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Abstract: The hybrid architecture of the driven qubit–photon–magnon system has recently emerged as
a promising candidate for novel quantum technologies. In this paper, we introduce the effective wave-
function of a superconducting single qubit and a magnon mode contained within a cavity resonator
and an external field. The non-classicality of the magnon and resonator modes are investigated by
using the negative values of the Wigner function. Additionally, we discuss the non-classicality of
the qubit state via the Wigner–Yanase skew information. We find that the mixture angle of the qubit–
resonator plays a controllable role in non-classicality. However, the strength of the magnon–photon
increases the non-classical behaviour of the system.
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1. Introduction

Hybrid quantum systems have provided an excellent experimental and theoreti-
cal platform for studying quantum computing [1], quantum information processing [2],
and quantum state engineering [3–7]. Different components of hybrid quantum systems
have been developed, such as strongly coupled magnons and cavity microwave photons [8],
magnon–photon–phonons [9,10], magnon-superconducting qubits [11], and microwave
optomechanical-magnetic systems [12]. One of the most attractive quantum systems is
the hybrid qubit–photon–magnon quantum system because of its diversification [13,14].
It has opened a new avenue for exploring intermediate transitions through the Hamilto-
nian interaction between different components. It also has many attractive applications,
including the generation of hybrid entangled states. Experimentally, the entanglement of a
single hybrid qubit–photon–magnon has been realized [15]. Additionally, some theoretical
studies have been devoted to illustrating the potential of quantum information in this
system [2,16].

As is well known, study of driven qubit systems is the core of the primary discoveries
of principal effects in both classical and quantum physics. An attractive example is the
influence of an external classical field over a two-level quantum system [17]. Furthermore,
the effect of the driven classical field on a two-level atom with some other medians such as
the Kerr nonlinear [18], Stark shift [19], and vibrating graphene membrane [20] have been
investigated. The effective simulation of a single classical drive in the Jaynes–Cummings
model has been realized [21]. Moreover, the driven system of two identical superconducting
qubits coupled simultaneously to a cavity field has been studied [22].
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Furthermore, non-classicality is an essential characteristic of the quantum world,
where it has many theoretical implications and practical applications [23]. Various mean-
ings have been constructed for the non-classicality of quantum systems, such as quan-
tumness [24], the negativity of Wigner functions [25,26], quantum entanglement [27,28],
non-locality [29,30], discordance, and other quantum correlations [31–34]. In terms of
atomic spin optical coherent states, the non-classicality of light has been quantified by
virtue of the Wigner–Yanase skew information [35]. Additionally, the non-classicality
of two atoms and the nondegenerate two-photon nonlinear Jaynes-–Cummings model
has been investigated [36]. The Wigner–Yanase skew information has been identified
as the amount of non-classicality of bosonic field states [37] and for a single and multi-
qubit state [38,39]. It has also been used to indicate quantum entanglement [40], quantum
coherence [41], and some non-local quantum correlations [42].

This study highlights the non-classicality of a hybrid qubit–photon–magnon system in
the presence of an external classical field. The present system still needs more investigation,
by opens a new avenue for more theoretical and applicable novel quantum technolo-
gies. The non-classicality of the photon–magnon subsystem is discussed in the quantum
phase space by applying the two-mode Wigner distribution function. However, the non-
classicality of the qubit subsystem is realized by using the atomic Wigner-Yanase skew
information. In Section 2, we introduce our physical Hamiltonian component and drive
the effective wave function in a dispersive-limit interaction. The mathematical form of the
two-mode Wigner function is reconstructed in Section 3, where the quantumness of the
magnon–photon in phase space is investigated. Section 4 presents the non-classicality of
the qubit system in terms of skew information. Finally, we summarize the effect of different
physical Hamiltonian components on the behaviour of non-classicality.

2. Physical Model

Let us consider a hybrid physical quantum system consisting of a superconducting
qubit (single atom), a ferromagnetic crystal in the Kittle mode (magnon), and a resonator
(photon). These physical components are driven by an external classical field. The magnon
mode interacts with the resonator via the magnetic dipole interaction, while the single
qubit is coupled to the resonator via a general Rabi model. The physical Hamiltonian of
this system can be written as,

Ĥ =ωc â† â + ωmm̂†m̂ +
ωq

2
σz + λ1(â† + â)(m̂† + m̂)

+ λ2(â† + â)(σx cos θ + σz sin θ) + λ3σx,
(1)

where ωc, ωm, and ωq are the eigenfrequencies of the resonator, magnon, and qubit,
respectively. â†(â) and m̂†(m̂) are the creation and annihilation operators of the resonator
and magnon modes, respectively. σx and σz are the standard Pauli operators, which
are labelled by the excited (|e〉) and the ground (|g〉) states as σx = |e〉〈g|+ |g〉〈e|, and
σz = |e〉〈e| − |g〉〈g|. λi , i = 1, 2, 3 are the coupling strengths of the photon–magnon, qubit–
photon, and the driven external field, respectively. The angle θ represents the transversal
couplings and the mixture of the longitudinal between the qubit and the resonator.

By diagonalizing the driven classical field and non-interacted qubit terms using the
following eigenstates [17,43], we have

|+〉 = cos η|e〉+ sin η|g〉, |−〉 = − sin η|e〉+ cos η|g〉, (2)

with η = 1
2 arctan 2λ3/ωq, In this case, the excited state |e〉 and the ground state |g〉 can be

rotated into new excited |+〉 and ground |−〉 states; hence, one can redefine the Pauli spin
operators σx and σz as,

σ̂x = Ŝz sin 2η + Ŝx sin 2η, σ̂z = Ŝz cos 2η − Ŝx sin 2η, (3)
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where Ŝz = |+〉〈+| − |−〉〈−|, Ŝx = |+〉〈−|+ |−〉〈+|. After applying the previous trans-
formations with the rotating wave approximation, the Hamiltonian (1) can be rewritten as,

Ĥ =ωc â† â + ωmm̂†m̂ +
Ω
2

Ŝz + λ1(â†m̂ + m̂† â)

+ λ2 cos(2η + θ)(âŜ+ + â†Ŝ−) + λ2 sin(2η + θ)(â + â†)Ŝz,
(4)

where Ω =
√

ω2
q + 4λ2

3, Ŝ+ = |+〉〈−| and Ŝ− = |−〉〈+|. In the interaction picture, the
physical Hamiltonian model (4) is,

ĤIP =λ1
(
m̂† âei(ωm−ωc) + â†m̂e−i(ωm−ωc)

)
+ λ2 cos(2η + θ)(âŜ+ei(Ω−ωc) + â†Ŝ−e−i(Ω−ωc))

+ λ2 sin(2η + θ)(âe−iωc + â†eiωc )Ŝz.
(5)

in the dispersive interactions of the hybrid model, assuming that the coupling strengths λ1
and λ2 are much smaller than the transition frequencies ωm −ωc and ωc, where we use the
condition ωm = Ω. The effective Hamiltonian by the James method of the system takes the
following form [44],

Ĥe f f = α1(â† âŜz + Ŝ+Ŝ−) + α2(â† â− m̂†m̂) + α3Ŝz + α4
(
m̂†Ŝ− + m̂Ŝ+

)
, (6)

where α1 = − λ2
2

ω11
cos2(2η + θ), α2 =

λ2
2

ω11
, α3 =

λ2
2

ωc
sin2(2η + θ), and α4 = −λ1λ2

ω11
cos(2η + θ)

with ω11 = Ω−ωc.
Now, we consider the case in which the qubit system is initially prepared in the new

exited state |+〉, while the initial resonator and magnon modes are initially in coherent
states. Thus, the initial state is given by,

|ψ(0)〉 = qnqm|+, n, m〉, with qn = e−|ζ|
2/2 ζn
√

n!
, and qm = e−|Ξ|

2/2 Ξm
√

m!
. (7)

According to the effective Hamiltonian (6), the temporal wave function |ψ(t)〉 associ-
ated with the initial state (7) is obtained by employing the Schrödinger equation as,

|ψ(t)〉 =
∞

∑
n=1

∞

∑
m=1

(
An,m

1 (t)|+, n, m〉+ An,m
2 (t)|−, n, m + 1〉

)
, (8)

where

An,m
1 (t) = qnqme−it(x1+x2)/2( cos µt/2− i(x1 − x2)

µ
sin µt/2

)
,

An,m
2 (t) =

−2iqnqmα4
√

m + 1
µ

e−it(x1+x2)/2 sin µt/2,

µ =
√
(x1 − x2)2 + 4(m + 1)α2

4, x1 = α1(n + 1) + α2(n−m) + α3,

and x2 = −α1n + α2(n−m− 1)− α3.

(9)

Consequentially, the final density operator of the total effective system is given by,

ρ̂ = |ψ(t)〉〈ψ(t)|. (10)

Hereafter, we will obtain the reduced quantum state of the resonator–magnon to rec-
ognize the non-classicality by employing the two-mode Wigner distribution. Furthermore,
we will find the reduced qubit state to visualize the atomic non-classicality.
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3. Wigner Function of a Two-Mode Field

The Wigner quasi-probability distribution in the quantum phase space for an arbitrary
density operator ρ̂ of a single mode electromagnetic field is defined by [45],

W(p, q) =
1
π

∫ +∞

−∞
du〈q + u|ρ̂|q− u〉e−2iup, (11)

where p̂ and q̂ satisfy the commutation relation [q̂, p̂] = i. The generalized Wigner distribu-
tion functions of the two-mode electromagnetic field can be expressed by,

W(p, q; r, s) =
1

π2

∫ +∞

−∞
du
∫ +∞

−∞
dv〈q + u, r + v|ρ̂|q− u, r− v〉e−2i(up+vs). (12)

Using the fact of transition operator e−ipu|q〉 = |q + u〉, the effect of the displacement
operators D(Γ1 and 2) in the state | − u,−v〉 is,

D(Γ1)D(Γ2)| − u,−v〉 = e−iqp/2eipq̂e−iqp̂e−irs/2eisr̂e−irŝ| − u,−v〉. (13)

Then, one can write,

|q− u, r− v〉 = ei(qp+rs)/2ei(pu+sv)D(Γ1)D(Γ2)| − u,−v〉. (14)

Substituting in Equation (13), the integration form of the Wigner function reads,

W(Γ1; Γ2) =
1

π2

∫ +∞

−∞
du
∫ +∞

−∞
dv〈u, v|D†(Γ1)D†(Γ2)ρ̂D(Γ1)D(Γ2)| − u,−v〉. (15)

Particularly, we use the Fock basis and parity operator 〈k, l| − u,−v〉 = (−1)(k+l)

〈k, l|u, v〉 to obtain the final form of the two-mode Wigner function,

W(Γ1; Γ2) =
4

π2

+∞

∑
k=1

+∞

∑
l=1

(−1)(k+l)〈k, l|D†(Γ1)D†(Γ2)ρ̂D(Γ1)D(Γ2)|k, l〉. (16)

In our discussion, we assume that Γi = xi + iyi, where i is related to the number
mode field.

By studying the Wigner function of the resonator–magnon subsystem, one can trace
out the qubit subsystem in Equation (10), where the final density operator of the resonator–
magnon system is given by,

ρc,m = Tra[|ψ(t)〉〈ψ(t)|]
= |An,m

1 (t)|2|n, m〉〈n, m|+ |An,m
2 (t)|2|n, m + 1〉〈n, m + 1|.

(17)

Substituting the density operator (13) into Equation (16), one may obtain the ultimate
form of the Wigner function of the resonator–magnon as,

W(Γ1; Γ2) =
4

π2 e−|Γ1|2−|Γ2|2
+∞

∑
k=1

+∞

∑
l=1

(−1)(k+l)

×
+∞

∑
n=1

+∞

∑
m=1

(
|An,m

1 Dk,n(−Γ1)Dl,m(−Γ2)|2 + |An,m
2 Dk,n(−Γ1)Dl,m+1(−Γ2)|2

)
,

(18)

where

Dn,m(Γi) =


√

n!
m! (−Γ∗i )

m−nLm−n
n (|Γi|2), n ≤ m√

m!
n! (Γi)

n−mLn−m
m (|Γi|2) n > m

(19)

As is well known, the Wigner function is a two-fold measure, where negative values
indicate the quantumness of a system and positive values indicate classicality or minimum
uncertainty. We display the Wigner function to show the classicality and quantumness
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of the resonator–magnon subsystem and study the effect of the mixture angle θ with
coupling parameters λi in the Wigner function. In Figures 1–3, we set the scaled time equal
to 5π, where this time represents the middle of the collapse period in atomic inversion.
The initial mean photon numbers are |ζ|2 = 9 = |Ξ|2, Γ1 = xc + iyc (related to the resonator)
and Γ2 = xm + iym (related to the magnon mode).

(a) (b) (c)

(d) (e) (f)

Figure 1. The behaviour of W as a function of x, y, where Γm = x + iy = Γc where (a) θ = 0,
λ1 = 1 = λ2 = λ3; (b) θ = π/4, λ1 = 1 = λ2 = λ3; (c) θ = π/2,λ1 = 1 = λ2 = λ3; (d) θ = π/4,
λ3 = 2, λ1 = 1 = λ2; (e) θ = π/4, λ2 = 2, λ1 = 1 = λ3; (f) θ = π/4, λ1 = 2, λ2 = 1 = λ3.

In Figure 1, we displayed the general behaviour of the two-mode Wigner distribution
with Γ1 = x + iy = Γ2.The quantumness and classicality of the resonator–magnon system
depend on the mixture angle, where the position of negative and positive values is changed
according to the phase space. At θ = 0 and λ1 = 1 = λ2 = λ3, Figure 1a shows that
the function W has negative fringes at (x, y) = (0, 0), as well as an original positive
peak at (x, y) = (0, 3). This means that the quantumness of the system is limited around
zero phase space, while the classicality of the system corresponds to the initial intensity
of the coherent state. As displayed in Figure 1b, the position of classicality and non-
classicality changes around (x, y) = (3, 0) at θ = π/4, while the non-classicality around
(x, y) = (0, 0) is neglected. Moreover, the Wigner function shows that the classicality of
the quantum system increases at θ = π/2 Figure 1c. By regulating the qubit-resonator in
the maximum mixture state with θ = π/4, the effects of the magnon–resonator, resonator–
qubit, and driven field couplings are displayed in Figure 1d–f, respectively. Note that
an increase in different couplings reduces and diffuses the maximum and lower bounds of
the Wigner function. The decreasing rate induced by the coupling of the qubit–resonator
system is less than that predicated in the other two couplings. From this figure, one can
deduce that the qubit–resonator position decreases the quantum and classical correlation
when the two mode fields are measured in the same phase space.
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(a) (b) (c)

(d) (e) (f)

Figure 2. The behaviour of W as a function of xm, ym, where Γc = 0.5(1 + I), where (a) θ = 0,
λ1 = 1 = λ2 = λ3; (b) θ = π/4, λ1 = 1 = λ2 = λ3; (c) θ = π/2,λ1 = 1 = λ2 = λ3; (d) θ = π/4,
λ3 = 2, λ1 = 1 = λ2; (e) θ = π/4, λ2 = 2, λ1 = 1 = λ3; (f) θ = π/4, λ1 = 2, λ2 = 1 = λ3.

Figure 2 shows the general behaviour of the Wigner function according to the magnon–
resonator system in the magnon phase space, where Γ1 = 0.5(1 + I) and Γ2 = xm + iym.
Figure 2a displays the Wigner function where the mixing angle is initially fixed at θ = 0.
The Wigner function predicts a maximum negative peak at (xm, ym) = (−1, 3), with some
interference peaks at (0, 0). On the other hand, the negative and positive behaviours of
W decrease at θ = π/4, while the negative behaviour increases at θ = π/2. Hence, the
mixing angle θ has a noticeable influence on the behaviour of the Wigner function in the
magnon phase space as shown in Figure 2c. Figure 2d illustrates the behaviour of the
Wigner function where θ = π/4, increasing the strength of external classical field (λ3 = 2).
It is remarked that the non-classicality increases along ym compared to Figure 2b. This
means that the strength of the external classical field increases the non-classicality along
one side of phase space [18]. Additionally, as the strength of the qubit-resonator grows
which displayed in Figure 2d–f, the non-classicality in the magnon phase increases, where
the negative behaviour ofW is increased. Moreover, the increase of the coupling of the
resonator–magnon reduces the classicality and non-classicality of the system. In this case,
the general behaviour of the Wigner function is similar to the standard Schrödinger’s cat
state [46]. From this figure, we can infer that the non-classicality of the driven qubit–photon–
magnon system increases in the magnon phase space by handling the qubit–resonator in a
pure state with θ = π/2 and increasing the value of the coupling strength.
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(a) (b) (c)

(d) (e) (f)

Figure 3. The behaviour of W as a function of xc, yc, where Γ2 = 0.5(1 + I), where (a) θ = 0,
λ1 = 1 = λ2 = λ3; (b) θ = π/4, λ1 = 1 = λ2 = λ3; (c) θ = π/2,λ1 = 1 = λ2 = λ3; (d) θ = π/4,
λ3 = 2, λ1 = 1 = λ2; (e) θ = π/4, λ2 = 2, λ1 = 1 = λ3; (f) θ = π/4, λ1 = 2, λ2 = 1 = λ3.

Different behaviour can be seen in Figure 3, where the behaviour of the Wigner
function is displayed in cavity-mode phase space with Γ2 = 0.5(1 + I). As shown in
Figure 3a, the maximum bounds of the non-classical and classical correlation are depicted
at θ = 0, such that the qubit–photon–magnon reduces to a generalized Jaynes–Cummings
Hamiltonian [47]. This justifies Wigner function’s similarity to its behaviour in the Fock
state [48]. Further, Figure 3b,c show that the classical and non-classical correlations at
θ = π/4 are greater than those are depicted at θ = π/2. On the other hand, the increase
of the classical field and qubit–resonator couplings diffuse and reduce the classicality
and non-classicality.

4. Non-Classicality in Terms of Skew Information

This section will pursue the dynamics of the non-classicality of the qubit system from
information-theoretic interpretations of the Wigner–Yanase skew information. If a con-
served observable X̂ is not commuting with a reduced density operator ρ̂, one can measure
the information content of the pure or mixed quantum state ρ̂ skew to the observable X̂ by
using the skew information [49],

I(ρ̂, X̂) = −1
2

Tr[
√

ρ̂, X̂]2. (20)

This quantifier can be interpreted as a coherence of quantum state ρ̂ for the operator
X̂, the asymmetry of ρ̂ relating to X̂, the uncertainty of X̂ in the state ρ̂, and as a version of
quantum Fisher information. For a single qubit state, the atomic non-classicality in terms
of skew information is expressed as [38],

C = I(ρ̂, σ̂x) + I(ρ̂, σ̂y) + I(ρ̂, σ̂z). (21)
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However, the non-classicality of a general mixed state ρ̂ = 1
2
(
1 + n̂.σ̂

)
can be defined as,

C = 1
2
(
1−

√
1− |n(t)|2

)
, (22)

where n̂ = (n1, n2, n3), |n| ≤ 1 and σ̂ = (σx, σy, σz).
Employing Equation (10), for the single qubit quantum state after tracing out the

two-mode field and return to the original qubit basis |e〉 and |g〉, one can obtain,

ρ̂a = ρ11|e〉〈e|+ ρ12|e〉〈g|+ ρ21|g〉〈e|+ ρ22|g〉〈g|, (23)

where

ρ11 =
∞

∑
n,m=1

(
|An,m

1 (t)|2 cos2 η + |An,m
2 (t)|2 sin2 η − sin 2ηRe[An,m

1 (t)(An,m+1
2 (t))∗]

)
ρ22 =

∞

∑
n,m=1

(
|An,m

2 (t)|2 cos2 η + |An,m
1 (t)|2 sin2 η + sin 2ηRe[An,m

1 (t)(An,m+1
2 (t))∗]

)
ρ12 =

∞

∑
n,m=1

(
An,m

1 (t)(An,m+1
2 (t))∗ cos2 η − (An,m

1 (t))∗An,m+1
2 (t) sin2 η+

+ sin 2η(|An,m
1 (t)|2 − |An,m

2 (t)|2)
)

ρ21 = ρ∗12.

(24)

The components of the Bloch vector n(t) = (n1(t), n2(t), n3(t)) are given by,

n1(t) = 2Re[ρ12], n2(t) = 2Im[ρ12], n3(t) = ρ11 − ρ22 (25)

The non-classical behaviour of the qubit subsystem is illustrated in Figure 4 with
different values of coupling strengths, and mixture angels are taken into account. From
Figure 4a, the behaviour of non-classicality at θ = π/2 is effectively that formed at θ = 0
and θ = π/4. The super-mixed angle (θ = π/4) reduces the non-classicality of the qubit
system. Further, Figure 4b exhibits the effect of different strengths of magnon–resonator
couplings at a super-mixed angle. Clearly, as the strength of the magnon–resonator coupling
increases, the qubit non-classicality vanishes. In Figure 4c, we show the influence of the
qubit–resonator coupling on the function C, where θ = π/4. Obviously, the interior
Figure 4c shows that, as time increases, the coupling λ2 does not recreate the quantumness
of the qubit system. Moreover, the effects of different values of classical field coupling are
shown in Figure 4d at a super-mixed angle. The non-classicality is stable at the maximum
value with λ3 = 0.5, while it decreases at other values. Thus, it is better to know the
influence of the classical field at a fixed time (t = 10). The black curve shows the non-
classicality is maximum at λ3 ' 0.5. Then, it decays as the coupling of the classical
field increases.
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(d)

C

t
Figure 4. The behaviour of qubit non-classicality through skew information C, where ζ = 3 = Ξ.
(a) λ1 = 1 = λ2 = λ3; (b) θ = π/4, λ2 = 1 = λ3; (c) θ = π/4, λ1 = 1 = λ3; (d) θ = π/4,
λ1 = 1 = λ2.

5. Conclusions

This paper investigated the dynamical behaviour of non-classicality for a hybrid
physical system consisting of the qubit–photon–magnon within an external classical field.
The wave function in the dispersive regime of the hybrid model was obtained where the
qubit is prepared initially in the excited state, while the resonator and magnon modes
were prepared in the standard coherent state. The negative values of the two-mode
Wigner function show the non-classicality of the magnon–resonator. The atomic spin
skew information was employed to display the non-classicality of the qubit system.

Our results show that when the resonator and magnon are measured in the same
phase space via the Wigner function, non-classical behaviour at a considerable strength
of qubit–resonator coupling is generated, while a super-mixture angle reduces the non-
classicality. By measuring the magnon–resonator in the magnon phase space, the non-
classicality increases as the strength of the qubit–resonator coupling increases. In the
resonator phase space, the coupling of the qubit–resonator increases the non-classicality.
Overall, the coupling of the external field disperses and increases the non-classicality
along one side of the phase space. When returning the hybrid system to a generalized
Jaynes–Cummings Hamiltonian model via the mixture angle, the Wigner function depicted
high non-classicality. On the other hand, atomic non-classicality is reduced as the magnon–
resonator coupling increases, while the qubit–resonator coupling recreates the classicality
of the qubit system. The behaviour of qubit non-classicality depends on the value of the
external classical field.
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