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Abstract: We consider an optimal boundary control problem for a one-dimensional wave equation
consisting of two non-homogenous segments with piecewise constant characteristics. The wave
equation describes the longitudinal vibrations of a non-homogeneous rod or the transverse vibrations
of a non-homogeneous string with given initial, intermediate, and final conditions. We assume that
wave travel time for each of the sections is the same. The control is carried out by shifting one end
with the other end fixed. The quality criterion is set on the entire time interval. A constructive
approach to building an optimal boundary control is proposed. The results obtained are illustrated
with an analytical example.
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1. Introduction

Many researchers pay attention to the study of control problems and optimal control
problems for vibration processes [1–15]. Modeling and control of dynamic systems with
intermediate conditions is an actively developing direction in modern control theory.
In particular, Refs. [2–15] address the study of such problems. This scientific direction has
not yet been sufficiently studied, is in the process of formation, and there are only some
results on it. The study of problems for such heterogeneous distributed systems is provided,
in particular, in [7–20]. The conditions that determine the contact interactions of materials
of heterogeneous bodies are of great importance. Therefore, in the course of mathematical
modeling, taking into account these conditions of conjugation (joint, gluing) of two sections
with different physical characteristics of materials should correspond to the conditions for
the continuous outflow of excited wave processes. One of the first control problems for a
distributed oscillatory system consisting of two piecewise homogeneous media was set
by A.G. Butkovsky and studied in [8]. The problems of the optimization of the boundary
control of vibrations of a rod consisting of heterogeneous sections were studied in [9,10]
(and other works by the same author and his followers). For the study of these problems,
the d’Alembert method was used. The authors of [13–20] studied boundary value problems
for an equation describing the process of longitudinal vibrations of a rod with piecewise
constant characteristics (consisting of at least two sections) with a free or fixed right end.
Research was carried out in the class of generalized solutions.

This work aims to develop a constructive approach to building an optimal boundary
control function for an inhomogeneous wave equation consisting of two heterogeneous
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sections with given initial, intermediate, and final conditions with a quality criterion given
over the entire time interval.

2. Problem Statement

We consider longitudinal vibrations of a piecewise homogeneous rod located along
the segment −l1 ≤ x ≤ l and comprising two subsegments. The segment −l1 ≤ x ≤ 0 has

a uniform density ρ1 = const, Young’s modulus k1 = const and a wave velocity a1 =
√

k1
ρ1

.
The second segment 0 ≤ x ≤ l has a uniform density ρ2 = const, Young’s modulus

k2 = const and a wave velocity a2 =
√

k2
ρ2

. As in [9], we assumed that the lengths l1 and
l of the rod segments are such that the wave velocity on −l1 ≤ x ≤ 0 coincides with the
wave velocity on 0 ≤ x ≤ l, i.e.,

l1
a1

=
l

a2
. (1)

Let the state (longitudinal vibrations) of the rod (or transverse vibrations of the string)
be described by the function Q (x, t), −l1 ≤ x ≤ l, 0 ≤ t ≤ T, and the deviations from the
equilibrium state satisfy the following wave equation,

∂2Q(x, t)
∂t2 =

 a2
1

∂2Q(x,t)
∂x2 , −l1 ≤ x ≤ 0, 0 ≤ t ≤ T,

a2
2

∂2Q(x,t)
∂x2 , 0 ≤ x ≤ l, 0 ≤ t ≤ T,

(2)

with the boundary conditions

Q(−l1, t) = µ(t), Q(l, t) = 0, 0 ≤ t ≤ T, (3)

and with the conjugation conditions at the connection point x = 0 of the segments,

Q(0− 0, t) = Q(0 + 0, t), a2
1ρ1

∂Q(x, t)
∂x

|x=0−0 = a2
2ρ2

∂Q(x, t)
∂x

|x=0+0 . (4)

The dynamics of a piecewise-homogeneous vibratory process represented by a homoge-
neous wave equation of variable structure (2) describes not only longitudinal vibrations
of a piecewise-homogeneous rod (ρ is density, k is elasticity modulus), but also transverse
vibrations of a piecewise-homogeneous string (ρ is density, k is string tension).

Let there be given initial (for t = t0 = 0) and final (for t = T) conditions,

Q(x, 0) = ϕ0(x),
∂Q(x, t)

∂t

∣∣∣∣
t=0

= ψ0(x), −l1 ≤ x ≤ l, (5)

Q(x, T) = ϕT(x),
∂Q(x, t)

∂t

∣∣∣∣
t=T

= ψT(x), −l1 ≤ x ≤ l. (6)

Additionally, let there be given at some intermediate moment of time t1 (0 = t0 < t1 <
t2 = T) an intermediate state in the form:

Q(x, t1) = ϕ1(x), −l1 ≤ x ≤ l. (7)

In conditions (3), functions µ(t) are control actions (boundary control).
It is assumed that Q(x, t) ∈ C2(ΩT), where

ΩT = {(x, t) : x ∈ [−l1, l], t ∈ [0, T]},

and ϕi(x) ∈ C2[−l1, l], i = 0, 2, ψ0(x), ψT(x) ∈ C1[−l1, l].
We also assume that for all functions the following consistency conditions are satisfied,

µ(0) = ϕ0(−l1), µ̇(0) = ψ0(−l1), ϕ0(l) = ψ0(l) = 0,
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µ(t1) = ϕ1(−l1), ϕ1(l) = 0, µ(T) = ϕT(−l1), (8)

µ̇(T) = ψT(−l1), ϕT(l) = ψT(l) = 0.

Let us formulate the following problem of optimal boundary control of oscillations for
system (2) with given values at intermediate times.

Among the possible controls µ(t), 0 ≤ t ≤ T, condition (3) is required to find such an
optimal control that provides transition of the oscillatory motion of system (2) from a given
initial state (5) to the final state (6), at the same time ensuring the fulfillment of condition (7)
and minimizing the functional

T∫
0

µ2(t)dt. (9)

3. Reduction to the Problem with Zero Boundary Conditions

To solve the problem under study, introduce a new variable [20],

ξ =

{ a2
a1

x, −l1 ≤ x ≤ 0,

x, 0 ≤ x ≤ l,
(10)

which leads to stretching or compression of the segment −l1 ≤ x ≤ 0 with respect to the
point x = 0. Taking into account (1), the segment −l1 ≤ x ≤ 0 turns into the segment
−l ≤ ξ ≤ 0. For the function Q(ξ, t), we obtain the same equations for the segments of the
same length

∂2Q(ξ, t)
∂t2 =

 a2
2

∂2Q(ξ,t)
∂ξ2 −l ≤ ξ ≤ 0, 0 ≤ t ≤ T,

a2
2

∂2Q(ξ,t)
∂ξ2 , 0 ≤ ξ ≤ l, 0 ≤ t ≤ T,

or
∂2Q(ξ, t)

∂t2 = a2
2

∂2Q(ξ, t)
∂ξ2 , −l ≤ ξ ≤ l, 0 ≤ t ≤ T, (11)

with the corresponding initial conditions

Q(ξ, 0) = ϕ0(ξ),
∂Q(ξ, t)

∂t

∣∣∣∣
t=0

= ψ0(ξ), −l ≤ x ≤ l, (12)

boundary conditions

Q(−l, t) = µ(t), Q(l, t) = 0, 0 ≤ t ≤ T, (13)

intermediate conditions
Q(ξ, t1) = ϕ1(ξ), −l ≤ ξ ≤ l, (14)

final conditions

Q(ξ, T) = ϕT(ξ),
∂Q(ξ, t)

∂t

∣∣∣∣
t=T

= ψT(ξ), −l ≤ ξ ≤ l, (15)

and conjugation conditions at the point ξ = 0 where the segments connect

Q(0− 0, t) = Q(0 + 0, t), a1ρ1
∂Q(ξ, t)

∂ξ

∣∣
ξ=0−0 = a2ρ2

∂Q(ξ, t)
∂ξ

∣∣
ξ=0+0 . (16)

Since conditions (13) are not homogeneous, the solution to (11) can be constructed as
a sum,

Q(ξ, t) = V(ξ, t) + W(ξ, t), (17)
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where V(ξ, t) is a function with boundary conditions,

V(−l, t) = V(l, t) = 0, (18)

that require definitions, whereas W(ξ, t) is a solution to (11) with non-homogeneous
boundary conditions,

W(−l, t) = µ(t), W(l, t) = 0. (19)

The function W(ξ, t) has the form

W(ξ, t) =
1
2l
(l − ξ)µ(t). (20)

Substitute (17) into (11). Taking into account (20), we obtain the following equations
for defining the function V(ξ, t):

∂2V(ξ, t)
∂t2 = a2

2
∂2V(ξ, t)

∂ξ2 + F(ξ, t), −l ≤ ξ ≤ l, 0 ≤ t ≤ T, (21)

where
F(ξ, t) =

1
2l
(ξ − l)µ̈(t). (22)

The function V(ξ, t) satisfies the conjugation condition corresponding to (16) at the
connection point ξ = 0 of the segments. Note that, according to (10), we have

ϕ0(−l1) = ϕ0(−l), ϕi(−l1) = ϕi(−l), ϕT(−l1) = ϕT(−l),

ϕ1(−l1) = ϕ1(−l), ψ0(−l1) = ψ0(−l), ψT(−l1) = ψT(−l). (23)

By virtue of conditions (12), (14), and (15), the function V(ξ, t) should satisfy the
following set of conditions: initial

V(ξ, 0) = ϕ0(ξ)−
1
2l
(l − ξ)µ(0),

∂V(ξ, t)
∂t

∣∣∣∣
t=0

= ψ0(ξ)−
1
2l
(l − ξ)µ̇(0), (24)

intermediate
V(ξ, t1) = ϕ1(ξ)−

1
2l
(l − ξ)µ(t1), (25)

and final

V(ξ, T) = ϕT(ξ)−
1
2l
(l − ξ)µ(T),

∂V(ξ, t)
∂t

∣∣∣∣
t=T

= ψT(ξ)−
1
2l
(l − ξ)µ̇(T). (26)

Taking into account conditions (7) and (23), conditions (24)–(26) can be written as
follows, respectively:

V(ξ, 0) = ϕ0(ξ)−
1
2l
(l − ξ)ϕ0(−l),

∂V(ξ, t)
∂t

∣∣∣∣
t=0

= ψ0(ξ)−
1
2l
(l − ξ)ψ0(−l), (27)

V(ξ, t1) = ϕ1(ξ)−
1
2l
(l − ξ)ϕ1(−l), (28)

V(ξ, T) = ϕT(ξ)−
1
2l
(l − ξ)ϕT(−l),

∂V(ξ, t)
∂t

∣∣∣∣
t=T

= ψT(ξ)−
1
2l
(l − ξ)ψT(−l). (29)

Thus, the original problem has been reduced to the problem of motion optimal control
described by Equation (21) with homogeneous boundary conditions (18), which is formu-
lated as follows: it is required to find such optimal boundary control µ(t), 0 ≤ t ≤ T, that
provides a transition of the oscillation described by Equation (21) with boundary condi-
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tions (18) from the given initial state (27) to the final state (29) through the intermediate
states (28).

4. Reduction of the Problem with Zero Boundary Conditions to the Problem
of Moments

Considering that the boundary conditions (18) are homogeneous, the consistency
conditions are satisfied and the functions used belong to the indicated corresponding
spaces, we seek the solution to (21) in the form:

V(ξ, t) =
∞

∑
k=1

Vk(t) sin
πkξ

l
, Vk(t) =

1
l

l∫
−l

V(ξ, t) sin
πkξ

l
dξ. (30)

Use the Fourier series with the basis
{

sin πkξ
l

}
(k = 1, 2, . . .) to write down functions

F(ξ, t), ϕi(ξ) (i = 0, m + 1), ψ0(ξ) and ψT(ξ). Substitute their values together with V(ξ, t)
into Equations (21), (22) and conditions (27)–(29). We obtain

V̈k(t) + λ2
kVk(t) = Fk(t), λ2

k =

(
a2πk

l

)2
, (31)

Fk(t) = −
a2

λkl
µ̈(t), (32)

Vk(0) = ϕ
(0)
k −

a2

λkl
ϕ0(−l), V̇k(0) = ψ

(0)
k −

a2

λkl
ψ0(−l), (33)

Vk(t1) = ϕ
(i)
k −

a2

λkl
ϕ1(−l), (34)

Vk(T) = ϕ
(T)
k − a2

λkl
ϕT(−l), V̇k(T) = ψ

(T)
k − a2

λkl
ψT(−l). (35)

Here, the Fourier coefficients of the functions F(ξ, t), ϕi(ξ) (i = 0, 2), ψ0(ξ), and ψT(ξ)

are denoted by Fk(t), ϕ
(i)
k (i = 0, 1, 2), ψ

(0)
k , and ψ

(T)
k , respectively.

The general solution to the non-homogeneous Equation (31) with conditions (33)
having the form

Vk(t) = Vk(0) cos λkt +
1

λk
V̇k(0) sin λkt +

1
λk

t∫
0

Fk(τ) sin λk(t− τ)dτ. (36)

Further, taking into account the intermediate (34) and final (35) conditions, we apply
the approaches given in [2–4] to (36). Then, the control functions µ(t) for each k should
satisfy the following integral relations:

T∫
0

µ(τ) sin λk(T − τ)dτ = C1k,
T∫

0

µ(τ) cos λk(T − τ)dτ = C2k,

T∫
0

µ(τ)h(1)k (τ)dτ = C1k(t1), (37)

where

h(1)k (τ) =

{
sin λk(t1 − τ), 0 ≤ τ ≤ t1,

0, t1 < τ ≤ T,

C1k =
1

λ2
k

[
λkl
a2

C̃1k + X1k

]
, C2k =

1
λ2

k

[
λkl
a2

C̃2k + X2k

]
,
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C1k(t1) =
1

λ2
k

[
λkl
a2

C̃1k(t1) + X(1)
1k

]
,

C̃1k = λkVk(T)− λkVk(0) cos λkT − V̇k(0) sin λkT,

C̃2k = V̇k(T) + λkVk(0) sin λkT − V̇k(0) cos λkT,

C̃1k(t1) = λkVk(t1)− λkVk(0) cos λkt1 − V̇k(0) sin λkt1,

X1k = λk ϕT(−l)− ψ0(−l) sin λkT − λk ϕ0(−l) cos λkT, (38)

X2k = ψT(−l)− ψ0(−l) cos λkT + λk ϕ0(−l) sin λkT,

X(1)
1k = λk ϕ1(−l)− ψ0(−l) sin λkt1 − λk ϕ0(−l) cos λkt1.

Relation (37) entails the validity of the following

Proposition 1. For each n, the process described by (31) with conditions (33)–(35) is completely
controllable if and only if for any values of C1k(T), C2k(T) and C1k(t1) determined by (38) one can
find a control µ(t), t ∈ [0, T], satisfying (37).

Thus, the solution of the optimal control problem under study is reduced to finding
such boundary controls µ(t), 0 ≤ t ≤ T, that for each k = 1, 2, . . . satisfy the integral
relations (37) and provide a minimum to the functional (9). The optimal control problem for
the functional (9) with integral conditions (38) can be considered as a conditional extremum
problem from the calculus of variations.

5. Problem Solution

Since the functional (9) is the square of the norm of a linear normed space and the
integral relations (37) generated by the functions µ(t) are linear, the problem of determining
the optimal control for each k = 1, 2, . . . can be considered as a problem of moments [1,21].
Therefore, the solution can be constructed using the algorithm for solving the problem
of moments.

In practice, it is common to select the first few n harmonics of elastic oscillations
and solve the problem of control synthesis using methods of control theory for finite-
dimensional systems. Therefore, we construct a solution to problems (9) and (37) for
k = 1, n using the algorithm for solving the problem of moments. Following [21], to solve
the finite-dimensional (for k = 1, n) problem of moments (9) and (37), it is necessary to find
pk, qk, γk, k = 1, n, linked by the condition

n

∑
k=1

[pkC1k(T) + qkC2k(T) + γkC1k(t1)] = 1, (39)

for which

(ρ0
n)

2 = min
(39)

T∫
0

h2
1n(τ)dτ, (40)

where

h1n(τ) =
n

∑
k=1

[
pk sin λk(T − τ) + qk cos λk(T − τ) + γkh(1)k (τ)

]
. (41)

The notation in Equation (40) means that the minimum of the functional is calculated
by condition (39).
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Without giving further constructions of the solution (since they are similar to the con-
structions given in [4,5]), note that the optimal boundary control µ0

n(τ) for any
n = 1, 2, . . . can be represented as:

µ0
n(τ) =


1

(ρ0
n)2

n
∑

k=1

[
Gk
(

p0
k , q0

k , λk, T, τ
)
+ γ0

k sin λk(t1 − τ)
]
, 0 ≤ τ ≤ t1,

1
(ρ0

n)2

n
∑

k=1
Gk
(

p0
k , q0

k , λk, T, τ
)
, t1 < τ ≤ t2 = T,

(42)

where
Gk

(
p0

k , q0
k , λk, T, τ

)
= p0

k sin λk(T − τ) + q0
k cos λk(T − τ).

Here the values p0
k , q0

k , γ0
k , k = 1, n, are the solution to Equation (40) by condition (39),

whereas

(ρ0
n)

2 =

T∫
0

{
n

∑
k=1

[
p0

k sin λk(T − τ) + q0
k cos λk(T − τ) + γ0

k h(1)k (τ)
]}2

dτ.

It should be highlighted that the values of the optimal control µ0
n(τ) at the end of the

interval [0, t1] coincide with the values at the beginning of the interval (t1, T], and this
value has the following form:

µ0
n(t1) =

1(
ρ0

n
)2

n

∑
k=1

[
p0

ksinλk(T − t1) + q0
kcosλk(T − t1)

]
.

Therefore, the obtained optimal boundary controls µ0
n(τ) are continuous on [0, T] as

functions with respect to time.
Substituting the resulting expression for the optimal function µ0

n(τ) into (32) and the
expression that we found for F0

k (t)—into (36), we obtain the function V0
k (t), t ∈ [0, T].

Further, (30) entails that

V0
n (ξ, t) =

n

∑
k=1

V0
k (t) sin

πk
l

ξ, (43)

and, using (17) and (20), the optimal vibration function Q0
n(ξ, t) for the first n harmonics

will have the form
Q0

n(ξ, t) = V0
n (ξ, t) + W0

n(ξ, t), (44)

where
W0

n(ξ, t) =
1
2l
(l − ξ)µ0

n(t). (45)

Taking into account notations from (10), and following (43)–(45), the optimal function
Q0

n(x, t) for −l1 ≤ x ≤ l can be represented as

Q0
n(x, t) =


n
∑

k=1
V0

k (t) sin πk
l1

x + 1
2 (1−

x
l1
)µ0

n(t), −l1 ≤ x ≤ 0, 0 ≤ t ≤ T,
n
∑

k=1
V0

k (t) sin πk
l x + 1

2 (1−
x
l )µ

0
n(t), 0 ≤ x ≤ l, 0 ≤ t ≤ T.

(46)

The function Q0
n(x, t) is continuous and it can be verified that it satisfies the conjugation

condition at the point x = 0 where the segments (5) meet.

6. Constructing a Solution for n = 1

Applying the approach proposed above, construct an optimal boundary control for
n = 1 (k = 1) and the corresponding string deflection function.
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For simplicity, we construct the boundary control function µn(t) for n = 1 (hence, k = 1).
In this case, to find p0

1, q0
1, γ0

1, we will have the following system of algebraic equations:

a11 p1 + b11q1 + c11γ1 = − β1

2
C11(T), d11 p1 + e11q1 + f11γ1 = − β1

2
C21(T),

a(1)11 p1 + b(1)11 q1 + g11γ1 = − β1

2
C11(t1), p1C11(T) + q1C21(T) + γ1C11(t1) = 1,

(47)

where

a11 =

T∫
0

(sin λ1(T − τ))2dτ, b11 =

T∫
0

cos λ1(T − τ) sin λ1(T − τ)dτ,

c11 =

T∫
0

h(1)1 (τ) sin λ1(T − τ)dτ, d11 =

T∫
0

sin λ1(T − τ) cos λ1(T − τ)dτ,

e11 =

T∫
0

(cos λ1(T − τ))2dτ, f11 =

T∫
0

h(1)1 (τ) cos λ1(T − τ)dτ,

a(1)11 =

T∫
0

sin λ1(T − τ)h(1)1 (τ)dτ, b(1)11 =

T∫
0

cos λ1(T − τ)h(1)1 (τ)dτ,

g11 =

T∫
0

h(1)1 (τ)h(1)1 (τ)dτ.

a11 =
T
2
− 1

2λ1
sin λ1T cos λ1T, b11 = d11 =

1
2λ1

sin2 λ1T,

c11 = a(1)11 =
t1

2
cos λ1(T − t1)−

1
2λ1

sin λ1t1 cos λ1T,

f11 = b(1)11 =
1

2λ1
sin λ1t1 sin λ1T − t1

2
sin λ1(T − t1),

e11 =
T
2
+

1
2λ1

sin λ1T cos λ1T, g11 =
t1

2
− 1

2λ1
sin λ1t1 cos λ1t1,

C11(T) = l
2aλ1

[
λ1V1(T)− λ1V1(0) cos λ1T − V̇1(0) sin λ1T

]
+

+ 1
λ2

1
[λ1 ϕT(0)− ψ0(0) sin λ1T − λ1 ϕ0(0) cos λ1T],

C21(T) = l
2aλ1

[
V̇1(T) + λ1V1(0) sin λ1T − V̇1(0) cos λ1T

]
+

+ 1
λ2

1
[ψT(0)− ψ0(0) cos λ1T + λ1 ϕ0(0) sin λ1T],

C11(t1) =
l

2aλ1

[
λ1V1(t1)− λ1V1(0) cos λ1t1 − V̇1(0) sin λ1t1

]
+

+ 1
λ2

1
[λ1 ϕ1(0)− ψ0(0) sin λ1t1 − λ1 ϕ0(0) cos λ1t1].

Next, we find a solution to system (47), i.e., the values of p0
1, q0

1, γ0
1 and β0

1:

p0
1 =

1
2∆

((
f 2
11 − e11g11

)
C11(T) + (b11g11 − c11 f11)C21(T) + (e11c11 − b11 f11)C11(t1)

)
,

q0
1 =

1
2∆

(
(b11g11 − c11 f11)C11(T) +

(
c2

11 − a11g11

)
C21(T) + (a11 f11 − b11c11)C11(t1)

)
,

γ0
1 =

1
2∆

(
(e11c11 − b11 f11)C11(T) + (a11 f11 − b11c11)C21(T) +

(
b2

11 − a11e11

)
C11(t1)

)
,

β0
1 =

1
∆

(
a11g11e11 + 2c11b11 f11 − a11 f 2

11 − e11c2
11 − g11b2

11

)
,
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where

∆ = 1
2
[(

f 2
11 − e11g11

)
C2

11(T) +
(
c2

11 − a11g11
)
C2

21(T) +
(
b2

11 − a11e11
)
C2

11(t1)
]
+

+(e11c11 − b11 f11)C11(t1)C11(T) + (b11g11 − c11 f11)C21(T)C11(T)+
+(a11 f11 − b11c11)C11(t1)C21(T).

According to (36), we obtain:

µ0
1(τ) =


µ
(1)0
1 (τ) =

p0
1sinλ1(T−τ)+q0

1cosλ1(T−τ)+γ0
1sinλ1(t1−τ)

(ρ0
1)

2 , 0 ≤ τ ≤ t1,

µ
(2)0
1 (τ) =

p0
1sinλ1(T−τ)+q0

1cosλ1(T−τ)

(ρ0
1)

2 , t1 < τ ≤ t2 = T,

where(
ρ0

1
)2

= T
2

((
q0

1
)2

+
(

p0
1
)2
)
+ t1

2

((
γ0

1
)2

+ 2γ0
1
(

p0
1 cos λ1(T − t1)− q0

1 sin λ1(T − t1)
))

+

+ 1
λ1

(
p0

1q0
1 sin2 λ1T − (γ0

1)
2

2 sin λ1t1 cos λ1t1 + γ0
1
(
q0

1 sin λ1T − p0
1 cos λ1T

)
sin λ1t1+

+
(q0

1)
2−(p0

1)
2

2 sin λ1T cos λ1T
)

.

Following (43)–(45), the optimal state function Q0
n(ξ, t) will have the form:

Q0
1(ξ, t) = V0

1 (ξ, t) + W0
1 (ξ, t) = V0

1 (t) sin
π

l
ξ +

(
1− ξ

l

)
µ0

1(t).

According to (46), the explicit expression of the optimal function Q0
1(x, t) for −l1 ≤

x ≤ l can be written as

Q0
1(x, t) =

{
V0

1 (t) sin π
l1

x + 1
2 (1−

x
l1
)µ0

1(t), −l1 ≤ x ≤ 0, 0 ≤ t ≤ T,

V0
1 (t) sin π

l x + 1
2 (1−

x
l )µ

0
1(t), 0 ≤ x ≤ l, 0 ≤ t ≤ T,

or for 0 ≤ t ≤ t1

Q0
1(x, t) =

 V0
1 (t) sin π

l1
x + 1

2 (1−
x
l1
)µ

(1)0
1 (t), −l1 ≤ x ≤ 0,

V0
1 (t) sin π

l x + 1
2 (1−

x
l )µ

(1)0
1 (t), 0 ≤ x ≤ l,

for t1 < t ≤ t2 = T

Q0
1(x, t) =

 V0
1 (t) sin π

l1
x + 1

2 (1−
x
l1
)µ

(2)0
1 (t), −l1 ≤ x ≤ 0,

V0
1 (t) sin π

l x + 1
2 (1−

x
l )µ

(2)0
1 (t), 0 ≤ x ≤ l.

7. The Example with Numerical Experiment

Let n = 1, a1 = 1
4 , a2 = 1

3 , l = 1, l1 = 3
4 , t0 = 0, t1 = 3 l

a2
= 9, T = 6 l

a2
= 18, λ1 = π

3 .
Let the following initiate state be set for t = 0

ϕ0(x) =

{
x3 + l1x2, −l1 ≤ x ≤ 0,

x3 − lx2, 0 ≤ x ≤ l,
ψ0(x) = 0, −l1 ≤ x ≤ l,

the intermediate state for t = t1 be given as

ϕ1(x) =

{
−x3 − l1x2, −l1 ≤ x ≤ 0,

−x3 + lx2, 0 ≤ x ≤ l,
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and the trivial final states be defined for t = T as

ϕT(x) = 0, ψT(x) = 0.

From formula (47) we will have the following system of algebraic equations

9p1 −
9
2

γ1 +
C11(T)

2
β1 = 0, −9

2
p1 +

9
2

γ1 = 0, 9q1 = 0, C11(T)p1 = 1,

where C11(T) = 273
32π3 . The solution is

p0
1 = γ0

1 =
32

273
π3, q0

1 = 0, β0
1 = −1024

8281
π6,

so that (
ρ0

k

)2
=

512
8281

π6.

The function µ0
1(t) has the form

µ0
1(t) =

{
0, 0 ≤ t ≤ t1,

− 91
48 π3 sin 1

3 πt, t1 ≤ t ≤ T.

For the function V0
1 (t), we have

V0
1 (t) =

 −
91

32 π3 cos 1
3 πt, 0 ≤ t ≤ t1,(

− 91
16π3 +

91t
288 π3

)
cos 1

3 πt− 91
96π4 sin 1

3 πt, t1 ≤ t ≤ T.

The graphical view of the function V0
1 (t) is illustrated in Figure 1.

– 0.1

0

0.1

2 4 6 8 10 12 14 16 18

t

Figure 1. Graphic V0
1 (t).

From Q0
1(x, t) for −l1 ≤ x ≤ l, we obtain

at 0 ≤ t ≤ t1:

Q0
1(x, t) =

{
− 91

32π3 cos 1
3 πt sin 4

3 πx, −l1 ≤ x ≤ 0,

− 91
32π3 cos 1

3 πt sin πx, 0 ≤ x ≤ l,
(48)

at t1 ≤ t ≤ T:

Q0
1(x, t) =



((
− 91

16π3 +
91t

288π3

)
cos 1

3 πt− 91
96π4 sin 1

3 πt
)

sin 4
3 πx−

− 91
96π3

(
1− 4

3 x
)

sin 1
3 πt, −l1 ≤ x ≤ 0,((

− 91
16π3 +

91t
288π3

)
cos 1

3 πt− 91
96π4 sin 1

3 πt
)

sin πx−

− 91
96π3 (1− x) sin 1

3 πt, 0 ≤ x ≤ l.

(49)

Substituting t = 0, 9, 18 into (48), (49), we obtain the following relationship:
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Q0
1(x, 0) =

{
− 91

32π3 sin 4
3 πx, −l1 ≤ x ≤ 0,

− 91
32π3 sin πx, 0 ≤ x ≤ l,

∂Q0
1(x, t)
∂t

∣∣∣∣∣
t=0

= 0,

Q0
1(x, 9) =

{ 91
32π3 sin 4

3 πx, −l1 ≤ x ≤ 0,
91

32π3 sin πx, 0 ≤ x ≤ l,

Q0
1(x, 18) = 0,

∂Q0
1(x, t)
∂t

∣∣∣∣∣
t=18

=

 −
91

288π2

(
1− 4

3 x
)

, −l1 ≤ x ≤ 0,

− 91
288π2 (1− x), 0 ≤ x ≤ l.

Let us present the results of a comparative analysis based on residual

ε1
(

x, tj
)
=
∣∣∣Q0

1(x, tj)− ϕj(x)
∣∣∣, j = 0, 1;

_
ε 1 (x, tk) =

∣∣∣Q̇0
1(x, tk)− ψk(x)

∣∣∣, k = 2.

We obtained:

max
− 3

4≤x≤1
ε1(x, 0) = max

− 3
4≤x≤1

ε1(x, 9) ≈ 0.0833, max
− 3

4≤x≤1

_
ε 1 (x, 18) ≈ 0.0566,

1∫
− 3

4

ε1(x, 0)dx =

1∫
− 3

4

ε1(x, 9)dx ≈ 0.0903,
1∫
− 3

4

_
ε 1 (x, 18)dx ≈ 0.0459.

Graphical representations of the functions Q0
1(x, 0), Q0

1(x, 9), ∂Q0
1(x,t)
∂t

∣∣∣∣
t=18

are given in

Figures 2–4.

 – 0.15
1– 0.75  – 0.30 0.15 0.60

0.10
x

Figure 2. The solid line denotes Q0
1(x, 0); the dotted line denotes ϕ0(x).

– 0.15

0.10

– 0.75 – 0.30 0.15 0.60 1

x

Figure 3. The solid line denotes Q0
1(x, 9); the dotted line denotes ϕ1(x).

– 0.15
– 0.75 – 0.30 0.15 0.60 1

x

Figure 4. Graphical representation of the function Q̇0
1(x, 18).

Explicit expressions for the optimal function of boundary control µ0
1(t) and the cor-

responding function of deflection of an inhomogeneous string Q0
1(x, t) are constructed

for n = 1. The performed calculations and comparisons of the results showed that the
behavior of the functions of deflection of an inhomogeneous string is quite close to the
given initial functions.

8. Conclusions

In this paper, we considered the problem of optimal boundary control of a one-
dimensional wave equation describing transverse vibrations of a piecewise homogeneous
string or longitudinal vibrations of a piecewise homogeneous rod. A constructive approach
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was proposed for building an optimal boundary control function for one-dimensional
non-homogeneous oscillatory processes. In this case, the explicit expression of the optimal
boundary control function is represented through the given initial and final functions of
the deflection and velocities of the points of the distributed system. The results can be used
when designing the optimal boundary control of non-homogeneous oscillation processes
in physical and technological systems.

Author Contributions: Conceptualization, V.B.; methodology, V.B.; software, S.S.; validation, V.B.
and S.S.; formal analysis, V.B. and S.S.; investigation, V.B. and S.S.; resources, V.B. and S.S.; data
curation, V.B. and S.S.; writing—original draft preparation, V.B. and S.S.; writing—review and editing,
V.B. and S.S.; visualization, V.B. and S.S.; supervision, V.B. and S.S.; project administration, V.B. and
S.S.; funding acquisition, V.B. and S.S. All authors have read and agreed to the published version of
the manuscript.

Funding: The research of S.S. was carried out within the state assignment of Ministry of Science
and Higher Education of the Russian Federation (Project FWEU-2021-0006, theme No. AAAA-A21-
121012090034-3).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Butkovskii, A.G. Control Methods for Systems with Distributed Parameters; Nauka: Moscow, Russia, 1975. (In Russian)
2. Barseghyan, V.R. Control Problem of String Vibrations with Inseparable Multipoint Conditions at Intermediate Points in Time.

Mech. Solids 2019, 54, 1216–1226. [CrossRef]
3. Barseghyan, V.R. The problem of optimal control of string vibrations. Intern. Appl. Mech. 2020, 56, 471–480. [CrossRef]
4. Barseghyan, V.R.; Solodusha, S.V. Optimal Boundary Control of String Vibrations with Given Shape of Deflection at a Certain

Moment of Time. Lect. Notes Control Inf. Sci. 2021, 12755, 299–313.
5. Barseghyan, V.R.; Solodusha, S.V. On One Problem in Optimal Boundary Control for String Vibrations with a Given Velocity

of Points at an Intermediate Moment of Time. In Proceedings of the 2021 International Russian Automation Conference
(RusAutoCon), Sochi, Russia, 5–11 September 2021; pp. 343–349.

6. Barseghyan, V.R. Control of Stage by Stage Changing Linear Dynamic Systems. Yugosl. J. Oper. Res. 2012, 22, 31–39. [CrossRef]
7. Barseghyan, V.R. On the controllability and observability of linear dynamic systems with variable structure. In Proceedings of

the 2016 International Conference Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy’s Conference), Moscow,
Russia, 1–3 June 2016; pp. 1–3.

8. L’vova, N.N. Optimal control of a certain distributed nonhomogeneous oscillatory system. Autom. Remote Control 1973, 34,
1550–1559.

9. Il’in, V.A. Optimization of the boundary control of the vibrations of a rod consisting of two dissimilar parts. Dokl. Math. 2011, 84,
629–633. [CrossRef]

10. Il’in, V.A. On the bringing of the oscillations of an initially quiescent rod consisting of two different parts to an arbitrarily given
state. Dokl. Math. 2010, 82, 955–958. [CrossRef]

11. Egorov, A.I.; Znamenskaya, L.N. On the controllability of elastic oscillations of serially connected objects with distributed
parameters. Trudy Inst. Mat. i Mekh. UrO RAN 2011, 17, 85–92. (In Russian)

12. Provotorov, V.V. Construction of boundary controls in the problem of oscillation of a system of strings. Vestn. St. Petersburg
University. Appl. Math. Comput. Sci. Control Process. 2012, 1, 62–71. (In Russian)

13. Ben Amara, J.; Bouzidi, H. Null boundary controllability of a one-dimensional heat equation with an internal point mass and
variable coefficients. J. Math. Phys. 2018, 59, 011512. [CrossRef]

14. Ben Amara, J.; Beldi, E. Boundary controllability of two vibrating strings connected by a point mass with variable coefficients.
SIAM J. Control Optim. 2019, 57, 3360–3387. [CrossRef]

15. Mercier, D.; Regnier, V. Boundary controllability of a chain of serially connected Euler-Bernoulli beams with interior masses.
Collectanea Mathematica 2009, 60, 307–334. [CrossRef]

16. Kuleshov, A.A. Mixed problems for the equation of the longitudinal vibrations of a nonhomogeneous rod and for the equation of
the transverse vibrations of a nonhomogeneous string consisting of two segments with different densities and elasticities. Dokl.
Math. 2012, 85, 98–101. [CrossRef]

17. Rogozhnikov, A.M. Investigation of a mixed problem describing the oscillations of a rod consisting of several segments with
arbitrary lengths. Dokl. Math. 2012, 85, 399–402. [CrossRef]

http://doi.org/10.3103/S0025654419080120
http://dx.doi.org/10.1007/s10778-020-01030-w
http://dx.doi.org/10.2298/YJOR111019002B
http://dx.doi.org/10.1134/S106456241106010X
http://dx.doi.org/10.1134/S106456241006030X
http://dx.doi.org/10.1063/1.5021947
http://dx.doi.org/10.1137/16M1100496
http://dx.doi.org/10.1007/BF03191374
http://dx.doi.org/10.1134/S1064562412010334
http://dx.doi.org/10.1134/S1064562412030313


Mathematics 2022, 10, 4444 13 of 13

18. Anikonov, D.S.; Konovalova, D.S. Direct and inverse problems for a wave equation with discontinuous coefficients. St. Petersburg
State Polytech. Univ. J. Phys. Math. 2018, 11, 61–72.

19. Zvereva, M.B.; Najdyuk, F.O.; Zalukaeva, Zh.O. Modeling vibrations of a singular string. Proc. Voronezh State Univ. Ser. Phys.
Math. 2014, 2, 111–119. (In Russian)

20. Kholodovskii, S.Y.; Chuhrii, P.A. The Problem of Motion of an Unbounded Piecewise Homogeneous String. Sch. Notes Transbaikal
State Univ. Ser. Phys. Math. Eng. Technol. 2018, 13, 42–50. (In Russian) [CrossRef]

21. Krasovsky, N.N. The Theory of Motion Control; Nauka: Moscow, Russia, 1968. (In Russian)

http://dx.doi.org/10.21209/2308-8761-2018-13-4-42-50

	Introduction
	Problem Statement
	Reduction to the Problem with Zero Boundary Conditions
	Reduction of the Problem with Zero Boundary Conditions to the Problem of Moments
	Problem Solution
	Constructing a Solution for n=1
	The Example with Numerical Experiment
	Conclusions
	References

