.

Figure 13. Example of Stable Diffusion outputs.

Autoencoders are among the simplest and most flexible types of generative methods
for images which have been widely used in the field of natural language processing (NLP),
and they have been put to work in many forms ([28–30]). They work by training a model
to replicate the input samples in its output neurons. A naive implementation of such a
model might lead to model collapse since the model could simply pass the unaltered input
all the way through to the output. To combat this, a bottleneck can be applied in the deep
model at one of its hidden layers, to reduce the number of neurons to be significantly less
than the preceding and following layers, forcing it to learn meaningful features or at the
very least, compress the input domain in a denser latent space. They can also be trained to
generate new data points from random noise with variational autoencoders (VAEs), which
instead of encoding a compressed embedding, the encoding is represented as a mean and
the covariance matrices of a Gaussian process. By doing this, the encoding can be sampled
for data which can be decoded to obtain novel generated content.

Another way to avoid trivial constant solutions is to also transform the input. Tasks
such as super-resolution, low-light enhancement, or artifact correction could be used
for this. Specifically, for super-resolution, the input image is down-scaled to reduce its
resolution, asking the model to reproduce the original quality image, similarly for low-light
enhancement and artifact correction, the brightness of the image is reduced, or randomly
generated artifacts are introduced, training the model to return the input to its original
state. Another powerful example of such a task is pixel masking, which can be done by
randomly deleting or masking parts of an image, the model having the original image as
its target [22].

Inspired by NLP, the method Autoregressive Next Pixel Generation [22] was adapted
from language models. This works by sequentially asking the model to predict the next
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pixel or patch of pixels in a sequence, as can be seen in Figure 14. A 2D image would first
be flattened and then formed into a sequence of patches or individual pixels. The current
sequence of pixels is passed through the model and the target of the task is to predict the
next pixel or patch in the sequence. Since the next pixel in the original image is known, it
will be used as the pseudo-label. Both pixel masking and autoregressive generation can be
seen in Figure 15.

Figure 14. Example of Autoregressive Generation, Image GPT.

Figure 15. Image GPT Architecture.

Lastly, potentially the most widely adopted generative self-supervised method, is
that of Generative Adversarial Networks (GANs) [31]. These models are composed of
a generator, which takes random noise (or trained latent scrambled with random noise)
and produce an artificial sample and a discriminator which has to detect whether a given
sample is real or generated; the generic GAN architecture can be seen in Figure 16. Despite
being the most structurally complex of the generative methods, GANs have seen much
more use from both the academic and general public.

Figure 16. GAN architecture, accessed on 22 September 2022: http://www.kdnuggets.com/2017/0
1/generative-adversarial-networks-hot-topic-machine-learning.html.

http://www.kdnuggets.com/2017/01/generative-adversarial-networks-hot-topic-machine-learning.html
http://www.kdnuggets.com/2017/01/generative-adversarial-networks-hot-topic-machine-learning.html
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3.2.3. Contrastive Methods

Contrastive methods are a more recent development, they are constructed using joint
embedding architectures. Training is performed by constructing two different augmenta-
tions of images together with other samples and passing them separately through Siamese
networks. The output two embeddings are then used to calculate a contrastive loss, which
penalizes the distance output embeddings of transformations from the same original data
point, called positive sample pairs, while pushing away output embeddings that originated
from different samples, named negative sample pairs.

The main issue facing contrastive methods is the need for quality-contrastive negative
pairs, since negative pairs are made to lead to distant embeddings, an issue that arises with
the fact that oftentimes, images, while different, are very similar. Especially since labels are
not used, the method will similarly distance semantically identical images to pairs of images
that are completely different. For example, two pictures of the same breed of dog will have
the same contrastive loss as one picture of a dog and one of an airplane. To counteract this,
contrastive methods usually have to use very large batch sizes to minimize the impact of
these “noisy” contrastive pairs or additional creative ways of identifying quality negative
samples need to be used.

While different proposed methods vary greatly in the exact formulation of the loss
used and different tricks of sampling pairs, they will mostly follow a similar structure
as SimCLR [32], as can be seen in Figure 17. The loss used is usually the InfoNCE [33]
where NCE stands for noise-contrastive estimation. The loss is essentially the multi-
class cross-entropy between the matrix product of the two augmented batches of samples
(batcha · T(batchb)) and the identity matrix, where a and b are different transformations
applied to the input. The batch is of shape (batch size x output embedding size). The
diagonal of the matrix shows the positive pairs while the rest of the matrix shows the scores
for the negative samples.

Figure 17. SimCLR Architecture (https://sthalles.github.io/simple-self-supervised-learning/), ac-
cessed on 15 September 2022.

3.2.4. Clustering Methods

While contrastive methods effectively treat each sample having a distinct label, clus-
tering methods first group samples into clusters before calculating the contrastive losses
of positive and negative pairs. These methods decrease the need for large batch sizes to
address the negative sample issue, however, a similarity metric between samples will have
to be defined and clusters have to be formed before the model can be trained.

These methods tend to be hard to scale due to the additional overhead required
by clustering and while they do reduce the impact that noisy negative samples have on
training, it is essentially still a contrastive method but instead of sample pair comparisons,
they will be done at the level of clusters.

https://sthalles.github.io/simple-self-supervised-learning/
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3.2.5. Distillation Methods

Distillation methods started to appear in 2020 and have since taken over as the main
self-supervised learning method of choice. These are heavily based on using dual path
networks, each receiving a different view or transformation of the same input batch, similar
to contrastive methods. Where distillations differ is that they do not require negative pairs
for their loss function. Normally, this would lead to collapse, but BYOL [34], DINO [35],
SimSiam [36] and variants work around this by doing architectural tricks borrowed from
knowledge distillation.

While some details differ, distillation methods use a student and a teacher model
which has the same architecture as the student but its weights are calculated as the running
average of the student weights; the teacher also usually does not have gradients propagated
to it. For reference, the BYOL architecture in Figure 18 shows that the gradients are not
propagated in the teacher, by the symbol sg meaning “stop-gradient”. The use of different
weights in the two models is exemplified by θ representing the student weights, and ξ
which is the exponential moving average of θ.

Figure 18. BYOL architecture (https://paperswithcode.com/paper/bootstrap-your-own-latent-a-
new-approach-to-1), accessed on 15 September 2022.

The pretext task for these methods is to predict the output embedding (or class distri-
bution in the case of DINO) of the teacher model, as similarity loss is usually minimized.
Since negative pairs do not need to be explicitly treated, smaller batch sizes can be used, and
the calculations of the losses are simpler. There is no clear understanding in the literature
of why distillation models do not suffer from collapse.

3.2.6. Information Maximization Methods

More recently, a new class of SSL methods has appeared in the literature. These
methods can be classified as information-maximization methods, among which there are
currently only three well-known examples. Two of these originated from Meta AI, Yann
LeCun being a co-author in both, namely Barlow’s Twins [37] and VICReg [38].

These methods are currently the state-of-the-art in SSL. They manage to not require
a negative contrastive pair of samples but do not have to resort to knowledge distillation
tricks to avoid collapse, as they manage this by very simple changes in how they calculate
the loss. The simplicity of these methods in addition to their higher training stability, fewer
hyper-parameters, and use of a single model renders them very attractive.

Looking at Barlow’s Twins in particular, the architecture of which can be seen in
Figure 19, the pretext task is simply that the cross-correlation matrix of the two views needs
to be the identity matrix. The loss function, LBT , is:

LBT , ∑
i
(1− Cii)

2

︸ ︷︷ ︸
invariance term

+ λ ∑
i

∑
j 6=i
Cij

2

︸ ︷︷ ︸
redundancy reduction term

(1)

https://paperswithcode.com/paper/bootstrap-your-own-latent-a-new-approach-to-1
https://paperswithcode.com/paper/bootstrap-your-own-latent-a-new-approach-to-1
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where λ is a trade-off variable between the first and second terms of the loss, and C is the
cross-correlation matrix.

Figure 19. Barlow’s Twins Architecture (https://sh-tsang.medium.com/review-barlow-twins-self-
supervised-learning-via-redundancy-reduction-967769fafc1), accessed on 15 September 2022.

4. Deep Learning Approaches in Medical Imaging

Deep learning has been successfully applied to medical image analysis to help medical
professionals in recent years. Machine learning is being used to offer diagnosis suggestions,
identifying regions of interest in images, or augmenting data to remove noise and improve
results. In this section, we will present an overview of deep learning medical imaging
analysis research.

The common issue that various medical image analysis tasks have is the small volume
of data available. Compared to natural image datasets such as ImageNet ([39]) which
has over one million samples or even smaller benchmarks such as CIFAR-10/100 which
has tens of thousands, medical datasets tend to be on the scale of a few hundred samples.
Coupled with the fact that medical images such as CT-scans or MRIs have much greater
resolutions compared to classic benchmarks and are also 3D, this makes fitting models for
such tasks difficult. This high dimensionality of the input alone makes models extremely
prone to overfitting and this effect be cannot easily counteracted by acquiring more training
data. This problem of small datasets has multiple sources from the legal constraints of
data collection and usage to the higher cost of acquisition due to the need for specialized
equipment and trained experts to not only obtain the raw data but to also correctly label
them. Because of this, methods that manage to increase parameter efficiency and extract
more relevant information using fewer parameters seem to perform best.

4.1. Classification

One of the first obvious applications for deep learning in this field is that of classi-
fication tasks. Classification is meant to either replace human decision making or at the
very least offer a second “opinion” on given data. The classic example of this would be to
classify whether, for a given MRI or CT scan, there is a disease present. This type of task
can also be modeled to output the level of severity if the disease is present. One such task
would be the ImageCLEF Tuberculosis workshop ([40]) (sample slice in Figure 20). Since
the diagnosis of a disease is one of the fundamental activities in the field of medicine, deep
learning has a wide array of potential applications here since it can theoretically be applied
to analyze any diseases doctors have to process today.

As mentioned previously, parameter-efficient models such as Google’s Inception v3
model would seem to perform best in this data-starved environment. They have already
been shown to achieve human expert performance in skin-cancer classification ([41]).
Another technique used to help with overfitting is pretraining: by initially training our
model on other tasks, generally on a big natural images dataset, and then only fine-tuning

https://sh-tsang.medium.com/review-barlow-twins-self-supervised-learning-via-redundancy-reduction-967769fafc1
https://sh-tsang.medium.com/review-barlow-twins-self-supervised-learning-via-redundancy-reduction-967769fafc1
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the model on the smaller medical data, researchers were able to counter overfitting due to
the regularization effect that pretraining seems to offer.

Figure 20. Lung CT scan slice. Source, accessed on 22 September 2022: https://www.imageclef.org/
system/files/CTTBT_T5_flipped.png.

As identified by [42], the medical imaging research community has been following
the general trends and methodologies developed by the general computer vision field.
The initial works in the field utilized deep Boltzmann machines (DBMs) on tasks such as
classifying Alzheimer’s disease based on brain magnetic resonance imaging (MRI) ([43]).
DBMs use probabilistic variables connected in an undirected model, which are used to
learn the representations of the input data by learning to maximize the log-likelihood of
the data. This allows for unlabeled pretraining, however, these models are slow for both
training and inference, limiting their uses.

Currently, the main architecture of choice for working on brain MRI, retinal imaging,
and lung computed tomography (CT) is convolutional neural networks. Advancements
in both GPU hardware and distributed cloud computing have also enabled new types of
architectures to be employed, such as those using 3D convolutional layers which, despite
requiring a lot of VRAM, produce greater results on the majority of medical imaging tasks
which are themselves usually 3D images ([44,45]).

4.2. Segmentation

The task of segmentation is typically defined as identifying the set of voxels that either
make up the contour or the interior of the object(s) of interest. Segmentation tasks in medi-
cal tasks have received great attention from the research community; successfully solving
this task can help doctors directly by helping identify regions of interest faster in large 3D
scans, but can also serve as a preprocessing tool for classification models. Training classifi-
cation models directly on sections of data that have relevant information can help training
converge towards better results; as such, classification datasets are usually pre-processed
by extracting only the regions or organs that are relevant to look at using segmentation.

https://www.imageclef.org/system/files/CTTBT_T5_flipped.png
https://www.imageclef.org/system/files/CTTBT_T5_flipped.png
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Due to this increased interest in segmentation tasks, this field has seen the development
of unique architectures which do not just replicate natural imaging models. The most
popular and successful such architecture is the U-Net ([46]). This method leverages the use
of the same feature maps used to extract higher-level features to also be used at the final
image recreation steps by simply transmitting the signal directly to the decoder layers, as
can be seen in Figure 21. Due to the better utilization of their parameters since being reused,
U-Nets usually perform better than other segmentation architectures in scenarios where
the dataset is small. Multiple approaches have managed to adapt U-Nets to work with
3D data such as [47,48]. Medical imaging has an interesting research advantage of being
able to develop unique methodologies for the challenges faced in the field as well as great
appropriate contributions from the wider computer vision community; one such example
would be DRU-Net ([49]), which expanded the U-Net approach by using convolutional
blocks inspired from ResNet ([10]) and DenseNet ([50]). Currently, the state of the art
on multiple image segmentation tasks uses U-Net variants or networks which used the
principles which make them work. Currently, these models are the U-Net++ ([51]) and,
more recently, the MSRF-Net ([52]) architecture.
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Figure 21. U-Net architecture [46].

Another interesting recent development has been the adoption of an attention mechanism
in medical image segmentation such as the AttnU-Net ([53]). These models very recently
became the new state of the art (SOTA) for many datasets; some simply swapped out compo-
nents in existing architectures for transformers, and others managed to obtain SOTA with pure
transformers, such as Swin-Unet ([54]) and UNETR ([55]). If we are to follow the recent trends
in natural image analysis, attention architectures are likely to become new to the state of the
art in medical imaging as well. The advantage of capturing long-range feature dependencies
will likely be that of a utilized even mode in medical applications, due to the higher resolution
and additional volumetric dimension of the images.

4.3. Image Retrieval

A very important task for aiding medical professionals that have seen the applications
of deep learning has been content-based image retrieval (CBIR). This is a technique for
knowledge discovery in massive databases and offers the possibility to identify similar case
histories, understand rare disorders, and ultimately, improve patient care in both speed
and quality. The current methodologies are using pretrained CNNs from natural imaging
which are fine-tuned on medical datasets ([56,57]).
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4.4. Image Enhancement

Image enhancement has been used as a pre-processing technique to help both human
experts as well as other AI systems. While initial approaches used rule-based simple
transformations to clean up the data or to make important details clearer, this field has
seen some interest from the deep learning community. Examples are regular and bone-
suppressed X-ray ([58]), generating PET from MRI ([59]), and they have even been used
to reconstruct faulty or damaged scans ([59]). Other important applications consist of
the classic computer vision task of super-resolution which takes lower resolution inputs
and upscales them while keeping image clarity [60]. The same methods can be used for
denoising or intensity voxel normalization. Usually, CNN architectures are pretrained and
adopted for these tasks although for some of them, specific medical architectures such as
U-Net have been used successfully as well.

4.5. Self-Supervised Learning for Medical Imaging

The medical field has also seen research into applying machine learning to perform
various tasks:

• Classification—[40,41,43–45];
• Segmentation—[46,51,52,55];
• Image retrieval—[56,57];
• Image enhancement—[58–60].

The usual characteristic of medical datasets sustains the case for researching self-
supervised learning specifically for medical image analysis. Firstly, the scale of labeled
datasets is little in comparison to what the general computer vision field is working with
currently, such as ImageNet21K, Google’s JFT-300M, or Meta’s IG-3.5B-17k datasets. This
discrepancy between the fields is expected as the volume of medical imaging is smaller
and the number of qualified specialists who can label and compile these kinds of datasets
is drastically lower.

Another factor to consider is that medical images tend to be very large and contain
fine details; intuitively, it is plausible that a medical image would contain more information
in it than a comparable general image. If this is the case, SSL has the potential to learn more
from the sample itself.

Finally, medical datasets generally have more overlap between them even if designed
for different tasks. For example, a brain MRI dataset of healthy and Alzheimer disease
patients will share a lot of the general features and information as a brain MRI dataset of
brain cancer patients. If performing classification for the two diseases is desired using only
supervised learning, this would require the training of two different models separately on
each dataset. Self-supervision brings a great benefit, allowing the pretraining of a single
model using both datasets, hopefully learning more general features which should lead
to better downstream task performance. This overlap of information between datasets,
even if designed for different tasks, can even be expanded to the datasets of scans in
different modalities, but which reference the same organ. For example, a brain CT, brain
X-ray, brain MRI, and brain PET all capture different properties (structural, compositional,
functional) and represent a different modality, but they will all have shared information
due to the fact that the underlying organ being scanned is the same. Potentially, even
modality information across different organs, e.g., the X-rays of both chest and bones, could
be captured by SSL methods, for which it would not be possible to design a supervised
task to do the same.

All the SSL methods described in the general computer vision section could be ap-
plied to medical images with little to no alterations; however, the field has only recently
started applying them in this context. We suspect the limiting factor explaining why these
methods have not seen the same degree of adoption for medical images, is the fact that
self-supervised learning generally requires a lot more data to train. The luxury of having
large amounts of additional unlabeled data in general computer vision contexts is not
common for medical images. Another potential reason is the fact that medical images are
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generally more sensitive to aggressive augmentations since small details are of greater
importance. Having fewer data to work with, while also having to limit the scale and
number of data augmentations used, probably lead to SSL methods not being an ideal
choice to employ.

There are a few specializations of the methods described above which have shown potential.

4.5.1. Predictive Methods

Since they were also the earliest self-supervised methods in general computer vision,
predictive methods seem to have been experimented with the most in the medical domain.

The Jigsaw method has inspired several medical versions; in [61], the authors proposed
a slice ordering task, the model received two slices, and the model has to predict which one
is positioned above the other. Another Jigsaw extension was the 3D Jigsaw [62], which is
similar to the original Jigsaw task, just that the patches are now 3D. Still inspired by Jigsaw
but, with a more novel approach, Rubik’s Cube [63], is a method of breaking the image
into multiple small 3D patches, shuffling and rotating them, and the model has the task of
trying to reconstruct the original image, having to predict both which rotations and what
ordering the patches are in.

Other works leverage the standardized structure of medical scans by creating the tasks
of predicting distances between random patches, slice positions from scans, etc.

Predictive methods are simple, easy to train, and can beat models which are only trained
using supervision; however, they do not performing as well as other types of methods.

4.5.2. Generative Methods

Since there is no interest in medical image “art”, generative methods for medical
images have mostly focused on color correction, artifact correction, and super-resolution
tasks ([64–67]). Generative methods seem to have been successful in these reconstruction
tasks. There are multiple variations in how they construct the loss and the label but the
fundamental mechanism remains unchanged from the general computer vision ones.

A more substantial novel contribution origination from the medical field is the use of
multiple image modalities for generative models. Since some pathologies require multiple
types of scans, some works propose the task of restoring one modality from another [68],
or to extract some information from one modality and use it to create pseudo-labels for
training on the other modality [69].

4.5.3. Contrastive Methods

SimCLR and MoCo have been applied to medical tasks and achieved good perfor-
mance. However, not many domain-specific adaptations have been made. An interesting
contribution has been to use slice “regions” as positive samples [70] since the medical
images of the same organ tend to be very similar structurally between patients. Another
interesting idea comes from a SimCLR-inspired framework [71], where they showed that
you can construct positive samples using patient metadata, such as treating multiple scans
from the same patient as positive samples.

4.5.4. Distillation Methods

Inspired by BYOL, prior-guided local (PGL) [72] learns spatial and regional consis-
tencies by looking at the differences in the latent space features of two views of the same
image. This manages to maintain the high level of detail present in medical images. Their
method works by generating the two views from doing random 3D crops and storing the
information concerning where the crops took place. They used the location wherein the
two views overlap to estimate where the embedding feature volumes would overlap and
will only calculate a positive pair of contrastive loss between the overlapping sections. See
Figure 22.
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Figure 22. PGL Architecture.

Results show this BYOL adaptation reaches state-of-the-art performance on several
benchmarks.

4.5.5. Information Maximization Methods

We have not found any reference in the literature to the use of information-maximization
methods to date, but judging from how the other SSL methods have performed on medical
tasks, we expect them to be able to push the state of the art.

5. Ecosystem
5.1. Hardware

On the hardware side of things, there has been great generation by generation leaps
in CUDA computing capabilities: the new Nvidia RTX 3090 GPU features 10,496 CUDA
cores compared to the previous generation’s 2080 Ti card’s 4352 CUDA cores. The new
card even runs at higher clock speeds with a 1395 MHz base clock and a 1695 MHz
boost compared to the 1350 MHz base and 1635 MHz boost of the RTX 2080 Ti. For deep
learning in particular, specialized hardware must be included such as the tensor cores
for FP16 computing capabilities. Both Google’s TPUs and Nvidias newer cards have
included hardware capabilities for new data types developed specifically for deep learning
workflows such as brain floating point (bfloat16) or TensorFloat-32 (TF32), which maintain
the practical accuracy and numeric stability required by deep learning while reducing the
memory requirements to almost half.

One problem that the hardware space faces, and which can be seen to taking place,
is the fact that Nvidia currently holds a monopoly on deep learning hardware. Although
AMD, and more recently Intel, are also developing GPU, they lack the already adopted
CUDA software integration and R&D capital expenditure to produce comparable products.
The other players in this space are the Google TPU which they do not sell to customers
and are only available through their cloud platform or up-and-coming startups such as
Tenstorrent (https://tenstorrent.com), accessed on 10 September 2022, which are very
promising but have yet to reach the market.

5.2. Tools

The other driving force behind the popularity of deep learning methods is the wide
availability of open source software packages. These libraries provide the efficient GPU
implementations of important operations in neural networks. The current dominant
frameworks are PyTorch and Tensorflow, and although they are available in multiple
programming languages, the dominantly used one remains Python. These big frameworks
are aided by a plethora of other packages such as OpenCV, Pillow, Scikit-image for image
processing as well as Numpy and Pandas for working with data. Specifically for medical
imaging, many packages were developed to visualize, analyze, annotate, and pre-process
the various file formats which were obtained from MRIs, X-Rays, and CT scans.

https://tenstorrent.com
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Since there has been such a widespread adoption of frameworks such as PyTorch, this
makes the reproducibility and improvement of academic paper results much easier since
people can easily share their implementations on source control platforms such as GitHub.
One useful website developed specifically for this purpose is https://paperswithcode.
com/sota, accessed on 10 September 2022, which tracks the state-of-the-art paper results in
various machine learning fields and where their various implementations can be found.

5.3. Datasets, Workshops, and Competitions

While there have been a lot more workshops and competitions on natural imaging
tasks, medical image analysis has started to gain more attention at important conferences
and journals. This has led to an increase in available datasets to work with and contri-
butions to compare against. Websites such as https://grand-challenge.org/challenges/,
accessed on 10 September 2022, track competitions specifically in the medical image analy-
sis field. Kaggle (https://www.kaggle.com/, accessed on 15 September 2022) has hosted
many medical analysis competitions, and they also use uploaded datasets that can help
researchers find additional training data for their models.

IEEE’s International Symposium on Biomedical Imaging conference also hosts work-
shops (https://biomedicalimaging.org/2021/challenges-2/), accessed on 10 September
2022, for experts to compete with their models as well as CLEF’s annual ImageCLEFmedical
workshops (https://www.imageclef.org/2021/medical), accessed on 10 September 2022.

6. Discussion

Herein, we have examined the research area of deep learning in medical image analysis.
We have seen that current approaches are using CNNs and pretraining almost universally
but looking at the natural image field, we can see glimpses into future directions such as
adapting attention mechanisms for medical tasks. Due to the specific data scarcity, the
development of better data augmentation techniques or more efficient parameter usage
is of great interest. On the other side, efficient memory and computer systems to enable
training on large 3D images without compression would be a key discovery capable of
pushing the state of the art.

As seen above, most self-supervised learning requires the use of data augmentation
transformations in one way or another. While we have not delved into the details, these are
crucial to SSL; however, they are very dependent on the dataset we are applying them to,
the model size, and what downstream tasks we want to fine-tune afterward. For medical
tasks, their importance is heightened due to the smaller pool of data to use. Additionally,
many medical tasks require the modeling of both high-level and low-level details in the
image, as data augmentation strategies in these scenarios need to be carefully constructed
not to lose relevant information.

Self-supervised learning is currently of great importance and will only grow in rel-
evance due to the growing amounts of data that we cannot label. Specifically, SSL for
medical imaging is relevant due to the high value any breakthrough in the field can have
on society.

Finally, due to the sensitive nature of the data used, privacy and safety considerations
lead us to encourage researchers to test their models against adversarial and data mem-
bership inference attacks. Training data membership inference attacks pose a privacy risk,
especially due to the very sensitive information that can be included in the data. Classic
adversarial attacks that modify input data whilst remaining undetected to change expected
behavior pose an even greater risk due to the fact that the outputs of these models can be
used to make decisions upon which the lives of patients depend.

https://paperswithcode.com/sota
https://paperswithcode.com/sota
https://grand-challenge.org/challenges/
https://www.kaggle.com/
https://biomedicalimaging.org/2021/challenges-2/
https://www.imageclef.org/2021/medical
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The following abbreviations are used in this manuscript:

AI Artificial Intelligence
ML Machine Learning
DL Deep Learning
SSL Self-Supervised Learning
EL Ensemble Learning
ANN Artificial Neural Network
MLP Multilayer Perceptron
CNN Convolutional Neural Networks
ADNI Alzheimer’s Disease Neuroimaging Initiative
IXI Information Extraction from Images
MRI Magnetic Resonance Imaging
CT Computed Tomography
PET Positron Emission Tomography
ROI Region of Interest
GPU Graphics Processing Unit
SVM Support Vector Machine
RF Random Forest
GB Gradient Boosting
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