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Abstract: When solving complex constrained problems, how to efficiently utilize promising infeasible
solutions is an essential issue because these promising infeasible solutions can significantly improve
the diversity of algorithms. However, most existing constrained multi-objective evolutionary algo-
rithms (CMOEAs) do not fully exploit these promising infeasible solutions. In order to solve this
problem, a constrained multi-objective optimization evolutionary algorithm based on the dynamic
constraint boundary method is proposed (CDCBM). The proposed algorithm continuously searches
for promising infeasible solutions between UPF (the unconstrained Pareto front) and CPF (the con-
strained Pareto front) during the evolution process by the dynamically changing auxiliary population
of the constraint boundary, which continuously provides supplementary evolutionary directions to
the main population and improves the convergence and diversity of the main population. Extensive ex-
periments on three well-known test suites and three real-world constrained multi-objective optimization
problems demonstrate that CDCBM is more competitive than seven state-of-the-art CMOEAs.

Keywords: constrained multi-objective optimization problems (CMOPs); dynamic constrained boundary

MSC: 68W50; 68T05

1. Introduction

Practical applications often involve constrained multi-objective optimization problems,
which usually contain multiple conflicting objectives and constraints. Without loss of
generality, minimizing constrained multi-objective optimization problems (CMOPs) can be
formulated as follows [1]:

minimize F(x) = ( f1(x), f2(x), f3(x), . . . , fm(x)), x ∈ Ω
gj(x) ≤ 0, j = 1, . . . , p
hj(x) = 0, j = 1, . . . , q

(1)

where F(x) is an objective function that contains m objectives and x = (x1, x2, . . . , xd) is a
d-dimension solution in the decision space Ω. gj(x) and hj(x) are inequalities and equality
constraints whose quantities are p and q, respectively. Usually, the constraint violation of x
for the jth constraint is calculated as follows [2]:

CVj(x) =
{

max
{

0, gj(x)
}

, j = 1, . . . , p
max

{
0,
∣∣hj(x)

∣∣− δ
}

, j = p + 1, . . . , q
(2)
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where δ is a positive constraint boundary relaxation factor (usually taken as 1e-6). The
overall constraint violation value of x (CV) can be summarized as:

CV(x) =
p+q

∑
j=1

CVj(x) (3)

The feasibility of a solution can be determined based on the constraint total violation
CV. If the overall constraint violation (CV(x)) of one solution is zero, then it is called a
feasible solution; otherwise, it is an infeasible solution. Given two feasible solutions x1
and x2 ∈ Ω, x1 is said to dominate x2 if fi (x1) ≤ fi (x2) for every i ∈ {1, . . . , m} and
f j (x1)≺ f j (x2) for at least one j ∈ {1, . . . , m}, denoted as x1 ≺ x2. When a solution is not
dominated by any other feasible solutions, the solution is called a feasible non-dominated
solution or Pareto optimal solution. In the objective space, all Pareto optimal solutions are
called the Pareto optimal solution set (PS), and the mapping of the Pareto optimal solution
set in the objective space is called the Constrained Pareto Front (PF). The key to solving
CMOPs is finding a set of feasible solutions with well-convergence (find Pareto optimal
fronts solutions as many as possible) and well-distribution (found the solution covers all
PF surfaces as many as possible) to approximate the PF [3]. For CMOPs, the objective space
contains two Pareto optimal fronts, depending on whether the constraints are considered
or not. In order to distinguish between them, the constrained Pareto front (CPF) and the
unconstrained Pareto front (UPF) are usually used to represent the PF of the constrained
multi-objective optimization problem and the unconstrained multi-objective optimization
problem, respectively. Earlier researchers classified CMOPs into four categories based on
the relationship between UPF and CPF [4]. These categories are (1) type-I: CPF is the same
as UPF, (2) type-II: CPF is part of UPF, (3) type-III: CPF and UPF partially overlap, and
(4) type-IV: CPF is wholly separated from UPF.

The challenge of constrained multi-objective evolutionary algorithms (CMOEAs)
in solving CMOPs is to maintain a better balance between objective optimization and
constraint satisfaction to achieve better convergence [5]. For conflicting objectives and
constraints, if constraints are prioritized more than objectives, the population may quickly
fall into the local feasible regions, unable to approach the true PF (especially when large
infeasible regions block feasible areas). On the other hand, if objectives are prioritized more
than constraints, the exploration ability of the solution is improved to a certain extent, but
the convergence quality of the population may be reduced. Consequently, balancing the
conflict between objectives and constraints in the evolutionary process is crucial.

Among the algorithms for solving CMOPs, the most widely used and the most typical
category is the Constrained Dominance Principle (CDP) algorithm [6]. The CDP algorithm
pays more attention to the feasibility of the solution (constraints have higher priority)
and prefers to choose feasible solutions over infeasible solutions. Therefore, when a
large infeasible area blocks the feasible area, the convergence performance of this kind
of algorithm decreases. Some existing dual-population optimization algorithms cannot
effectively solve CMOPs [7,8] whose optimal region is far from UPF because the auxiliary
population cannot continuously maintain and utilize promising infeasible solutions during
the evolution process. Furthermore, complex constraints lead to large infeasible regions
between feasible regions, and small and discontinuous feasible regions make it difficult
to search the population. Therefore, it is necessary to use promising infeasible solutions
(CV < ε) reasonably and continuously in the evolution process to help the main population
pass through the infeasible region and search for a narrow potential feasible region.

Following this idea, this paper proposes dual-population based evolutionary
algorithm CDCBM:

1. An auxiliary population state detection strategy is proposed, which can detect the
relationship between the auxiliary population and the boundary of the feasible region.
According to the detected results, the auxiliary population is effectively selected in
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the evolution process, and more useful objective information is provided for the
main population.

2. For the auxiliary population, a dynamic constraint boundary method is proposed,
which uses various promising infeasible solutions (CV < ε) to break through the
infeasible obstacles, helps the population to overcome the obstacles in the infeasi-
ble area, and makes full use of the infeasible areas approaching the feasible area.
The favorable information about the solution can be used to search for potential
feasible regions.

2. Materials and Methods
2.1. Related Work

This section introduces existing CMOEAs with constraint handling techniques (CHT) [9].
Early MOEAs solved CMOPs based on feasibility. For example, NSGA-II [6] is one of

the most representative CDP-embedded algorithms. In the CDP method, when individuals
A and B are both feasible solutions, the one with a smaller objective value enters the next
generation. For a feasible solution A and an infeasible solution B, the feasible solution A is
better than the infeasible solution B. For the two infeasible solutions A and B, the individual
with a smaller CV value is selected. In other words, the method prefers feasible solutions
to infeasible solutions. When CMOPs have discrete feasible regions or infeasible obstacles,
NSGA-II [6] quickly converges to local feasible regions. To address this problem, ToR [10]
uses a dual-rank fitness function that combines the CDP and Pareto strengths to evaluate
the fitness of each solution by the weighted sum of the two ranks. However, the weights it
constrains are always higher than the objective, which may lead to insufficient diversity.
In [11], the decomposition-based MOEA (MOEA/D) and CDP were combined to form the
MOEA/D-CDP method. Fan et al. [12] designed a novel angle-based CDP (ACDP) for
CMOPs, which guides environment selection by measuring the angle between the parent
and the corresponding child, further exploiting the information of the infeasible solutions.
However, it is difficult for this method to achieve a good balance between objectives and
constraints, which inevitably leads to premature convergence.

Several researchers have developed multistage CMOEAs to balance objective and
constraint satisfaction. The Push-Pull Strategy (PPS) [13] is representative of a two-stage
algorithm, where the goal of the push stage is to reach the UPF across infeasible regions. In
the pull phase, the population is updated considering all constraints so that the population
converges to the CPF. Similarly, Liu et al. [14] proposed a two-stage framework (ToP),
where the first stage mainly looks for promising feasible regions, and the second stage
looks for the CPF by strengthening convergence. However, there are certain difficulties
in converting the first stage to the second stage. The MSCMO [15] algorithm gradually
adds constraints during evolution, maintaining the diversity of the population by using
the solutions found in the previous stage. Zhu et al. [16] developed an algorithm based on
a detection-escape strategy, which guides the population search and escapes the stagnation
state by adjusting the weight of CVs when detecting that the population search stagnates
and falls into a local optimum. Tian et al. [5] adjusted the search behavior of the population
according to the proportion of feasible solutions. Objective and constraint satisfaction are
considered equally important in evolution when the proportion of feasible solutions for the
population is less than λ. When the feasible solution is larger than λ, the constraint is given
higher priority.

Some multiple population CMOEAs also involve resolving the conflict between goals
and constraint satisfaction. For example, Li et al. [8] designed a dual-archive evolutionary
algorithm (C-TAEA), which includes a convergence-oriented archive (CA) and a diversity-
oriented archive (DA). The CA considers both objectives and constraints and mainly tends
to approximate the CPF. The DA does not consider any constraints and aims to explore areas
underutilized by the CA. Most of the offspring generated by the population is in the region
between the UPF and CPF, which has poor convergence and diversity. Tian et al. [7] pro-
posed a co-evolutionary framework for constrained multi-objective optimization (CCMO),
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where the first population is used to search for the CPF, and the second population ignores
constraints to search for the UPF. The algorithm achieves better results on CMOPs with
a high correlation between the CPF and UPF but poor performance on CMOPs when the
UPF and CPF are far from each other. Ming et al. [17] proposed a DD-CMOEA algorithm
with dual phases (i.e., exploration and exploitation) and dual population characteristics.
The main and auxiliary populations are responsible for exploring feasible and infeasible
solutions. Although the promising infeasible solutions obtained by the auxiliary population
can help the main population to converge better, there is a lack of search for some parts of
the PF, resulting in not-so-good performance. c-DPEA [18] is a co-evolutionary algorithm in
which two populations use different methods to deal with infeasible solutions. Population 1
and Population 2 adopt a new adaptive penalty function and feasibility-oriented method
to deal with infeasible solutions, respectively. However, the latter stages of Population 2
do not provide sufficiently diverse solutions for Population 1. Zou et al. [19] proposed a
dual-population algorithm based on alternative evolution and degeneration for solving
CMOPs. It can make good use of its secondary population and alternative between evolu-
tion and degeneration according to the state of the secondary population to provide good
information about the secondary population to the main population. In EMCMO [20], the
optimization of traditional CMOPs is transformed into two related tasks: one task targets
the original CPF, and the other task ignores all constraints and only considers the objective.
The responsibility of the second task is mainly to continuously provide helpful knowledge
of the target to the first task, thereby facilitating the resolution of CMOPs.

Although these multiple population CMOEAs utilize infeasible solutions to maintain
the diversity of the main population while exhibiting good performance on some CMOPs,
there are still certain difficulties in solving complex constrained problems. The main reason
is that the auxiliary population cannot continuously provide effective information during
the evolution process. Aiming at this problem, we propose a method of dynamically
constrained boundaries, which can continuously provide promising infeasible solutions for
the main population and improve its convergence and diversity.

2.2. Methods

As shown in Table 1, all the variables used by the algorithm are presented.

Table 1. Variables used in the algorithm.

Variable Description

P1 main population

P2 auxiliary populations

ε0 ε initial value

O1 offspring of P1

O2 offspring of P2

objk sum of overall objective values of k generation in P2

σ |objk − objk−1|
εk ε value before updated

Nc proportion of nondominated solutions in P2

f the ratio of solutions (CV<=0) in P2

a constraint tolerance

TrP1 temporary population of P1

TrP2 temporary population of P2

Algorithm 1 gives the pseudo-code of CDCBM (a constrained multi-objective opti-
mization evolutionary algorithm based on the dynamic constraint boundary method). First,
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two initial populations, P1 and P2, are randomly generated in the search space, and each
population has N individuals. Then, in lines 5–6 of the algorithm, the binary competition
selection method is used to select from select mating parent sets in P1 and P2. Then new
solutions are generated by simulating binary crossover [21] and polynomial mutation [22],
denoted as O1 and O2, respectively. We can see no interaction between the two populations
during the initialization phase to generate offspring. Then, we need to detect whether P2
has reached UPF. Since P2 does not consider any constraint, when the sum of the current
objective values of the population differs little from the previous generation, P2 enters the
steady state, which can also be said to reach UPF. Therefore, we introduced a minimal
parameter σ (1e-3 in this paper). And σ is the difference between the sum of all individual
objective values of the current generation and that of the previous generation. If the σ is
less than the set threshold, there is no dominant solution in P2. At this time, the ε value
is infinite, so it can be considered that P2 reaches the UPF. When P2 reaches the UPF, the
algorithm goes to lines 9–10 and sets the ε value to be the average of the constraint violation
values in P2. Then, calculate the ratio f (the ratio of solutions (CV<=0) in P2). When f = 1, all
the individuals in P2 are feasible solutions. It means that all the UPFs in P2 are at the bound-
ary of the feasible region. Thus, we judge the relationship between the auxiliary population
and the boundary of the feasible region by the results of comparing f with λ (1 in this case).

Algorithm 1: Procedure of CDCBM

Input: N (population size), objk (sum of overall objective values of k generation in P2), Nc
(proportion of nondominated solutions in P2);
Output: P1(final population);

1. P1← Randomly generate N individuals;
2. P2← Randomly generate N individuals;
3. ε0 = inf;
4. while Termination conditions are not satisfied do
5. Select mating parents from P1 and generate N offspring denoted as O1;
6. Select mating parents from P2 and generate N offspring denoted as O2;
7. σ = |objk − objk−1|;
8. if σ <∇ and Nc == 1 then
9. εk = Mean CV value in P2;
10. f: the ratio of solutions (CV<=0) in P2;
11. end
12. if εk > εthreshold then
13. εk = (1− τ) ∗ εk;
14. else
15. εk = a;
16. end
17. if f is smaller than λ
18. P1← P1 ∪ O1 ∪ O2;
19. P2← P2 ∪ O2 ∪ O1;
20. P1← Use the CDP method to select N individuals;
21. P2← Use the ε method to select N individuals;
22. end
23. else
24. Algorithm 2;
25. end
26. end

Algorithm 1 gives the pseudo-code of CDCBM (a constrained multi-objective opti-
mization evolutionary algorithm based on the dynamic constraint boundary method). First,
two initial populations, P1 and P2, are randomly generated in the search space, and each
population has N individuals. Then, in lines 5–6 of the algorithm, the binary competition
selection method is used to select from select mating parent sets in P1 and P2. Then new
solutions are generated by simulating binary crossover [21] and polynomial mutation [22],
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denoted as O1 and O2, respectively. We can see no interaction between the two populations
during the initialization phase to generate offspring. Then, we need to detect whether P2
has reached UPF. Since P2 does not consider any constraint, when the sum of the current
objective values of the population differs little from the previous generation, P2 enters the
steady state, which can also be said to reach UPF. Therefore, we introduced a minimal
parameter σ (1e-3 in this paper); σ is the difference between the sum of all individual
objective values of the current generation and that of the previous generation. If the σ is
less than the set threshold, there is no dominant solution in P2. At this time, the ε value
is infinite, so it can be considered that P2 reaches the UPF. When P2 reaches the UPF, the
algorithm goes to lines 9–10 and sets the ε value to be the average of the constraint violation
values in P2. Then, calculate the ratio f (the ratio of solutions (CV<=0) in P2). When f =
1, all the individuals in P2 are feasible solutions. It means that all the UPFs in P2 are at
the boundary of the feasible region. Thus, we judge the relationship between the auxiliary
population and the boundary of the feasible region by the results of comparing f with
λ (1 in this case).

In lines 12–16 of the algorithm, after P2 converges to UPF, the ε value is gradually
reduced by the descending speed control parameter τ [13], τ is taken as 0.05 in this paper.
ε updates are critical to the environmental selection of P2. When ε decreases to a minimal
threshold (1e-4 in this paper), we use a modified sigmoid function to update ε. a is also
declining with evolutionary generations, and a ∈ [0, 1]. In this step, we update the value
of ε back and forth between 0 and a to maintain the promising infeasible solutions in P2
and search for potentially feasible regions. The calculation of the constraint tolerance a is
as follows:

a = 2− 2
1 + e−10T/Tmax

(4)

where T is the current generation and Tmax (the setting in this paper is 300,000) is the
maximal generation. When the value of ε is less than its minimum threshold (1e-4 in this
paper), it means that the CV of the P2 is close to 0. At this time, by gradually reducing the
constraint tolerance with the evolutionary generation, P2 retains some infeasible solutions
with good objective values. With this operation, P2 searches back and forth between UPF
and CPF to advance the population to the feasible region.

Inspired by [20], in the evolutionary process, selecting appropriate parental individuals
and offspring individuals to enter the population for the next update can effectively save
the number of evaluations. Therefore, we improve on [20] by designing an auxiliary
population state detection strategy. In [20] the evolution process is simply divided into
two stages, the first stage accounts for one-fifth of the entire evolution process. On the
contrary, we approximate the relationship between UPF and CPF by calculating the ratio
f of individuals after the auxiliary population converges to UPF. If f is equals to λ (1 in
this case), the algorithm executes lines 18–21; otherwise, it enters Algorithm 2. When f is
equals to λ, it indicating that the auxiliary population has entered a stable state. At this
time, all solutions in the auxiliary population are feasible solutions. It is approximately
determined that the UPF and the CPF coincide. After estimating the state of the auxiliary
populations, the offspring O1 and O2 generated by the population are merged into the two
parent generations for environmental selection. P1 uses the CDP method for environment
selection, and P2 uses the ε method to select a new P2. In fact, at this point, ε = 0, which
has the same effect as the CDP method. If f is not equal to λ, enter Algorithm 2. At this
time, since the solutions on the CPF are feasible solutions, while most of the solutions of
the auxiliary population are infeasible solutions. It is approximately judged that the UPF
and the CPF are wholly or partially separated.

In lines 1–4 of Algorithm 2, P1 and O1, and P2 and O2 are merged, respectively, to
obtain a new population with 2N individuals P1′ and P2′. Next, P1′ uses the ε method to
select the best N individuals, and P2′ uses the CDP method to select. In this step, we want
to select the more suitable parent or offspring from P1′ to participate in the interaction with
P2, so ε method is chosen; we want to select the more suitable parent or offspring from
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P2′ to participate in the interaction with P1, Thus the CDP method is chosen. Then, the
success rate of the parent and offspring populations entering the next iteration is calculated
according to Equations (5) and (6). The success rate of parent Pj and child Oj is calculated
as follows:

αPj =
n_Pj

N
, j = 1, 2 (5)

αOj =
n_Oj

N
, j = 1, 2 (6)

Algorithm 2: Procedure of CDCBM

Input: N (population size), P1, P2;
Output: P1;

1. P1′←P1 ∪ O1;
2. P2′←P2 ∪ O2;
3. Evaluate P1′ on the ε method;
4. Evaluate P2′ on o the CDP method;
5. TrP1← Based on Equations (5) and (6);
6. TrP2← Based on Equations (5) and (6);
7. P1← P1 ∪ O1 ∪ TrP2;
8. P2← P2 ∪ O2 ∪ TrP1;
9. P1← Select N individuals from P1 based on the CDP method;
10. P2← Select N individuals from P2 based on the ε method;
11. end

Among them, αPj and αOj represent the success rates of Pj and Oj, respectively; n_Pj
and n_Oj are the numbers of parents and offspring in the best N individuals. When j = 1, if
αP1 < αO1, it means that the offspring is more suitable than the parent to be selected for
the next evolutionary update. In this case, O1 is kept in the temporary population TrP2.
Otherwise, P1 is the better choice. The operation of j = 2 is the same as the operation of
j = 1. Finally, the CDP method and the ε method are used to select the environment for
P1 and P2, respectively. The interaction of populations in Algorithm 2 differs in selection
from that in Algorithm 1. The reason is that when f = 1 in Algorithm 1, it means that UPF is
the same as CPF, and the category is type-I [4]. When f is not equal to 1, the relationship
between UPF and CPF is one of type-II: CPF is part of UPF, type-III: CPF and UPF partially
overlap, and type-IV: CPF is wholly separated from UPF. Thus, in order to more efficiently
select populations to enter the next generation of updates, we used a population success
rate to judge.

2.3. Average Runtime and Computational Complexity

Table 2 shows the average running time of each algorithm on different test suites. We
can see that the running time of CDCBM is not outstanding. The reason for this result is
that all the operators are executed twice in one generation and CDCBM will consume more
running time.

In this paper, the main complexity of the algorithm comes from the environment
selection and evolutionary operators. The CDP method and the ε method are used for
the main population and auxiliary population, respectively, and the complexity of both
are O(M·N2). In further, CDCBM uses the differential operator to generate offspring. The
complexity of electing parents and generating offspring are O(N) and O(N·D), respectively.
Thus, similar to most CMOEAs, the total computational complexity of CDCBM is 2·O(N) +
2·O(N·D) + 2·O(M·N2) = O(M·N2).
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Table 2. Average running time of each algorithm on different test suites. Values highlighted in grey
represent the best results achieved in each test question.

Problem NSGAII ToP CMOEA_MS CTAEA CCMO cDPEA EMCMO CDCBM

DASCMOP test suite 9.1011e+0 5.3855e+1 5.7323e+1 2.2914e+2 5.2263e+1 7.4306e+1 8.6454e+1 1.0713e+2

DOC test suite 8.452e+0 5.0376e+1 6.7325e+1 2.3801e+2 9.2740e+1 8.8582e+1 1.3091e+2 8.1245e+1

LIRCMOP test suite 1.066e+1 2.0223e+1 4.6690e+1 3.1756e+2 1.1176e+2 1.1719e+2 1.5505e+2 1.1420e+2

+/−/= 3/0/0 3/0/0 3/0/0 0/3/0 1/1/1 1/1/1 1/2/0

3. Results

In Section 3.1, we describe the compared algorithms and parameter settings. Section 3.2
shows the results obtained by comparing our proposed CDCBM with other methods. In
Section 3.3, we discuss the impact of changes in the constraint bound ε on the algorithm.

3.1. Experimental Settings
3.1.1. Compared Algorithms and Parameter Settings

Seven state-of-the-art algorithms are used to verify the performance of CDCBM.
As Table 3 shows the classification of the comparison algorithms. Among these algo-
rithms, NSGA-II [6], C-TAEA [8], cDPEA [18], and EMCMO [20] use simulated binary
crossover [21] and polynomial mutation [22] to generate progeny solutions. CCMO [7] and
CDCBM utilize differential evolution (DE) [23] to generate progeny solutions. To make
a fair comparison, the population size N of all algorithms was set to 100, the number of
evaluations FEs was set to 300,000, and the number of runs was set to 30. In the SBX
and PM operators, the crossover probability and distribution index were set to 1 and 20,
respectively, and the mutation probability and distribution index were set to 1/D and 20,
respectively. All other parameters of the algorithm were the same as the original algorithm.
All experiments in this paper were run on PlatEMO [24].

Table 3. Classification of comparison algorithms.

Methods Classification Algorithm for Comparison

CDP method NSGAII [6]

multi-stage method ToP [14], CMOEA_MS [5]

multiple population method CTAEA [8], CCMO [7], c-DPEA [18], EMCMO [20]

3.1.2. Test Functions and Performance Indicators

To verify the performance of CDCBM, we used three challenging benchmark suites
for testing: DASCMOP [25], DOC [14] and LIRCMOP [26]. The decision vector D = 30 (D is
the dimension of the decision variable in the decision space) for the DASCMOP [25] test
suite defines the difficulty, diversity and convergence of feasibility. For the nine DOC [14]
problems, D is fixed to different values according to different problems, and its dimension
setting is the same as in [14]. Specifically, the main features of the LIRCMOP [26] test set are
large infeasible regions and complex connections between location and distance variables.
Moreover, this test suite consists of 14 functions with D = 10. The number of evaluations
Fes for these three benchmark suites was set to 300,000.

In addition, two widely used performance metrics were employed: Inverted Inter-
generational Distance (IGD) [27] and High Volume (HV) [28]. The smaller the required
IGD value, the larger the HV value. The non-parametric Wilcoxon’s rank-sum test [16] was
performed on the IGD and HV results at the 95% confidence level [29]. The symbols “+”,
“−”, and “=“ indicate that the comparison algorithm is significantly better, worse than, or
comparable to CDCBM, respectively. The best measure for each question is highlighted in
grey in each table.
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3.2. Comparisons with Other Methods

Table 4 shows the mean IGD values and standard deviations of eight algorithms on
three test suites. As seen from the table, CDCBM achieved the best results on 21 problems,
followed by EMCMO [20] with four best results. cDPEA [18], CCMO [7], CMOEA_MS [5],
and ToP [14] also have 2, 1, 3, and 1 best results, respectively. Conversely, NSGA-II [6] and
CTAEA [8] did not perform the best on any of the 32 problems. Table 1 shows that CDCBM
is significantly better than NSGA-II [6], ToP [14], CMOEA_MS [5], CTAEA [8], CCMO [7],
cDPEA [18], and EMCMO [20] on 28, 24, 22, 21, 25, 18, and 20 problems.

DASCMOP [25] functions: In this test suite, most feasible regions of DASCMOP [25]
are disconnected and away from UPF. This makes the algorithm take into account di-
versity and convergence speed in order to obtain good results. As can be seen from the
experimental results of the eight algorithms in Table 4, CDCBM achieved the best test
results on the four problems DASCMOP1, DASCMOP2, DASCMOP3, and DASCMOP9.
EMCMO [20] performed best on the two DASCMOP test questions. This is likely because
most DASCMOP test questions have narrow and easily overlooked feasible regions. The
dynamic constraint boundary method in our algorithm can effectively search these feasible
regions, which other algorithms may have difficulty searching. Therefore, CDCBM is an
algorithm that fits well with the DASCMOP function.

As can be seen from Figure 1, all algorithms except CDCBM converged to only part
of the CPF. Because CDCBM employs a dynamic constrained boundary approach, after
P2 searches from the UPF to the approximate CPF, it will frequently search between the
infeasible region and the CPF. The effective information provided by P2 dramatically
improves the distribution of P1.
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LIRCMOP6 
4.5287e-1 
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2.8280e-1 
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7.4161e-2 
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4.4496e-3 
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4.5673e-3 
(1.60e-4) - 

4.5035e-3 
(2.19e-4) - 

3.7414e-3 
(9.22e-5) 

LIRCMOP11 
1.5103e-1 
(1.18e-1) - 

1.1039e-1 
(7.55e-2) - 

7.0821e-2 
(3.46e-2) - 

1.1945e-1 
(3.30e-2) - 

2.3690e-3 
(4.38e-5) = 

2.3836e-3 
(4.26e-5) = 

2.3644e-3 
(4.69e-5) = 

2.3821e-3 
(4.83e-5) 

LIRCMOP12 
1.0246e-1 
(5.01e-2) - 

3.4008e-2 
(5.43e-2) - 

4.9910e-2 
(6.68e-2) - 

1.6254e-2 
(5.13e-3) - 

3.0268e-3 
(8.46e-5) - 

2.9980e-3 
(6.40e-5) = 

2.9927e-3 
(6.35e-5) = 

2.9626e-3 
(8.38e-5) 

LIRCMOP13 
1.2032e-1 
(4.63e-3) - 

1.2569e-1 
(3.83e-3) - 

9.2337e-2 
(8.75e-4) + 

1.0859e-1 
(2.20e-3) - 

9.3242e-2 
(7.70e-4) + 

9.3090e-2 
(1.07e-3) + 

9.0581e-2 
(5.68e-4) + 

1.0507e-1 
(2.70e-3) 

LIRCMOP14 
1.6081e-1 
(2.11e-1) - 

1.1886e-1 
(3.86e-3) - 

9.4946e-2 
(8.04e-4) + 

1.1139e-1 
(8.78e-4) - 

9.5920e-2 
(9.27e-4) + 

9.5591e-2 
(8.51e-4) + 

9.5534e-2 
(8.98e-4) + 

9.9546e-2 
(1.19e-3) 

+/-/= 2/28/0 0/24/3 6/22/3 2/25/1 3/21/8 6/18/6 6/20/4  

DASCMOP [25] functions: In this test suite, most feasible regions of DASCMOP [25] 
are disconnected and away from UPF. This makes the algorithm take into account diver-
sity and convergence speed in order to obtain good results. As can be seen from the ex-
perimental results of the eight algorithms in Table 4, CDCBM achieved the best test results 
on the four problems DASCMOP1, DASCMOP2, DASCMOP3, and DASCMOP9. 
EMCMO [20] performed best on the two DASCMOP test questions. This is likely because 
most DASCMOP test questions have narrow and easily overlooked feasible regions. The 
dynamic constraint boundary method in our algorithm can effectively search these feasi-
ble regions, which other algorithms may have difficulty searching. Therefore, CDCBM is 
an algorithm that fits well with the DASCMOP function. 

As can be seen from Figure 1, all algorithms except CDCBM converged to only part 
of the CPF. Because CDCBM employs a dynamic constrained boundary approach, after 
P2 searches from the UPF to the approximate CPF, it will frequently search between the 
infeasible region and the CPF. The effective information provided by P2 dramatically im-
proves the distribution of P1. 
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Figure 1. Solutions with median IGD value among 30 runs obtained by NSGA-II, ToP, CMOEA_MS,
CTAEA, CCMO, cDPEA, EMCMO, and CDCBM on DASCMOP9.

DOC [14] functions: The DOC test suite is very challenging, in which nine test func-
tions involve both decision space and target space constraints. According to its complex
characteristics, the CPF can be continuous, discrete, mixed, or degenerate. As seen from
the experimental results of the eight algorithms in Table 4, CDCBM achieved the seven
best test results out of nine problems. Figure 2 reflects the performance of each algorithm.
NSGA-II [6] is too concerned with satisfying constraints and thus fell into a local optimum,
failing to converge to the true PF. Because ToP [14] did not fully utilize the feasible solutions
found in the first stage, it did not converge. C-TAEA [8] cannot cross the infeasible barrier,
so that no feasible solution can be found. Neither the auxiliary populations of cDPEA [18]
nor EMCMO [20] could provide better CPF information resulting in poor performance. CD-
CBM outperformed DOC2 because the main population fully used the information of the
promising infeasible solutions of the auxiliary population, resulting in better distribution.
CCMO [7] converged to the CPF, but in terms of distribution, CDCBM is slightly better
than CCMO [6].

LIRCMOP functions: Most of the test problems in LIRCMOP [26] problems contain
many disjoint small feasible regions, hindered by extensive infeasible regions; the CPF usu-
ally consists of several disjoint segments or sparse points, and some CPFs even have just a
curve. This poses severe challenges to maintaining population diversity. The experimental
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results in Table 4 show that CDCBM performed the best on 10 problems. EMCMO [20], cD-
PEA [18], and CMOEA_MS [5] achieved the best results on 2, 1, and 1 problem, respectively,
while the other four algorithms did not achieve the best results on this test suite.

Table 4. The IGD values obtained by CDCBM and seven compared algorithms on all three benchmark
sets. The first figure is the mean IGD value, and the standard deviation is in parentheses. “NAN”
means that the algorithm did not find any feasible solution in 30 runs. ‘+’, ‘−’, and ‘=’ indicate
better, worse, or equivalent results than CDCBM. Values highlighted in grey represent the best results
achieved in each test question.

Problem NSGAII ToP CMOEA_MS CTAEA CCMO cDPEA EMCMO CDCBM

DASCMOP1 7.2526e-1
(4.20e-2) -

7.1495e-1
(1.61e-1) -

7.1430e-1
(3.60e-2) -

1.8267e-1
(1.42e-2) -

3.0908e-3
(3.51e-4) -

6.2863e-1
(1.18e-1) -

7.1207e-1
(2.50e-2) -

2.8942e-3
(2.64e-4)

DASCMOP2 2.6682e-1
(2.47e-2) -

3.3918e-1
(2.20e-1) -

2.4548e-1
(3.88e-2) -

8.0022e-2
(2.56e-2) -

4.3075e-3
(1.02e-4) -

2.1299e-1
(3.05e-2) -

2.3050e-1
(2.15e-2) -

4.1431e-3
(1.20e-4)

DASCMOP3 3.4928e-1
(4.61e-2) -

6.7959e-1
(1.42e-1) -

3.3637e-1
(3.54e-2) -

1.3292e-1
(2.59e-2) -

1.9490e-2
(1.38e-3) -

2.5961e-1
(1.80e-2) -

3.3073e-1
(5.29e-2) -

1.9423e-2
(1.07e-4)

DASCMOP4 1.5126e-3
(5.88e-5) + NaN (NaN) 1.0540e-1

(1.21e-1) =
1.0054e-2

(1.97e-3) +
5.9074e-2
(2.32e-1) -

1.4042e-3
(8.13e-4) +

1.3630e-3
(7.27e-4) +

1.8328e-2
(6.80e-2)

DASCMOP5 3.5210e-3
(1.29e-4) - NaN (NaN) 2.6366e-3

(2.60e-5) +
7.1873e-3
(5.01e-4) -

3.4477e-3
(4.07e-4) -

2.9818e-3
(1.81e-4) =

2.6994e-3
(4.29e-5) +

3.0525e-3
(1.76e-4)

DASCMOP6 2.7740e-1
(1.52e-1) - NaN (NaN) 6.0948e-2

(1.09e-1) =
2.3439e-2

(3.31e-3) +
2.4549e-2

(2.24e-2) =
1.8585e-2

(6.01e-3) =
1.9668e-2

(4.27e-3) =
8.5347e-2
(1.87e-1)

DASCMOP7 4.9706e-2
(2.96e-3) + NaN (NaN) 3.1097e-2

(6.03e-4) +
3.8368e-2

(6.59e-4) =
5.3327e-2

(6.12e-2) +
3.1521e-2

(7.08e-4) +
3.1092e-2

(7.12e-4) +
6.5238e-2
(1.41e-1)

DASCMOP8 6.2230e-2
(3.41e-3) - NaN (NaN) 4.0033e-2

(8.71e-4) +
5.4630e-2
(1.38e-3) -

5.5127e-2
(4.47e-2) =

4.0323e-2
(1.27e-3) +

4.0637e-2
(1.02e-3) +

5.3820e-2
(4.58e-2)

DASCMOP9 3.6499e-1
(7.05e-2) -

5.1037e-1
(2.54e-1) -

3.3171e-1
(8.71e-2) -

1.9285e-1
(5.72e-2) -

4.1004e-2
(1.25e-3) =

1.7576e-1
(7.98e-2) -

3.3973e-1
(7.26e-2) -

4.0855e-2
(7.82e-4)

DOC1 2.1991e+0
(2.23e+0) -

5.8883e-3
(2.02e-4) -

2.5919e+0
(2.09e+0) -

4.8136e+2
(2.03e+2) -

5.8017e-3
(5.23e-4) -

3.9834e-1
(4.38e-1) -

3.3677e+0
(2.62e+0) -

5.0776e-3
(2.64e-4)

DOC2 NaN (NaN) 4.8965e-1
(6.34e-2) - NaN (NaN) NaN (NaN) 3.5842e-2

(1.10e-1) - NaN (NaN) NaN (NaN) 3.1271e-3
(4.85e-4)

DOC3 6.9740e+2
(1.76e+2) -

5.8651e+1
(9.27e+1) =

6.7349e+2
(2.48e+2) - NaN (NaN) 4.8303e+2

(4.00e+2) -
7.9037e+2
(2.22e+2) -

6.8813e+2
(2.18e+2) -

1.1738e+2
(1.95e+2)

DOC4 7.1454e-1
(4.89e-1) -

5.3342e-2
(4.23e-2) =

6.6783e-1
(5.53e-1) -

2.3145e+2
(2.78e+2) -

2.3633e-2
(4.98e-3) -

4.5133e-1
(1.72e-1) -

1.2236e+0
(1.45e+0) -

1.6543e-2
(3.00e-3)

DOC5 NaN (NaN) 4.1792e+1
(5.33e+1) =

9.1339e+1
(2.65e+1) - NaN (NaN) 6.9211e+0

(2.99e+1) = NaN (NaN) NaN (NaN) 4.3559e+1
(6.26e+1)

DOC6 2.5644e+0
(2.60e+0) -

2.2025e+0
(9.64e-1) -

2.2944e+0
(2.06e+0) -

7.3871e+1
(1.97e+2) -

4.7150e-3
(2.41e-3) -

2.8721e+0
(3.64e+0) -

2.0132e+0
(1.86e+0) -

2.5439e-3
(1.08e-4)

DOC7 5.9148e+0
(2.01e+0) -

2.8786e-1
(2.21e-1) -

4.4864e+0
(2.24e+0) - NaN (NaN) 2.5442e-3

(3.14e-4) -
8.5322e+0
(2.61e+0) -

5.8704e+0
(2.60e+0) -

2.4047e-3
(2.27e-4)

DOC8 5.7676e+1
(4.81e+1) -

1.6934e+1
(1.44e+1) -

1.5135e+2
(7.28e+1) -

4.4807e+2
(1.07e+2) -

7.2907e-2
(4.68e-3) =

6.8493e+1
(5.51e+1) -

5.7484e+1
(6.15e+1) -

7.1668e-2
(4.31e-3)

DOC9 1.9870e-1
(8.70e-2) -

1.8463e-1
(3.60e-2) -

7.7955e-2
(9.39e-2) -

7.7038e-1
(2.58e-1) -

8.1110e-2
(1.04e-2) -

1.5170e-1
(1.18e-1) =

1.8271e-1
(1.10e-1) -

6.9206e-2
(7.80e-3)

LIRCMOP1 2.0084e-1
(6.17e-2) -

1.0620e-1
(9.08e-2) -

3.5832e-1
(1.55e-1) -

1.7586e-1
(1.06e-1) -

3.4921e-2
(2.28e-2) -

1.2016e-1
(1.04e-1) -

1.0701e-1
(7.04e-2) -

1.1219e-2
(5.12e-3)

LIRCMOP2 1.7298e-1
(6.90e-2) -

9.5894e-2
(1.00e-1) -

2.7243e-1
(1.00e-1) -

5.9282e-2
(1.49e-2) -

9.1456e-2
(4.27e-2) -

7.5270e-2
(5.60e-2) -

4.6155e-2
(2.10e-2) -

1.3184e-2
(1.32e-2)

LIRCMOP3 2.3397e-1
(8.54e-2) -

3.2542e-1
(6.86e-2) -

3.9437e-1
(1.25e-1) -

1.9567e-1
(1.30e-1) -

1.5096e-1
(5.01e-2) -

1.1532e-1
(8.41e-2) -

1.2843e-1
(6.24e-2) -

3.2199e-2
(1.95e-2)

LIRCMOP4 2.1612e-1
(5.55e-2) -

3.2224e-1
(4.63e-2) -

2.8876e-1
(9.68e-2) -

1.2122e-1
(4.54e-2) -

1.3924e-1
(5.20e-2) -

1.0630e-1
(5.68e-2) -

1.1990e-1
(4.66e-2) -

3.0364e-2
(1.99e-2)

LIRCMOP5 5.8592e-1
(5.40e-1) -

1.3819e-1
(3.55e-1) -

1.0349e-2
(7.93e-3) -

6.5429e-2
(2.09e-2) -

5.9397e-3
(2.22e-4) -

6.8125e-3
(1.31e-3) -

5.9978e-3
(7.99e-4) -

4.2949e-3
(1.33e-4)

LIRCMOP6 4.5287e-1
(5.14e-1) -

1.7174e-2
(5.83e-2) -

1.3030e-2
(2.75e-2) -

9.1932e-2
(9.37e-2) -

5.6770e-3
(2.31e-4) -

6.2217e-3
(2.28e-4) -

5.6705e-3
(2.36e-4) -

5.0090e-3
(3.29e-4)

LIRCMOP7 9.3994e-3
(1.23e-3) -

8.5713e-3
(3.17e-4) -

1.0925e-2
(1.53e-2) =

1.7431e-2
(2.66e-3) -

7.1964e-3
(2.39e-4) =

7.1121e-3
(2.86e-4) =

7.2658e-3
(3.20e-4) -

7.0960e-3
(2.45e-4)

LIRCMOP8 2.8821e-2
(5.88e-2) -

8.6180e-3
(3.43e-4) -

7.0103e-3
(1.40e-3) +

1.7384e-2
(3.82e-3) -

7.0626e-3
(2.69e-4) =

6.9505e-3
(1.79e-4) +

7.0566e-3
(1.87e-4) =

7.0525e-3
(2.20e-4)

LIRCMOP9 4.4821e-1
(1.09e-1) -

2.4918e-1
(1.71e-1) -

2.4273e-1
(1.38e-1) -

5.4475e-2
(2.96e-2) -

3.8872e-3
(1.41e-3) -

3.3889e-2
(3.66e-2) -

3.3783e-3
(1.11e-3) -

2.3225e-3
(4.72e-5)

LIRCMOP10 2.8280e-1
(9.05e-2) -

5.4624e-3
(2.52e-4) -

8.0527e-2
(4.74e-2) -

7.4161e-2
(7.88e-2) -

4.4496e-3
(1.84e-4) -

4.5673e-3
(1.60e-4) -

4.5035e-3
(2.19e-4) -

3.7414e-3
(9.22e-5)

LIRCMOP11 1.5103e-1
(1.18e-1) -

1.1039e-1
(7.55e-2) -

7.0821e-2
(3.46e-2) -

1.1945e-1
(3.30e-2) -

2.3690e-3
(4.38e-5) =

2.3836e-3
(4.26e-5) =

2.3644e-3
(4.69e-5) =

2.3821e-3
(4.83e-5)

LIRCMOP12 1.0246e-1
(5.01e-2) -

3.4008e-2
(5.43e-2) -

4.9910e-2
(6.68e-2) -

1.6254e-2
(5.13e-3) -

3.0268e-3
(8.46e-5) -

2.9980e-3
(6.40e-5) =

2.9927e-3
(6.35e-5) =

2.9626e-3
(8.38e-5)

LIRCMOP13 1.2032e-1
(4.63e-3) -

1.2569e-1
(3.83e-3) -

9.2337e-2
(8.75e-4) +

1.0859e-1
(2.20e-3) -

9.3242e-2
(7.70e-4) +

9.3090e-2
(1.07e-3) +

9.0581e-2
(5.68e-4) +

1.0507e-1
(2.70e-3)

LIRCMOP14 1.6081e-1
(2.11e-1) -

1.1886e-1
(3.86e-3) -

9.4946e-2
(8.04e-4) +

1.1139e-1
(8.78e-4) -

9.5920e-2
(9.27e-4) +

9.5591e-2
(8.51e-4) +

9.5534e-2
(8.98e-4) +

9.9546e-2
(1.19e-3)

+/-/= 2/28/0 0/24/3 6/22/3 2/25/1 3/21/8 6/18/6 6/20/4
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CTAEA, CCMO, cDPEA, EMCMO, and CDCBM on DOC2.

As shown in Figure 3, since the feasible region of LIRCMOP4 is only a discontinuous
line segment, NSGA-II [6], ToP [14], CTAEA [8], CCMO [7], cDPEA [18], and EMCMO [20]
all fall into local optima. However, only CDCBM found all discontinuous CPFs.
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Real-world CMOPs: The comparison of our algorithm with the comparative algorithm
on three real-world problems is presented here. The Spring Design problem [30] has two
optimization objectives, eight inequality constraints, and three decision variables. The
synchronous optimal pulse width modulation of 3-level and 5-level inverter problem [31,32]
has two optimization objectives, 24 inequality constraints, and 25 decision variables. The
definitions of all optimization objectives and constraints can be found in their references.
The HV results of our algorithm and the comparative algorithm are given in Table 5.
From Table 5, we can see that our algorithm obtains the maximum HV on these three
real-world problems, indicating that our algorithm achieves the best performance on these
three problems.
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Table 5. The HV values obtained by CDCBM and seven compared algorithms on all three benchmark
sets. The first figure is the mean HV values, and the standard deviation is in parentheses. “NAN”
means that the algorithm did not find any feasible solution in 30 runs. ‘+’, ‘−’, and ‘=‘ indicate
better, worse, or equivalent results than CDCBM. Values highlighted in grey represent the best results
achieved in each test question.

Problem NSGAII ToP CMOEA_MS CTAEA CCMO cDPEA EMCMO CDCBM

Spring Design
(3/2/8)

5.4360e-1
(3.36e-5) -

5.4370e-1
(7.25e-6) =

5.4370e-1
(5.10e-5) -

5.4273e-1
(2.26e-4) -

5.4366e-1
(9.80e-6) -

5.4348e-1
(1.89e-4) -

5.4357e-1
(1.74e-4) -

5.4370e-1
(8.64e-6)

Synchronous Optimal
Pulse-width

Modulation of
3-level Inverters

(25/2/24)

5.9793e-1
(1.33e-1) -

5.4396e-1
(1.29e-1) -

5.2816e-1
(0.00e+0) =

4.0345e-1
(3.69e-1) -

6.8501e-1
(1.36e-1) =

6.0888e-1
(8.06e-2) -

6.0240e-1
(1.36e-1) -

7.5613e-1
(7.39e-2)

Synchronous Optimal
Pulse-width

Modulation of
5-level Inverters

(25/2/24)

3.9657e-1
(3.18e-1) -

2.1521e-1
(2.56e-1) -

5.9256e-2
(0.00e+0) =

3.2158e-1
(0.00e+0) =

5.8045e-1
(2.70e-1) =

4.6157e-1
(3.12e-1) -

4.2138e-1
(3.42e-1) -

7.4714e-1
(1.65e-1)

+/−/= 0/3/0 0/2/1 0/1/2 0/2/1 0/1/2 0/3/0 0/3/0

3.3. Further Investigations of CDCBM

In this subsection, we discuss the impact of changes in the constraint bound ε on the
algorithm, which compares CDCBM with two variants on the LIRCMOP benchmark suite.
The first variant of CDCBM adopts a decreasing bound, and the second variant bounds
value to infinity all the time during the evolution. These two variables verify that the
dynamic constraint bounds are valid.

Table 6 presents the performance of CDCBM and its two variants on the LIRCMOP
suite. We can see that CDCBM gets the eight best averages on LIRCMOP. Although
Variant 1 and Variant 2 obtained five and one best averages, respectively, they did not
show significant differences. Furthermore, CDCBM has five and seven results that signifi-
cantly outperform Variant 1 and Variant 2, respectively, demonstrating the effectiveness of
dynamically constrained boundaries.

Table 6. The IGD values obtained by CDCBM and its two variants on the DASCMOP benchmark
suite. The first figure is the mean IGD values, and the standard deviation is in parentheses. Best
result in each row is highlighted.

Problem Variant1_CDCBM Variant2_CDCBM CDCBM

LIRCMOP1 1.8778e-2 (8.64e-3) - 4.0770e-2 (2.98e-2) - 1.1219e-2 (5.12e-3)
LIRCMOP2 3.4966e-2 (2.69e-2) - 7.9022e-2 (3.98e-2) - 1.3184e-2 (1.32e-2)
LIRCMOP3 7.2556e-2 (3.83e-2) - 1.3058e-1 (4.21e-2) - 3.2199e-2 (1.95e-2)
LIRCMOP4 6.8050e-2 (3.61e-2) - 1.2901e-1 (3.80e-2) - 3.0364e-2 (1.99e-2)
LIRCMOP5 4.2601e-3 (1.51e-4) = 4.2963e-3 (1.19e-4) = 4.2949e-3 (1.33e-4)
LIRCMOP6 5.1505e-3 (2.58e-4) = 4.9998e-3 (3.96e-4) = 5.0090e-3 (3.29e-4)
LIRCMOP7 7.0018e-3 (2.02e-4) = 7.1588e-3 (1.63e-4) = 7.0960e-3 (2.45e-4)
LIRCMOP8 7.0198e-3 (2.21e-4) = 7.2061e-3 (2.17e-4) - 7.0525e-3 (2.20e-4)
LIRCMOP9 2.3166e-3 (4.60e-5) = 2.6348e-3 (6.78e-5) - 2.3225e-3 (4.72e-5)
LIRCMOP10 3.7228e-3 (1.09e-4) = 4.3685e-3 (1.24e-4) - 3.7414e-3 (9.22e-5)
LIRCMOP11 2.3889e-3 (3.73e-5) = 2.3848e-3 (4.34e-5) = 2.3821e-3 (4.83e-5)
LIRCMOP12 3.0224e-3 (8.57e-5) - 3.0235e-3 (1.26e-4) = 2.9626e-3 (8.38e-5)
LIRCMOP13 1.0546e-1 (2.09e-3) = 1.0439e-1 (2.72e-3) = 1.0507e-1 (2.70e-3)
LIRCMOP14 9.9801e-2 (1.27e-3) = 9.9705e-2 (9.10e-4) = 9.9546e-2 (1.19e-3)

+/−/= 0/5/9 0/7/7
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4. Discussion

In this section, to demonstrate the effectiveness of our algorithm, we visualize the
running process of seven algorithm, NSGA-II [6], ToP [14], CMOEA_MS [5], CTAEA [8],
CCMO [7], cDPEA [18], EMCMO [20], and CDCBM. Figure 4 presents the population
distribution of all seven CMOEAs on LIRCMOP3 at different generations.
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CTAEA: CTAEA [8] includes a Convergence Oriented Archive (CA) and a Diversity
Oriented (DA). Most of the parents in this algorithm are from CA and DA, and DA does
not consider any constraints to provide CA with information about feasible regions that
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it has not explored. Early CA considers both objective and constraint and can partially
converge to the feasible region, but most infeasible solutions will still exist in the population.
However, the limited mate selection scheme in the middle and late stages affected the
evolutionary direction of CA, and most of the offspring were located between CPF and
UPF. Therefore, the convergence and diversity of CA are relatively poor.

CCMO: Population 1 considers constraints in the early stages of evolution and quickly
converges to the local CPF, while population 2 does not consider constraints at all and
converges to UPF. In the middle and late stages, CCMO [7] can obtain a well-distributed
population 2. However, population 2 cannot continuously provide effective information
for population 1 and cannot help population 1 to jump out of the local optimum, resulting
in poor distribution.

cDPEA: cDPEA has better distribution in the early stage, thanks to adopting a self-
adaptive penalty function. Then, the main population converges to the local CPF, and
the auxiliary population converges to the UPF. In the middle-to-later stage, the auxiliary
population starts to search between CPF and UPF, and some individuals come to the vicinity
of the feasible region. However, the diversity of the auxiliary population is too poor to
help the main population effectively. Finally, the main population is still limited to part of
the CPF.

EMCMO: In this algorithm, CMOP is modeled as a multi-task optimization problem,
the first task considers both constraints and objectives (i.e., CPF), and the auxiliary task
is to find a well-distributed UPF. Its early stage is the same as CCMO [7]. In the early-to-
middle and middle-to-later generations, the second task can better converge to the UPF.
Furthermore, the designed heuristic method finds valuable knowledge and carries out
knowledge transfer. Nevertheless, the CPF of LIRCMOP3 is far away from the UPF, which
reduces the effect of knowledge transfer. This also makes the distribution of the main tasks
between the middle and late generation and the previous generation the same, and neither
can jump out of the local optimal area.

CDCBM: In the early stage, P2 converges to the UPF regardless of constraints, and
the generated descendants help P1 converge to the feasible region. In the early-to-middle
generation, as the ε gradually decreases, P2 gradually comes to the boundary of the feasible
region. In the process of searching from UPF to CPF, P2 retains many potential infeasible
solutions. These solutions help P1 find most of the CPFs, but some CPFs are still ignored
during evolution. Therefore, in the middle-to-later generation, ε increases to a (a constraint
tolerance value that gradually decreases with the evolutionary algebra), and P2 returns to
the feasible region boundary to repeat the search. In this process, we will also judge the
success rate of the parent and the offspring to more effectively provide a complementary
evolutionary direction for P1. In the final generation, P1 finds all feasible regions and has a
relatively good distribution.

5. Conclusions

We have proposed a MOEA based on the dynamic constraint boundary method. The
auxiliary population evolves to the UPF without initially considering the constraints, and
as the constraint boundary decreases, the population moves closer to the feasible region.
These potentially infeasible solutions can help the main population to overcome obstacles
in the infeasible region. In addition, when the auxiliary population reaches the CPF, the
constraint boundary changes again, and the population returns to search near the feasible
region. This operation preserves some well-distributed infeasible solutions to help the main
population find potential unsearched feasible regions. Moreover, in the evolution process,
according to the state of the auxiliary population, the effective parent and child individuals
will be selected to enter the next generation update, which can effectively reduce the waste
of iteration times.

Although the proposed CDCBM performed well on these several test suites, several
aspects must be investigated. If all initial solutions are feasible, ε always takes infinity. In
this case, it is necessary to find a way to set an appropriate initial value because it has a
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relatively significant impact on the evolution of the auxiliary population. In addition, we
will explore our algorithm parameters in more detail to better improve our algorithm.
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