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Abstract: In this paper, we consider the groups of isometries of metric spaces arising from finitely gen-
erated additive abelian groups. Let A be a finitely generated additive abelian group. Let R = {1, $}
where $ is a reflection at the origin and T = {ta : A → A, ta(x) = x + a, a ∈ A}. We show
that (1) for any finitely generated additive abelian group A and finite generating set S with 0 6∈ S
and −S = S, the maximum subgroup of IsomX(A, S) is RT; (2) D E RT if and only if D ≤ T or
D = RT′ where T′ = {h2 : h ∈ T}; (3) for the vector groups over integers with finite generating
set S = {u ∈ Zn : |u| = 1}, Isom X(Zn, S) = On(Z)Zn. The paper also includes a few intermediate
technical results.
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1. Cayley Graphs as Metric Spaces

The metric dimensions of the three classical geometric spaces and of Riemann surfaces
were determined in [1]. This was followed up by the work in [2,3] where metric dimensions
of metric manifolds were determined. Our work of the present paper is on the groups of
isometries of metric spaces of vector groups over the integers.

As in [4] (p. 34), let G be a group and S ⊆ G be a generating set of G such that 1 6∈ S
and S−1 = S. Define the Cayley graph X = X(G, S) through the specification of its sets of
vertices and edges

V(X) = G, E(X) = {gh : g, h ∈ G, gh−1 ∈ S}.

The condition S−1 = S implies that the resulting graph is undirected, and the condition
1 6∈ S implies that the graph has no loops. The condition that S is a generating set of G is
to ensure that X is connected. The connectivity is imposed for the simple reason that our
interest is in the metric properties of metric spaces. A graph X is a metric space X with its
intrinsic path metric.

Let X and Y be metric spaces with distance functions ρX and ρY, respectively. If a
bijective mapping f : X → Y preserces distances then it is called an isometry. Namely, if for
any x, y ∈ X,

ρY( f (x), f (y)) = ρX(x, y)

then the bijective mapping f is called an isometry. For basic concepts and results not
explicitly defined or presented in this note, the reader is referred to [1,5]. The group of
isometries of a metric space is the set of all isometries of the space, with the composition of
functions as group operation.

Let X be a metric space with distance function ρ. Determining the group of isome-
tries of metric space (X, ρ) is an interesting problem [6]. Let x = (x1, x2, . . . , xn), y =
(y1, y2, . . . , yn) ∈ Rn. The distance function dp is defined by
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dp(x, y) =

(
n

∑
i=1
|xi − yi|p

) 1
p

.

If p = ∞, then the distance function d∞ is defined by

d∞(x, y) = max{|x1 − y1|, |x2 − y2|, . . . , |xn − yn|}.

Hence (Rn, d2) is the well-known Euclidean metric space. As in [7], let p 6= 2 be a real
number, p ≥ 1 or p = ∞. Then, the group of isometries of metric space (Rn, dp) is On(Z)Rn,
where On(Z) denote the orthogonal group in dimension n over Z.

An automorphism of a graph X = (V, E) is a permutation mapping f of the vertex set V,
such that uv ∈ E(G) if and only if f (u) f (v) ∈ E(G). The set of automorphisms of a graph
forms a group under the composition of functions. This group is called the automorphism
group of the graph X. The aim of this note is to study the group of isometries of metric
spaces of vector groups over the integers.

A finitely generated additive abelian group over the integers is abbreviated as a vector
group over Z. In this note, among other results, the following two theorems are obtained.

Let A be a finitely generated additive abelian group and suppose that $ : A → A
satisfies $(x) = −x. Let R = {1, $} and T = {ta : A→ A, ta(x) = x + a, a ∈ A}. Then, RT
is the maximum subgroup of IsomX(A, S) (Theorem 3).

D E RT if and only if D ≤ T or D = RT′ where T′ = {h2 : h ∈ T} (Theorem 4).
If S = {u ∈ Zn : |u| = 1}, then Isom X(Zn, S) = On(Z)Zn (Theorem 6).

2. Abelian Groups

Let X be a metric space with distance function ρ, and let Isom X denote the group of
isometries of X. If X is also a graph, then denote by Aut X the group of automorphisms
of X.

Let X be a metric space and x ∈ X. Let r be a positive real number. The sphere centered
at x ∈ X with radius r is denoted S(x, r) = {y ∈ X : ρ(x, y) = r}.

Theorem 1. Let X be a graph. Then, Isom X = Aut X.

Proof. For any f ∈ Isom X and x, y ∈ X, we have

ρ(x, y) = ρ( f (x), f (y)).

Hence, if ρ(x, y) = 1 then ρ( f (x), f (y)) = 1 and if ρ(x, y) > 1 then ρ( f (x), f (y)) > 1.
Hence, xy ∈ E(X) if and only if f (x) f (y) ∈ E(X). Therefore, f ∈ Aut X.

For any g ∈ Aut X, we have g−1 ∈ Aut X. Let x, y ∈ X. Suppose that a =
ρ(x, y) and b = ρ(g(x), g(y)). Let x0 = x and xa = y. Then, the shortest path ex-
ists [x0, x1, x2, . . . , xa−1, xa] of length a connecting x0 and xa. Since g ∈ Aut X, for any
i ∈ {0, 1, . . . , a− 1}, xixi+1 ∈ E(X) if and only if g(xi)g(xi+1) ∈ E(X). Hence, there is a
path [g(x0), g(x2), g(x3), . . . , g(xa−1), g(xa)] of length a connecting g(x0) and g(xa). Then,
ρ(g(x), g(y)) ≤ a. Hence, b ≤ a. Let y0 = g(x) and yb = g(y). Since ρ(g(x), g(y)) = b,
the shortest path exists [y0, y1, y2, . . . , yb−1, yb] of length b connecting y0 and yb. Since
g−1 ∈ Aut X, for any i ∈ {0, 1, . . . , b− 1}, yiyi+1 ∈ E(X) if and only if g−1(yi)g−1(yi+1) ∈
E(X). Hence, there is a path [g−1(y0), g−1(y1), g−1(y2), . . . , g−1(yb−1), g−1(yb)] of length
b connecting g−1(y0) and g−1(yb). Then, ρ(x, y) ≤ b. Hence, a ≤ b. In summary,
ρ(x, y) = ρ(g(x), g(y)) and g ∈ Isom X. Therefore, we have that the set of Isom X is
equal to the set of Aut X.

Since the group operation in Isom X is composition and the same is true for the group
operation in Aut X, Isom X = Aut X.
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Lemma 1. Let X be a metric space with distance function ρ and f : X → X be a bijective
mapping. Then, f is an isometry of X if and only if for any x ∈ X and any real number r ≥ 0,
f (S(x, r)) = S( f (x), r).

Proof. Suppose that f is an isometry of X. Then, for any x ∈ X, r ≥ 0 and y ∈ S(x, r), we
have ρ(x, y) = r = ρ( f (x), f (y)). Hence, f (y) ∈ S( f (x), r). Then, f (S(x, r)) ⊆ S( f (x), r).
Let u ∈ S( f (x), r) with r ≥ 0. By the definition of a sphere, ρ(u, f (x)) = r. Let v = f−1(u).
Since f is an isometry of X, f−1 is also an isometry of X. Hence, ρ

(
f−1(u), f−1 f (x)

)
= r =

ρ(v, x). Hence, v ∈ S(x, r). Since f is a mapping, u = f (v) ∈ f (S(x, r)). Hence, we have
S( f (x), r) ⊆ f (S(x, r)). Therefore, f (S(x, r)) = S( f (x), r).

Suppose that for any x ∈ X and every real number r ≥ 0, f (S(x, r)) = S( f (x), r).
Let y ∈ X. Then, y ∈ S(x, ρ(x, y)). Since f is a mapping, f (y) ∈ f (S(x, ρ(x, y))). Since
f (S(x, r)) = S( f (x), r), f (y) ∈ S( f (x), ρ(x, y)). Therefore, ρ( f (x), f (y)) = ρ(x, y).

Corollary 1. Let A be A finitely generated additive abelian group and S be a finite generating set
of A with 0 6∈ S and −S = S. Let X = X(A, S) and $ : X → X be a bijective mapping with
$(x) = −x. Then, $ is an isometry of X = X(A, S) that fixes 0.

Proof. Let r be a nonnegative real number. By the definition of $, we have $2 = 1, that
is, $($(x)) = x. Let y ∈ S($(x), r). Since $(x) = −x, S($(x), r) = S(−x, r). Hence, y ∈
S($(x), r) if and only if y ∈ S(−x, r). Suppose that b = ρ(x,−y). Let x0 = −x and xr = y.
Since ρ(−x, y) = r, the shortest path exists [x0, x1, x2, . . . , xr−1, xr] of length r connecting x0
and xr. Since−S = S, for any i ∈ {0, 1, . . . , r− 1},−xi+1 + xi ∈ S if and only if xi+1− xi ∈ S.
Then, a path exists [−x0,−x1,−x2, . . . ,−xr−1,−xr] of length r connecting −x0 and −xr.
Then, ρ(x,−y) ≤ r. Hence, b ≤ r. Let y0 = x and yb = −y. Since b = ρ(x,−y), the
shortest path exists [y0, y1, y2, . . . , yb−1, yb] of length b connecting y0 and yb. Since −S = S,
for any i ∈ {0, 1, . . . , b − 1}, −yi+1 + yi ∈ S if and only if yi+1 − yi ∈ S. Then, a path
exists [−y0,−y1,−y2, . . . ,−yb−1,−yb] of length b connecting −y0 and −yb. Since y = −yb,
ρ(−x, y) ≤ b. Hence, r ≤ b. In summary, b = r. Since ρ(x,−y) = b = r = ρ(−x, y),
y ∈ S(−x, r) if and only if −y ∈ S(x, r). Therefore, $(y) ∈ S(x, r). Since $ is a mapping,
$(y) ∈ S(x, r) if and only if y = $($(y)) ∈ $(S(x, r)). Therefore, $(S(x, r)) = S($(x), r). By
Lemma 1, $ is an isometry of X. Since −0 = 0, we have $(0) = 0.

If for every x ∈ A, $(x) = −x, then $ is called a reflection at 0. It is clear that $2 = 1.
Denote R = {1, $}.

Lemma 2. Let A be a finitely generated additive abelian group and S be a finite generating set of A
with 0 6∈ S and −S = S. Then, R = {1, $} ≤ Isom X(A, S).

Proof. By Corollary 1, $ ∈ Isom X(A, S). Since $2 = 1, {1, $} ≤ Isom X(A, S).

Let a ∈ A be fixed. Define ta : A→ A by ta(x) = x + a. The mapping ta is called the
translation by a. By this definition, t0 = 1. Denote T = {ta : a ∈ A}.

Corollary 2. Let A be a finitely generated additive abelian group and S be a finite generating set of
A with 0 6∈ S and −S = S. Then, T ⊆ IsomX(A, S).

Proof. Let r be a nonnegative real number and y ∈ S(ta(x), r). Since ta(x) = x + a,
S(ta(x), r) = S(x + a, r). Hence, y ∈ S(ta(x), r) if and only if y ∈ S(x + a, r). Suppose that
b = ρ(x, y− a). Let x0 = x + a and xr = y. Since y ∈ S(x + a, r), we have ρ(x + a, y) = r.
Hence, the shortest path exists [x0, x1, x2, . . . , xr−1, xr] of length r connecting x0 and xr. Since
(xi+1− a)− (xi− a) = xi+1− xi ∈ S, (xi− a)(xi+1− a) ∈ E(X) if and only if xixi+1 ∈ E(X).
Then, a path exists [x0 − a, x1 − a, x2 − a, . . . , xr−1 − a, xr − a] of length r connecting x0 − a
and xr − a. Since x = x0 − a and y = xr, ρ(x, y− a) ≤ r. Hence, b ≤ r. Let y0 = x and
yb = y− a. Since b = ρ(x, y− a), the shortest path exists [y0, y1, y2, . . . , yb−1, yb] of length b
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connecting y0 and yb. Since (xi+1 + a)− (xi + a) = xi+1− xi ∈ S, (xi + a)(xi+1 + a) ∈ E(X)
if and only if xixi+1 ∈ E(X). Then, a path exists [y0 + a, y1 + a, y2 + a, . . . , yb−1 + a, yb + a] of
length b connecting y0 + a and yb + a. Then, ρ(x + a, y) ≤ b. Hence, r ≤ b. Therefore, r = b.
Hence, y ∈ S(x + a, r) if and only if y− a ∈ S(x, r). Since ta is a mapping, y− a ∈ S(x, r)
if and only if y = ta(y− a) ∈ ta(S(x, r)). Therefore, ta(S(x, r)) = S(ta(x), r). By Lemma 1,
ta ∈ Isom X(A, S).

Lemma 3. Let A be a finitely generated additive abelian group and S be a finite generating set of A
with 0 6∈ S and −S = S. Then, T ≤ Isom X(A, S).

Proof. Since the composition of two translations is a translation, the set of all translations
is closed under composition. Hence, by Corollary 2, T ≤ Isom X(A, S).

Theorem 2. Let A be a finitely generated additive abelian group and S be a finite generating set of
A with 0 6∈ S and−S = S. Let T denote the group of all translations of X(A, S) and let R = {1, $}
where $ is the reflection at 0. Then, RT ≤ Isom X(A, S).

Proof. By Lemma 2 and Lemma 3, we have both R and T are subgroups of Isom X(A, S).
Let h ∈ RT. Then, a ∈ A, f ∈ R exist and g ∈ T such that h = f g and g = ta. If f = 1, then
h = f g = g = g f ∈ TR. If f 6= 1, then f = $. Since g−1 = t−a and f = $, $g = $ta and
g−1$ = t−a$. For every x ∈ X,

$g(x) = $ta(x) = $(x + a) = −x− a = t−a(−x) = t−a$(x) = g−1$(x).

Hence, $g = g−1$. Since g−1 ∈ T, h = f g = g−1 f ∈ TR. Hence, RT ⊆ TR. Similarly, we
may showed that TR ⊆ RT. Hence, we have TR = RT. Therefore, RT ≤ Isom X(A, S).

Lemma 4. Let A be a finitely generated additive abelian group and f : A → A be a bijective
mapping with f (0) = 0. If for any finite generating set S of A with 0 6∈ S and −S = S,
f ∈ Isom X(A, S), then f ∈ R.

Proof. Let f : A→ A be a bijective mapping with f (0) = 0. Suppose that f 6= 1 and f 6= $.
Suppsoe first that there exists x ∈ A such that f (x) 6= x and f (x) 6= −x. Let y = 0. Then,
f (y)− f (x) = − f (x) 6= y− x and f (y)− f (x) = − f (x) 6= x− y.

Suppose, therefore, that for any x ∈ A, f (x) = x or f (x) = −x. Since f 6= 1, there
y ∈ A exists with y 6= 0 such that f (y) = −y. Since f 6= $, x ∈ A exists with x 6= 0 such
that f (x) = x. Hence, f (y)− f (x) = −y− x 6= y− x and f (y)− f (x) = −y− x 6= x− y.
Therefore, x, y ∈ A exist such that f (y)− f (x)− x + y 6= 0 and f (y)− f (x)− y + x 6= 0.

Since A is a group and f : A→ A is a mapping, f (y)− f (x)− x + y and f (y)− f (x)−
y + x ∈ A. Since A is finitely generated, there is a finite generating set W of A with 0 6∈W
and −W = W. Hence, a generating set S exists such that S = W \ { f (y)− f (x), f (x)−
f (y)} ∪ {y− x, x− y, f (y)− f (x)− x + y, f (x)− f (y)− y + x}. Hence, a generating set
S exists such that y− x ∈ S and f (y)− f (x) 6∈ S. Therefore, ρ(x, y) 6= ρ( f (x), f (y)) and
hence f 6∈ Isom X with f (0) = 0.

Theorem 3. Let A be a finitely generated additive abelian group and $ be the reflection at 0.
Suppose that R = {1, $}, T = {ta : ta(x) = x + a, a ∈ A} and G ≥ RT. If for any finite
generating set S of A with 0 6∈ S and −S = S, G ≤ Isom X(A, S), then G = RT.

Proof. Let G be a group with G ≥ RT and G 6= RT. Then, g ∈ G \ RT exists. Let h be
defined by h(x) = g(x) − g(0). Then, h is a mapping with h(0) = 0. Since 1 ∈ T, we
have h 6∈ R. By Lemma 4, a finite generating set S of A exists with 0 6∈ S and −S = S
such that h 6∈ Isom X(A, S). Since g(x) = h(x) + g(0), g 6∈ Isom X(A, S). Therefore,
G 6≤ Isom X(A, S).
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Theorem 4. Let A be a finitely generated additive abelian group and $ be the reflection at 0.
Suppose that R = {1, $}, T = {ta : ta(x) = x + a, a ∈ A} and G ≥ RT. D E RT if and only if
D ≤ T or D = RT′ where T′ = {h2 : h ∈ T}.

Proof. If A = 1, then T = 1 = R and the conclusion of the theorem is true. Suppose that
|A| ≥ 2. Since T is an abelian group, T′ ≤ T. Let D E RT, $ be the reflection at 0 and ta be
the translation by a. Then, R′ ≤ R and T′ ≤ T exists such that D = R′T′. Hence, for any
f ∈ R, g ∈ T f ′ ∈ R′ and g′ ∈ T′, we have f g f ′g′( f g)−1 = f g f ′g′g−1 f−1 ∈ R′T′. If R′ = 1,
then D = T′ ≤ T.

Suppose, therefore, that R′ = {1, $}. If f ′ = $, then f g$g′g−1 f−1 ∈ D. Suppose that
g = ta ∈ T and g′ = tb ∈ T′, a, b ∈ A. If f = 1, then for any x ∈ X,

f g$g′g−1 f−1(x) = g$g′g−1(x) = g$g′(x− a) = g$(x− a + b)

= g(−x + a− b) = −x + 2a− b = t2a−b$(x).

Hence, t2a−b$ ∈ D. If f = $, then for any x ∈ X,

f g$g′g−1 f−1(x) = f g$g′g−1(−x) = f g$g′(−x− a) = f g$(−x− a + b)

= f g(x + a− b) = f (x + 2a− b) = −x− 2a + b = t−2a+b$(x).

Hence, t−2a+b$ ∈ D. Since $ ∈ D, we have t−2a+b ∈ D and t2a−b ∈ D. Since t−2a+b, t2a−b ∈
T, we have t−2a+b, t2a−b ∈ D ∩ T. At the beginning of the proof we have concluded
D = R′T′. By our assumption, R′ = {1, $}. Hence, D = R′T′ = {1, $}T′ = T′ ∪ $T′.
Therefore, D∩ T = (T′ ∪ $T′)∩ T = (T′ ∩ T)∪ ($T′ ∩ T). Suppose that there is f ∈ $T′ ∩ T.
Then, f ∈ $T′ and f ∈ T. Hence, a, b ∈ A exist (a, b are fixed elements) such that f = ta
and f = $tb. Hence, for arbitrary x ∈ X, x + a = −(x + b). That is, 2x = −(a + b),
a contradiction to the assumption that |A| ≥ 2. Hence, $T′ ∩ T = ∅. Since T′ ≤ T,
D ∩ T = (T′ ∩ T) ∪∅ = T′ ∩ T = T′. Hence, t2a−b, t−2a+b ∈ T′. Since tb, t−b ∈ T′, we have
t2a, t−2a ∈ T′. Hence, for any h ∈ T, h2 ∈ T′.

If D ≤ T, then for any f ∈ R, g ∈ T and g′ ∈ D, we have ( f g)g′( f g)−1 = f gg′g−1 f−1.
Since A is abelian, T is abelian. Hence, f gg′g−1 f−1 = f g′ f−1. Suppose that g′ = ta. If
f = 1, then f g′ f−1 = g′. If f = $, then

f g′ f−1(x) = f g′(−x) = f (−x + a) = x− a = (g′)−1(x).

Since g′, (g′)−1 ∈ D, we have D E RT.
Suppose, conversely, that for T′ = {h2 : h ∈ T}, D = RT′. Then, for any f , f ′ ∈ R,

g ∈ T and g′ ∈ T′, we have ( f g) f ′g′( f g)−1 = f g f ′g′g−1 f−1. Suppose that f ′ = 1. Then,
f g f ′g′g−1 f−1 = f gg′g−1 f−1. Since T is abelian, f gg′g−1 f−1 = f g′ f−1. Suppose that
g′ = ta. If f = 1, then f g′ f−1 = g′. If f = f , then

f g′ f−1(x) = f g′(−x) = f (−x + a) = x− a = (g′)−1(x).

Since both g′, (g′)−1 ∈ D, we have D = RT′ E RT. Suppose that f ′ = $, g = ta ∈ T and
g′ = tb ∈ T′, a, b ∈ A.

If f = 1, then

f g f ′g′g−1 f−1(x) = g f ′g′g−1(x) = g f ′g′(x− a) = g f ′(x− a + b)

= g(−x + a− b) = −x + 2a− b = $t−2a+b(x).

If f = $, then

f g f ′g′g−1 f−1(x) = f g f ′g′g−1(−x) = f g f ′g′(−x− a) = f g f ′(−x− a + b)

= f g(x + a− b) = f (x + 2a− b) = −x− 2a + b = $t2a−b(x).
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Since T′ = {h2 : h ∈ T}, t2a ∈ T′. Since tb ∈ T′, we have t2a−b, t−2a+b ∈ T′. Hence,
$t−2a+b, $t2a−b ∈ RT′ = D. Therefore, D E RT.

3. Vector Groups

In this section, we consider the vector groups over Z with finite generating set S =
{u ∈ Zn : |u| = 1}, that is, the set of all unit vectors.

The following Lemma is straightforward from the definition of X(Zn, S).

Lemma 5. Let p = (p1, p2, . . . , pn), q = (q1, q2, . . . , qn) ∈ X(Zn, S). Then, ρ(p, q) =
n
∑

i=1
|qi −

pi|.

Let P, Q be nonempty subsets of X with finite or countably infinite cardinality. Thus,
we may write P = {v1, v2, . . . , vn, . . .}. If for every x, y ∈ Q, x 6= y implies ρ(vi, x) 6= ρ(vi, y)
for at least one index i; then, P is said to resolve Q and is called a resolving set or briefly a
resolver for Q.

Lemma 6. Let P, Q ⊆ X and f , g ∈ Isom X. Suppose that P resolves Q, f (P) = P = g(P) and
f (Q) = Q = g(Q). If f |P = g|P, then f |Q = g|Q.

Proof. Suppose that there exists x ∈ Q such that f (x) 6= g(x). Since P resolves Q, there
exists v ∈ P such that ρ( f (v), f (x)) 6= ρ( f (v), g(x)). Since f |P = g|P, ρ( f (v), f (x)) 6=
ρ(g(v), g(x)). Since f , g ∈ Isom X, ρ(v, x) = ρ( f (v), f (x)) 6= ρ(g(v), g(x)) = ρ(v, x). This
is a contradiction. Therefore, f |Q = g|Q.

Lemma 7. Let X = X(Zn, S) and r be a positive integer. Then, S(0, r) resolves S(0, r + 1).

Proof. Let r be a positive integer, p = (p1, p2, . . . , pn) and q = (q1, q2, . . . , qn) be two
different points in S(0, r + 1). Then, |p1| + |p2| + · · · + |pn| = |q1| + |q2| + · · · + |qn|.
Suppose that i ∈ {1, 2, . . . , n} exists such that |pi| < |qi|. Let

x =

(
p1, p2, . . . , pi−1,

pi(|pi| − 1)
|pi|

, pi+1, pi+2, . . . , pn

)
.

Then, x ∈ S(0, r). Since |pi| < |qi| and
∣∣∣∣ pi(|pi| − 1)

|pi|

∣∣∣∣ < |pi|, ρ(x, p) = 1 < ρ(x, q). Suppose,

therefore, that for any i ∈ {1, 2, . . . , n}, |pi| = |qi|. Then, i ∈ {1, 2, . . . , n} exists such that
pi = −qi 6= 0. Let j ∈ {1, 2, . . . , n} with j 6= i and

x =

(
p1, p2, . . . , pj−1,

pj(|pj| − 1)
|pj|

, pj+1, pj+2, . . . , pn

)
.

Then, x ∈ S(0, r). Since

∣∣∣∣∣ pj(|pj| − 1)
|pj|

− pj

∣∣∣∣∣ = 1 and |pi − qi| > 1, ρ(x, p) = 1 < ρ(x, q).

Therefore, S(0, r) resolves S(0, r + 1).

Theorem 5. Let X = X(Zn, S) and f ∈ Isom X(Zn, S). Then, f is a linear mapping.

Proof. Consider the standard orthonormal basis e1, e2, . . . , en. For i = 1, 2, . . . , n, let
si = ei and sn+i = −ei. By the definition of S, we have S = {s1, s2, . . . , s2n}. Since f ∈
Isom X(Zn, S), f (S) = S. Let x = (x1, x2, . . . , xn) ∈ Zn. Then, x = x1s1 + x2s2 + · · ·+ xnsn.
Hence, f (x) = f (x1s1 + x2s2 + · · ·+ xnsn).
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Let g(x) = x1 f (s1) + x2 f (s2) + · · ·+ xn f (sn). Since f (S) = S, for x, y ∈ Zn, we have
ρ(g(x), g(y)) = |x1− y1|+ |x2− y2|+ · · ·+ |xn − yn| = ρ(x, y). Hence, g ∈ Isom X(Zn, S).
Let u, v ∈ Zn and l, m ∈ Z. Then,

g(lu + mv) = g(lu1 + mv1, lu2 + mv2, . . . , lun + mvn)

= (lu1 + mv1) f (s1) + (lu2 + mv2) f (s2) + · · ·+ (lun + mvn) f (sn)

= l(u1 f (s1) + · · ·+ un f (sn)) + m(v1 f (s1) + · · ·+ vn f (sn))

= lg(u) + mg(v).

Hence g is a linear mapping.
We now show that f (−si) = − f (si). Suppose that f (−si) 6= − f (si). Then, j, k ∈

{1, 2, . . . , 2n} exist with j 6= k − n, j 6= k and j 6= k + n such that sj = f (−si) and sk =
f (si). Since sj 6= −sk, we have (sj + sk) ∈ S(0, 2) and ( f (−si) + f (si)) ∈ S(0, 2). Hence,
ρ( f (−si) + f (si), f (−si)) = | f (si)| = |sk| = 1 and ρ( f (−si) + f (si), f (si)) = | f (−si)| =
|sj| = 1. Since f ∈ Isom X(Zn, S), we have f−1( f (−si) + f (si)) ∈ S(0, 2), ρ( f−1( f (−si) +

f (si)),−si) = 1 and ρ( f−1( f (−si) + f (si)), si) = 1. Let x = f−1( f (−si) + f (si)). Then, we
have x ∈ S(0, 2), ρ(x,−si) = 1 and ρ(x, si) = 1. We show that there is no such x. Since
x ∈ S(0, 2) and ρ(x, si) = 1, l ∈ {1, 2, . . . , 2n} exists with l 6= i such that x = si + sl or
x = 2si. Hence, ρ(x,−si) > 1. This contradicts ρ(x,−si) = 1. Hence, there is no such x.
Therefore, we have f (−si) = − f (si).

We now show that f = g. If r = 1, then S(0, r) = S(0, 1) = S. Hence, for any x ∈ S,
i ∈ {1, 2, . . . , n} exists such that x = si or x = −si. Since f (−si) = − f (si), we have
f (x) = f (si) = 1 f (si) = g(x) or f (x) = f (−si) = − f (si) = g(x).

Suppose that r ≥ 1 and any x ∈ S(0, r), f (x) = g(x). By Lemma 7, S(0, r) resolves
S(0, r + 1). Since f , g ∈ Isom X(Zn, S), f (S(0, r)) = g(S(0, r)) = S(0, r) and f (S(0, r +
1)) = g(S(0, r + 1)) = S(0, r + 1). By Lemma 6, for any y ∈ S(0, r + 1), f (y) = g(y). Hence,
f = g and f is a linear mapping.

As in [8] (p. 39), the orthogonal group in dimension n over Z is denoted On(Z).

Lemma 8. M ∈ On(Z) if and only if each column and row of M has exactly one non-zero entry,
that is 1 or −1.

Proof. For any M ∈ On(Z), we have MMT = I = MT M. Let R be a row of M and C be
a column of M. Since every entry of the main diagonal of I is 1, we have RRT = 1 and
CTC = 1. Since entries of R and C are integers, R has exactly one non-zero element, which
is 1 or −1. The same is true for C.

Suppose that every row and every column has exactly one non-zero entry that is 1
or −1. Then, for each row R and each column C, RRT = 1 = CTC. If R′ is a row of M
and R′ 6= R, then R′RT = 0 = RR′T . The same is true for the columns of M. Hence,
MMT = I = MT M.

We now determine the group of isometries of metric space X(Zn, S). We first consider
the isometries that fixes 0.

Lemma 9. Let M be an n× n matrix over R. Then, M ∈ On(Z) if and only if f = Mx is an
isometry of X(Zn, S) that fixes 0.

Proof. Let M = (mij)n×n. Suppose that f (x) = Mx is an isometry of X(Zn, S) that fixes
0. Consider the standard orthonormal basis e1, e2, . . . , en. Let si = ei and sn+i = −ei,
i ∈ {1, 2, . . . , n}. By the definition of S, we have S = {s1, s2, . . . , s2n}. Then, for any si ∈ S,
f (si) ∈ S. Hence Msi ∈ S. Therefore, for any j ∈ {1, 2, . . . , n}, we have|m1j|+ |m2j|+ · · ·+
|mnj| = 1. Hence, each column of M has exactly one non-zero entry that is equal to 1 or −1.

We now show that each row of M has exactly one non-zero entry that is 1 or −1. Since
f is a mapping, f (Zn) ⊆ Zn. Suppose that i, j ∈ {1, 2, . . . , n} exist such that mij 6∈ Z. Then,
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f (ej) = Mej 6∈ Z. Hence, if f is a mapping and f (x) = Mx, then every entry of M is
an integer. Since f is an isometry of X(Zn, S), f (S) = S. Suppose that i, j ∈ {1, 2, . . . , n}
exist such that mij 6∈ {−1, 0, 1}. Then, the absolute value of the i-th entry of Mej is at
least 2. By Lemma 5, ρ(0, f (ej)) = ρ(0, Mej) is equal to the sum of the absolute values of
the entries of Mej. Hence, ρ(0, f (ej)) ≥ 2. This contradicts f (S) = S. Hence, for every
i, j ∈ {1, 2, . . . , n}, mij ∈ {−1, 0, 1}. Suppose that M has a zero row. Then M is singular.
This contradicts the assumption that f is bijective. Suppose that a row of M exists with
at least two nonzero entries. Let mij and mik be nonzero. Then, |mij| = |mik| = 1. If
mij = mik, then Msj = Msk. This contradicts the assumption that f is a bijective mapping.
If mij = −mik, then Msj = Msn+k. This contradicts the assumption that f is a bijective
mapping. Therefore, each row of M has exactly one non-zero element that is 1 or −1. By
Lemma 8, M ∈ On(Z).

Suppose, conversely, that M ∈ On(Z). Let

x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ Zn.

By Lemma 5, ρ(x, y) =
n
∑

i=1
|xi − yi|. By Lemma 5,

ρ(Mx, My) =
n

∑
i=1

∣∣∣∣∣ n

∑
j=1

mijxj −
n

∑
j=1

mijyj

∣∣∣∣∣ = n

∑
i=1

∣∣∣∣∣ n

∑
j=1

(mijxj −mijyj)

∣∣∣∣∣
=

n

∑
i=1

∣∣∣∣∣ n

∑
j=1

mij(xj − yj)

∣∣∣∣∣.
Let i, k ∈ {1, 2, . . . , n} be fixed. Suppose that mik 6= 0. By Lemma 8, each row of M has
exactly one non-zero entry which is −1 or 1. Hence,∣∣∣∣∣ n

∑
j=1

mij(xj − yj)

∣∣∣∣∣ = |xk − yk|.

and hence
n

∑
i=1

∣∣∣∣∣ n

∑
j=1

mij(xj − yj)

∣∣∣∣∣ = n

∑
k=1
|xk − yk| = ρ(x, y).

Hence, f (x) = Mx defines an isometry f .

Since the group { f : f = Mx, M ∈ On(Z)} isomorphic On(Z), we denote On(Z) =
{ f : f = Mx, M ∈ On(Z)}. Since the group of all translations of X(Zn, S) is isomorphic to
Zn, we may write Zn = { f : f = x + a, a ∈ Zn}.

Theorem 6. Isom X(Zn, S) = On(Z)Zn.

Proof. By Theorem 5 and Lemma 9, the group of isometries of X(Zn, S) that fixes 0 is On(Z).
Hence, On(Z) ≤ Isom X(Zn, S). By Lemma 3, all translations of X(Zn, S) form a subgroup
of Isom X(Zn, S). That is, Zn ≤ Isom X(Zn, S). Let f ∈ On(Z) and g ∈ Zn. Then, by
Lemma 9, M ∈ On(Z) exists such that f (x) = Mx. We also have, a ∈ Zn such that g(x) =
x + a. Let h(x) = x + Ma. Then, h ∈ Zn. Hence, h f (x) = h(Mx) = Mx + Ma = M(x +
a) = f (x + a) = f g(x). Hence, ZnOn(Z) ⊆ On(Z)Zn. Let p(x) = x + M−1a. Then, p ∈ Zn.
Hence, f p(x) = f (x + M−1a) = M(x + M−1a) = Mx + a = g(Mx) = g f (x). Hence,
On(Z)Zn ⊆ ZnOn(Z). Therefore, On(Z)Zn = ZnOn(Z) and On(Z)Zn ≤ Isom X(Zn, S).

Let g ∈ Isom X(Zn, S). Let t(x) = g(x)− g(0). Then, t is an isometry of X(Zn, S) with
t(0) = 0. By Theorem 5 and Lemma 9, t ∈ On(Z). Since g(x) = t(x) + g(0), g ∈ On(Z)Zn.
Therefore, Isom X(Zn, S) = On(Z)Zn.
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Let S = {u ∈ Z2 : |u| = 1} = {(0, 1), (0,−1), (1, 0), (−1, 0)}. Then, the group
of isometries of metric spaces arising from Gaussian integers Isom X(Z2, S) is O2(Z)Z2,
where

O2(Z) =
{(

1 0
0 1

)
,
(
−1 0
0 −1

)
,
(

0 −1
1 0

)
,
(

0 1
−1 0

)
,(

1 0
0 −1

)
,
(
−1 0
0 1

)
,
(

0 1
1 0

)
,
(

0 −1
−1 0

)}
.

4. Conclusions

For any finitely generated additive abelian group A and finite generating set S with
0 6∈ S and −S = S, the maximum subgroup of IsomX(A, S) is RT, where R = {1, $}
and T = {ta : ta(x) = x + a, a ∈ A}. D E RT if and only if D ≤ T or D = RT′ where
T′ = {h2 : h ∈ T}. For the vector groups over integers with finite generating set S = {u ∈
Zn : |u| = 1}, Isom X(Zn, S) = On(Z)Zn.
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