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Abstract: In this paper, we propose a new accelerated common fixed-point algorithm for two
countable families of G-nonexpansive mappings. Weak convergence results are obtained in the
context of directed graphs in real Hilbert spaces. As applications, we apply the obtained results
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our algorithm has a better convergence behavior than the others.
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1. Introduction

The Banach contraction mapping principle [1] unquestionably plays a significant role
in the literature on fixed-point theory, despite the fact that it is just one of many cornerstone
results that are presented. In fact, the metric fixed-point theory is thought to have its roots
in this idea, which is one of the fundamental outcomes of mathematical analysis. However,
this fact is a strong motivation for creating other mappings that satisfy specific contractive
conditions; see [2–4]. In 2004, Ran et al. [5] introduced a new concept of Banach’s fixed-point
theorem in partially ordered sets and applied this result to solve linear and nonlinear matrix
equations. In 2007, Jachymski [6] presented the notion of single-valued G-contraction on
complete metric spaces with graphs and proved a fixed-point theorem which extends the
results of [5]. He called such mappings a Banach G-contraction. The Banach G-contraction
was subsequently extended in various ways by many authors; see [7–10]. In the past decade,
many researchers introduced algorithms for finding the fixed points of G-nonexpansive
mappings; see [11–14]. Recently, Janngam et al. [15–17] introduced fixed-point algorithms
in Hilbert spaces with directed graphs and applied these results to classification and image
recovery.

At present, fixed-point theory was applied to solve various problems in sciences, engi-
neering, economics, physics, and data science such as signal/image processing; see [18–22],
and intensity-modulated radiation therapy treatment planning; see [23,24].

In the field of image processing, the image restoration problem is an interesting and
important topic. The least absolute shrinkage and selection operator (LASSO) model can
be used to convert this problem into an optimization problem. For this problem, there are
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several optimizations and fixed-point methods; see [25–29] for more detail. A fast iterative
shrinkage-thresholding algorithm (FISTA) is one of the most widely used approaches for
resolving image restoration problems. Beck et al. [30] demonstrated that FISTA with the
inertial step technique has a faster convergence rate than previous methods in the literature.

From this perspective, the primary purpose of this study is to construct an accelerated
algorithm for finding the common fixed points of two countable families of G-nonexpansive
mappings in real Hilbert spaces with graphs based on the idea of the inertial technique. The
applications of this result are to solve convex minimization and data classification problems.
Moreover, we compared our algorithm’s performance with those of other algorithms.

The structure of the paper is as follows. In Section 2, we provide fundamental ideas
about fixed-point theorems. In Section 3, we present an inertial modified S-algorithm and
prove a weak-convergence theorem. In Section 4, convex minimization and classification
problems are discussed. Moreover, some numerical experiments on classification problems
are also given in Section 5. Finally, we provide the conclusions and discussions.

2. Preliminaries

LetH be a real Hilbert space with the norm ‖ · ‖ and let C be a nonempty closed convex
subset ofH. A mapping T of C into itself is called nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖ for
all x, y ∈ C. For a mapping T of C into itself, we denote by F(T) the set all fixed points of T,
that is, F(T) := {x ∈ C : Tx = x}.

Let G be a directed graph such that the set V(G) of its vertices corresponds to C and
4 is the diagonal of C × C such that4 ⊆ E(G), where E(G) is a set of its edges. When two
or more edges in a directed graph G connect the same ordered pair of vertices, the edges
are said to be parallel.

Assume that G has no parallel edges. Consequently, G can be identified by the pair
(V(G), E(G)). The graph is obtained from G by reversing the direction of the edges, which
is represented by G−1. That is

E(G−1) = {(u, v) ∈ C × C : (v, u) ∈ E(G)}.

Here, we will give a basic knowledge of the definitions of the graph properties that
will be used in this work; see [31].

Definition 1. A graph G = (V(G), E(G)) is said to be

(i) Connected if there is a path between every pair of vertices;
(ii) Symmetric if (u, v) ∈ E(G), then (v, u) ∈ E(G) for all u, v ∈ V(G);
(iii) Transitive if (u, v) and (v, w) ∈ E(G) then, (u, w) ∈ E(G) for all u, v, w ∈ V(G).

Definition 2. Let G = (V(G), E(G)) be a directed graph. A mapping T : C → C is said to be

(i) G-contraction [6] if

(a) T preserves edges of G, that is, if (u, v) ∈ E(G), then (Tu, Tv) ∈ E(G);
(b) There exists c ∈ (0, 1) such that for any u, v ∈ V(G) if (u, v) ∈ E(G), then

‖Tu− Tv‖ ≤ c‖u− v‖, where c is a contraction factor;

(ii) G-nonexpansive [13] if

(a) T preserves edges of G;
(b) ‖Tu− Tv‖ ≤ ‖u− v‖, whenever (u, v) ∈ E(G) for all u, v ∈ V(G).

Example 1 ([11]). Let C = [0, 2] ⊂ R and G = (V(G), E(G)) be a directed graph such that
V(G) = C and (u, v) ∈ E(G) if and only if 0.5 ≤ u ≤ v ≤ 1.7, where S and T are mappings of C
into itself and given by

Su = 1 +
2
3

arcsin(u− 1) and Tu = 1 +
1
3

tan(u− 1),



Mathematics 2022, 10, 4442 3 of 15

for all u ∈ C. It is shown in [11] that both S and T are G-nonexpansive but not nonexpansive.

We write ⇀ and→ denote the weak and strong convergences, respectively. A map-
ping T : C → C is said to be G-demiclosed at 0 if, for any {un} ⊆ C with (un, un+1) and
such that un → C and Tun → 0 imply Tu = 0.

The following definition is necessary for our algorithm to be well defined.

Definition 3 ([17]). Assume that Υ := ∩∞
n=1F(Tn) 6= ∅ and Υ × Υ ⊆ E(G). Then, E(G)

is called

(i) Right coordinate affine if for any (p, q), (p, n) ∈ E(G), then γ(p, q) + ξ(p, n) ∈ E(G) for
all γ, ξ ∈ R with γ + ξ = 1;

(ii) Left coordinate affine if for any (p, q), (m, q) ∈ E(G), then γ(p, q) + ξ(m, q) ∈ E(G) for all
γ, ξ ∈ R with γ + ξ = 1.

If E(G) is right and left coordinate affine, then E(G) is coordinate affine.

Our main result will be proved using the following lemma.

Lemma 1 ([32]). Let {xn}, {yn} and {ζn} be sequences of non-negative real numbers satisfying
the inequality

xn+1 ≤ (1 + ζn)xn + yn

for all n ≥ 1. If ∑∞
n=1 ζn < ∞ and ∑∞

n=1 yn < ∞, then limn→∞ xn exists.

Lemma 2 ([33]). Let m, n ∈ H and ξ ∈ [0, 1]. Then,

(i) ‖ξm + (1− ξ)n‖2 = ξ‖m‖2 + (1− ξ)‖n‖2 − ξ(1− ξ)‖m− n‖2;

(ii) ‖m± n‖2 = ‖m‖2 ± 2〈m, n〉+ ‖n‖2.

Lemma 3 ([34]). Let {un} and {µn} be sequences of non-negative real numbers satisfying the inequality

un+1 ≤ (1 + µn)un + µnun−1

for all n ≥ 1. Then, the following inequality holds:

un+1 ≤ M ·
n

∏
j=1

(1 + 2µj),

where M = max{u1, u2}. Moreover, if ∑∞
n=1 µn < ∞, then {un} is bounded.

We say that v ∈ C is a weak cluster point of {un} if there is a subsequence {unk} of
{un} such that unk ⇀ v and the set of all weak cluster points of {un} is denoted by ωw(un).

To prove our main convergence result, we need the following Opial’s lemma.

Lemma 4 ([35]). Let {un} be a sequence in H such that there exists ∅ 6= Υ ⊂ H. If for any
p ∈ Υ, limn→∞ ‖un − p‖ exists and ωw(un) ∈ Υ, then there exists v ∈ Υ such that {un} weakly
converges to v.

Definition 4 ([36]). Let {Sn} and ϕ be two families of nonexpansive mappings of C into itself.
Suppose that ∅ 6= F(ϕ) ⊂ ∩∞

n=1F(Sn), where F(ϕ) stands for the set of all common fixed points of
each S ∈ ϕ. The sequence {Sn} satisfies the NST-condition (I) with ϕ if

lim
n→∞

‖Snun − un‖ = 0 =⇒ lim
n→∞

‖Sun − un‖ = 0
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for all bounded sequences {un} ⊂ C and S ∈ ϕ. A sequence {Sn} satisfies the NST-condition (I)
with S if ϕ = {S}.

Example 2 ([37]). Define Tn = βn I + (1− βn)T, where T ∈ ψ and 0 < a ≤ βn ≤ b < 1 for all
n ≥ 1. Then, Tn is G-nonexpansive and {Tn} satisfies the NST-condition (I) with ψ; see [37] for
more details.

Definition 5 ([20,38]). Let f , g : Rn → (−∞,+∞] be the forward–backward operator of lower
semi-continuous and convex functions. A forward–backward operator T is defined by

T := proxµg(I − µ∇ f ),

where µ > 0 and

proxµgx := argminy∈H
{

g(y) +
1

2µ
‖y− x‖2

}
.

This operator was introduced by Moreau [39] and it is known as the proximity operator
with respect to µ and function g. If µ ∈ (0, 2

L ), then T is a nonexpansive mapping, where L
is a Lipschitz constant of ∇ f .

For the definition of the proximity operator, we have the following remark; see [40].

Remark 1 ([40]). Let f : Rn → R be such that f (x) = µ‖x‖1. The proximity operator of f is
evaluated by

proxµ‖·‖1
(x) = (sign(xi)max(|xi| − µ, 0))n

i=1.

Bussaban et al. [41] proved the following lemma.

Lemma 5. Let f be a convex differentiable function from H into R with gradient ∇ f being L-
Lipschitz constant for some L > 0 and g be a proper lower semi-continuous convex function from
H into R ∪ {∞}. Let T be the forward–backward operator of f and g. Then, {Tn} satisfies the
NST-condition (I) with T if {Tn} is the forward–backward operator of f and g such that an → a
with a, an ∈ (0, 2/L).

3. Main Results

In this section, we introduce a new modified S-algorithm (Algorithm 1) with the inertial
technical term and then we prove a weak convergence theorem of the sequence {xn} which
is defined by Algorithm 1 as a common fixed point of two families for G-nonexpansive
mappings in Hilbert spaces with graphs.

Throughout this section, let C be a nonempty closed and convex subset of a real Hilbert
space H and let G = (V(G), E(G)) where V(G) = C and E(G) is convex, right coordinate
affine, symmetric, and transitive. Let T, S : C → C be G-nonexpansive mappings with F(T) ∩
F(S) 6= ∅. Let {Tn} and {Sn} be families of G-nonexpansive mappings of C into itself such
that F(T) ⊂ ∩∞

n=1F(Tn) and F(S) ⊂ ∩∞
n=1F(Sn). We also let F = ∩∞

n=1F(Tn) ∩ ∩∞
n=1F(Sn).

To prove the weak convergence result of Algorithm 1, the following tools are needed.

Proposition 1. Let v̆ ∈ F and y0, x1 ∈ C be such that (v̆, y0), (v̆, x1) ∈ E(G). Suppose that
E(G) is right coordinate affine, symmetric, and transitive. Let a sequence {xn} be generated by
Algorithm 1. Then, (v̆, zn), (v̆, yn), (v̆, xn) and (xn, xn+1) are in E(G) for all n ≥ 1.

Proof. We shall use strong mathematical induction to prove our result. In order to prove
this, we use Algorithm 1 to obtain

(v̆, z1) =
(
v̆, (1− β1)x1 + β1T1x1

)
= (1− β1)(v̆, x1) + β1(v̆, T1x1).
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Since Tn is edge-preserving and (v̆, x1) ∈ E(G), we have (v̆, z1) ∈ E(G). Using
Algorithm 1, we obtain

(v̆, y1) = (v̆, (1− α1)T1x1 + α1S1z1)

= (1− α1)(v̆, T1x1) + α1(v̆, S1z1).

Since Tn and Sn are edge-preserving and (v̆, z1) ∈ E(G), we have (v̆, y1) ∈ E(G).

Algorithm 1 (IMSA) An inertial modified S-algorithm.

1: Initial. Take arbitrary y0, x1 ∈ C and n = 1, βn ∈ [a, b] ⊂ (0, 1), and $n ≥ 0 such that
∑∞

n=1 $n < ∞ and αn → 1.
2: Step 1. Compute yn and zn:

zn = (1− βn)xn + βnTnxn,
yn = (1− αn)Tnxn + αnSnzn.

Step 2. Compute the inertial step:

xn+1 = yn + $n(yn − yn−1).

Then, n := n + 1 and back to the first step.

For all k < n, we assume that (v̆, zk), (v̆, yk) and (v̆, xk) ∈ E(G). We obtain from
Algorithm 1 that

(v̆, zk+1) = (v̆, (1− βk+1)xk+1 + βk+1Tk+1xk+1)

= (1− βk+1)(v̆, xk+1) + βk+1(v̆, Tk+1xk+1), (1)

(v̆, yk+1) = (v̆, (1− αk+1)Tk+1xk+1 + αk+1Sk+1zk+1)

= (1− αk+1)(v̆, Tk+1xk+1) + αk+1(v̆, Sk+1zk+1) (2)

and

(v̆, xk+1) = (v̆, yk + $k(yk − yk−1))

= (v̆, (1 + $k)yk − $kyk−1) (3)

= (1 + $k)(v̆, yk)− $k(v̆, yk−1).

Since (1)–(3) and Tn, Sn preserve edges, it follows from the fact that E(G) is the right
coordinate affine that (v̆, xk+1), (v̆, zk+1) and (v̆, yk+1) ∈ E(G). Using strong mathematical
induction, we have (v̆, xn), (v̆, zn), (v̆, yn) ∈ E(G) for all n ∈ N. It easy to see that (xn, v̆) ∈
E(G). Since E(G) is transitive and (xn, v̆), (v̆, xn+1) ∈ E(G), we obtain (xn, xn+1) ∈ E(G),
as required.

Lemma 6. LetH be a real Hilbert space and C be a nonempty closed convex subset ofH. Let {yn}
be a sequence generated by Algorithm 1 and (v̆, y0), (v̆, x1) ∈ E(G) for arbitrary y0, x1 ∈ C and
v̆ ∈ F. Then, limn→∞ ‖v̆− yn‖ exists.
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Proof. Let v̆ ∈ F. By Proposition 1, we have (v̆, zn), (v̆, xn), (v̆, yn) ∈ E(G). Then

‖v̆− zn‖ = ‖v̆− βnTnxn − (1− βn)xn‖
≤ (1− βn)‖v̆− xn‖+ βn‖v̆− Tnxn‖ (4)

≤ (1− βn)‖v̆− xn‖+ βn‖v̆− xn‖
= ‖v̆− xn‖,

and

‖v̆− yn‖ = ‖v̆− αnSnzn − (1− αn)Tnxn‖
≤ (1− αn)‖v̆− Tnxn‖+ αn‖v̆− Snzn‖ (5)

≤ (1− αn)‖v̆− xn‖+ αn‖v̆− zn‖

≤ (1− αn)‖v̆− xn‖+ αn‖v̆− xn‖ (6)

= ‖v̆− xn‖.

We obtain from (6) that

‖v̆− yn‖ ≤ ‖v̆− xn‖
= ‖v̆− yn−1 − $n−1(yn−1 − yn−2)‖
≤ ‖v̆− yn−1‖+ $n−1‖yn−2 − yn−1‖
≤ (1 + $n−1)‖v̆− yn−1‖+ $n−1‖v̆− yn−2‖. (7)

It follows from Lemma 3 that ‖v̆− yn‖ ≤ K ·∏n
j=1(1 + 2$j), where K = max{‖v̆−

y1‖, ‖v̆− y2‖}. Hence, {yn} is bounded sequence. Moreover, {xn} and {zn} are bounded.
Therefore,

∞

∑
n=1

$n‖yn − yn−1‖ < ∞. (8)

Applying Lemma 1 and (7), the conclusion of Lemma 6 holds.

Lemma 7. LetH be a real Hilbert space and C be a nonempty closed convex subset ofH. Let {yn}
be a sequence generated by Algorithm 1 and (v̆, y0), (v̆, x1) ∈ E(G) for arbitrary y0, x1 ∈ C and
v̆ ∈ F. Then, limn→∞ ‖Tnxn − xn‖ = limn→∞ ‖Snxn − xn‖ = 0.

Proof. Let v̆ ∈ F. Applying Lemma 2 together with G-nonexpansiveness of Tn, we have

‖v̆− zn‖2 = ‖v̆− βnTnxn − (1− βn)xn‖2

= ‖βn(v̆− Tnxn) + (1− βn)(v̆− xn)‖2

= βn‖v̆− Tnxn‖2 + (1− βn)‖v̆− xn‖2 − βn(1− βn)‖Tnxn − xn‖2

≤ ‖v̆− xn‖2 − βn(1− βn)‖Tnxn − xn‖2.

It implies that, for n ≥ 1,

βn(1− βn)‖Tnxn − xn‖2 ≤ ‖v̆− xn‖2 − ‖v̆− zn‖2. (9)

Next, we shall show that

lim
n→∞

‖Tnxn − xn‖ = 0.
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In order to do this, we know from Lemma 6 that limn→∞ ‖v̆− yn‖ exists. Call it a.
From (6), we have

‖v̆− yn‖ ≤ ‖v̆− xn‖.

Taking the lim inf yields

a ≤ lim inf
n→∞

‖v̆− xn‖. (10)

It follows from (8) and

‖v̆− xn+1‖ ≤ ‖v̆− yn‖+ $n‖yn−1 − yn‖

that

lim sup
n→∞

‖v̆− xn‖ ≤ a. (11)

Using (10) and (11), we have

lim
n→∞

‖v̆− xn‖ = a. (12)

Since ‖v̆− zn‖ ≤ ‖v̆− xn‖, we obtain

lim sup
n→∞

‖v̆− zn‖ ≤ lim sup
n→∞

‖v̆− xn‖ = a.

Then

lim sup
n→∞

‖v̆− zn‖ ≤ a. (13)

Since αn → 1 as n→ ∞ and (5), we obtain

a ≤ lim inf
n→∞

‖v̆− zn‖. (14)

This together with (14) yields

lim
n→∞

‖v̆− zn‖ = a. (15)

Combining expressions (9), (12) and (15), we obtain

lim
n→∞

‖Tnxn − xn‖ = 0. (16)

Finally, we shall show that

lim
n→∞

‖Snxn − xn‖ = 0.

In order to show this, we consider the following

‖v̆− yn‖2 = ‖αn(v̆− Snzn) + (1− αn)(v̆− Tnxn)‖2

= αn‖v̆− Snzn‖2 + (1− αn)‖v̆− Tnxn‖2 − αn(1− αn)‖Tnxn − Snzn‖2

≤ ‖v̆− xn‖2 − αn(1− αn)‖Tnxn − Snzn‖2.

Since limn→∞ ‖v̆− yn‖ = a and (12), the above inequality leads to

lim
n→∞

‖Tnxn − Snzn‖ = 0. (17)
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Now
‖xn − zn‖ ≤ βn‖Tnxn − xn‖

implies by (16) that

lim
n→∞

‖xn − zn‖ = 0. (18)

Using (16), (17) and (18), we have

‖Snxn − xn‖ = ‖Snxn − Snzn‖+ ‖Snzn − Tnxn‖+ ‖Tnxn − xn‖ (19)

and so

lim
n→∞

‖Snxn − xn‖ = 0, (20)

as required.

We now prove the weak convergence of Algorithm 1 to a common fixed point of two
families for G-nonexpansive mappings in Hilbert spaces.

Theorem 1. Let H be a real Hilbert space and C be a nonempty closed convex subset of H. Let
{yn} be a sequence generated by Algorithm 1 and (v̆, y0), (v̆, x1) ∈ E(G) for arbitrary y0, x1 ∈ C
and v̆ ∈ F. Suppose that {Tn} and {Sn} satisfy the NST-condition (I) with T and S,, respectively.
Then, {xn} converge weakly to a point in F.

Proof. Let v̆ ∈ F be such that (v̆, y0), (v̆, x1) ∈ E(G). Then, limn→∞ ‖v̆ − yn‖ exists as
proven in Lemma 6. By Lemma 7 and {Tn} and {Sn} satisfy the NST-condition (I) with T
and S,, respectively, therefore

lim
n→∞

‖Txn − xn‖ = 0 and lim
n→∞

‖Sxn − xn‖ = 0. (21)

Since I − T and I − S are G-demiclosed at 0, we obtain ωw(xn) ⊂ F(T) ∩ F(S). We
conclude from Lemma 4 that {xn} converges weakly to v̆ ∈ F(T) ∩ F(S), as required.

4. Applications

In 2004, Huang et al. [42] proposed the extreme learning machine (ELM) as a feedfor-
ward neural network-based machine learning technique. The single hidden layer feedfor-
ward neural network algorithm can be more effectively used if standard ELM employs
the structure of a single-layer feedforward neural network (SLFN); see [43] for more detail.
Only the weight vector between the hidden and output nodes needs to be determined in
the initial ELM because hidden nodes can be random [42]. The training can be completed
considerably more quickly because there are a lot fewer parameters that need to be up-
dated than with traditional SLFNs. Fast learning times, easy implementation, and little
human involvement are some of the benefits of ELM; see [44]. On the other hand, unstable
results necessitate many experiments to identify the best ELM design; see [45] for more
details. ELM is employed in a variety of areas, including computational intelligence and
pattern rearrangement.

Let us give some basic knowledge of ELM for data classification problems. After that,
we apply our obtained results to the convex minimization problem.

Let {(xk, tk) : xk ∈ Rn, tk ∈ Rm, k = 1, 2, . . . , N} be a set of training of N distinct
samples, where xk = [xk1, xk2, . . . , xkn] is an input data and tk = [tk1, tk2, . . . , tkm] is a
target. W(x) that represents the activation function, and ELM with M hidden nodes can be
represented as the following mathematical model:

M

∑
j=1

ρjW(〈wj, xi〉+ dj) = oi, i = 1, . . . , N,



Mathematics 2022, 10, 4442 9 of 15

where ρj = [ρj1, ρj2, . . . , ρjm]
T is the weight vector that connects the hidden node and the

j-th output node, wj = [wj1, wj2, . . . , wjn]
T is the weight vector that connects the hidden

node and the j-th input nodes and dj is the j-th hidden node’s threshold.
The standard of SLFNs with M hidden nodes can be taken as samples of N without

error. In other words, ∑N
i=1 ‖ti − oi‖ = 0, that is, there exist ρj, wj, dj such that

M

∑
j=1

ρjW(〈wj, xi〉+ dj) = ti, i = 1, . . . , N.

From the above equations, it can be written as follows:

Hρ = T,

H =

W(〈w1, x1〉+ d1) · · · W(〈wM, x1〉+ dM)
...

. . .
...

W(〈w1, xN〉+ d1) · · · W(〈wM, xN〉+ dM)

,

ρ = [ρT
1 , . . . , ρT

M]Tm×M, T = [tT
1 , . . . , tT

N ]
T
m×N .

For the model Hρ = T, we aim to estimate the parameter ρ for solving the minimiza-
tion problem known as ordinary least square (OLS),

min
ρ
‖Hρ− T‖2

2, (22)

where ‖x‖2 =
√

∑n
i=1 |xi|2, T ∈ RN×m is the target data, ρ ∈ RM×m is an output weight,

H ∈ RN×M is the hidden layer output matrix, N is the number of training data, and M is
the number of unknown variables.

There are several ways to estimate the solution of Equation (22) using mathematical
models. The output weight ρ can be obtained in different ways; see [42,46–48]. The solution
ρ is obtained from ρ = H

‡
T when the Moore–Penrose generalized inverse H

‡
of H exists.

However, the number of unknown variables M in a realistic situation is substantially more
than the quantity of training data N, which might cause the network to become overfitted.
The accuracy is low, whereas there are few M hidden nodes. Subset selection and ridge
regression are the two classical methods for improving (22); see [49] for more detail. One
well-known model for estimation of the output weight ρ, called least absolute shrinkage
and selection operator (LASSO) [50],

min
ρ
‖Hρ− T‖2

2 + λ‖ρ‖1, (23)

where λ is a regularization parameter. The LASSO maintains the beneficial features of both
ridge regression and subset selection, that is, regression analysis using LASSO improves
the predictability and interpretability of the statistical model by performing both variable
selection and regularization. Five years after, the regularization techniques and the original
ELM were established to enhance OLS performance. In more general, we can rewrite (23)
as a minimization of the sum of the following form:

min
x∈H

( f (x) + g(x)) (24)

where f , g : H → (−∞, ∞] are proper lower semi-continuous functions such that f is
differentiable. Let S := argmin( f + g) be the set of all solutions of the problem (24).

We consider the convex minimization problem (24). We also know that v̆ is the solution
of problem (24) if and only if v̆ = Tv̆, where T = proxµg1(I − µ∇ f1, ) and µ > 0; see [20]
for more detail.
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Several methods have been proposed to solve the convex minimization problem (24).
Polyak [51] was the first to present a method for accelerating algorithms and providing
an improved convergence behavior by including an inertial step. Since then, numerous
authors have employed the inertial technique to speed up the convergence rate of their
algorithms to solve various problems; see [30,34,41,52–56].

The fast iterative shrinkage–thresholding algorithm (FISTA) [30] which performs an
inertial step, is one of the most well-known forward–backward-type algorithms. It is
defined by 

yn = Txn,

tn+1 =
1+
√

1+4t2
n

2 ,
θn = tn−1

tn+1
,

xn+1 = yn + θn(yn − yn−1),

(25)

where n ≥ 1, T := prox 1
L g(I − 1

L∇ f ), x1 = y0 ∈ Rn, t1 = 1, and θn is the inertial
step size, which was introduced by Nesterov [57]. Beck et al. [30] introduced FISTA and
proved the convergence rate of this algorithm. They also applied these results to the image
restoration problem.

Recently, Bussaban et al. [41] introduced parallel inertial S-iteration forward–backward
algorithm (PISFBA) [41]. It is defined by

yn = xn + θn(xn − xn−1),
zn = (1− βn)xn + βnTnxn,
xn+1 = (1− αn)Tnyn + αnTnzn,

(26)

where n ≥ 1, x0 = x1 ∈ H, 0 < q < αn ≤ 1, 0 < s < βn < r < 1 and ∑∞
n=1 θn‖xn− xn−1‖ <

∞. They proved the weak convergence theorem of PISFBA and applied this method to
solve regression and data classification problems.

Finally, we constructed Algorithm 2 to solve the convex minimization problem (24) by
applying Algorithm 1. Let Tn = proxµng1(I− µn∇ f1) and Sn = proxκng2(I− κn∇ f2), where
µn ∈ (0, 2/L1), κn ∈ (0, 2/L2) and fi, gi : H → (−∞, ∞], i = 1, 2 are proper lower semi-
continuous functions such that fi are differentiable and that ∇ fi are a Lipschitz continuity
with constant Li > 0.

Algorithm 2 (FBIMSA) A forward–backward inertial modified S-algorithm.

1: Initial. Take arbitrary y0, x1 ∈ C and n = 1 when βn, αn and $n are the same as in
Algorithm 1.

2: Step 1. Compute yn and zn:

zn = (1− βn)xn + βn proxµng1(I − µn∇ f1)xn,
yn = (1− αn)proxµng1(I − µn∇ f1)xn + αn proxκng2(I − κn∇ f2)zn.

Step 2. Compute the inertial step:

xn+1 = yn + $n(yn − yn−1).

Then, n := n + 1 and back to the first step.

In the next theorem, we use the result of the convergence theorem of Algorithm 1 to
obtain the convergence theorem of Algorithm 2.

Theorem 2. Let a sequence {xn} be generated by Algorithm 2. Then, xn → v̆ ∈ S, where
S := argmin( f1 + g1) ∩ argmin( f2 + g2).
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Proof. Let Tn = proxµng1(I − µn∇ f1) and Sn = proxκng2(I − κn∇ f2), where µn ∈ (0, 2/L1)
and κn ∈ (0, 2/L2). Then, Tn and Sn are nonexpansive operators for all n. Similarly, we set T
and S to be forward–backward operators of f1 and f2 with respect to µ and κ,, respectively,
where µ ∈ (0, 2/L1) and κ ∈ (0, 2/L2). Then, T and S are nonexpansive operators. Thus,
T = proxµg1(I − µ∇ f1) and S = proxκg2(I − κ∇ f2). By Proposition 26.1 in [38], we know
that ∩∞

n=1F(Tn) = argmin( f1 + g1) and ∩∞
n=1F(Sn) = argmin( f2 + g2). It is derived from

Lemma 5 that {Tn} and {Sn} satisfy the NST-condition (I) with T and S, respectively.
Applying Theorem 1, we obtain the required result directly by setting the complete graph
G = Rn ×Rn on Rn.

5. Numerical Experiments

This section will present the basic ELM model and its fundamental supervised classifi-
cation versions. We also give the result of data classification using each method.

For solving the convex minimization problem (24), we use the model of LASSO when
W(x) is sigmoid. We set f1(x) = f2(x) = ‖Hρ− T‖2

2 and g1(x) = g2(x) = λ‖ρ‖1 for our
algorithm. For other algorithms, we set f (x) = ‖Hρ− T‖2

2, g(x) = λ‖ρ‖1.
The values shown in Table 1 are set for all control parameters, L = 2‖H1‖2, where H1

is a hidden layer output matrix of a training matrix, and I is an iterations number. We use
the output data’s accuracy to measure the performance of each method which is calculated
by

accuracy =
correct predicted data

all data
× 100

Table 1. Selected parameters of each method.

Methods Setting

Algorithm 2 αn = n
n+1 , βn = 0.99, c = 1/L, $n = n

n+1 if
1 ≤ n ≤ I, and 1/2n otherwise

PISFBA
αn = βn = 0.9n

n+1 , c = 1/L, θn = 1
2n‖xn−xn−1‖ if

xn 6= xn−1, and 0 otherwise

FISTA t1 = 1, tn+1 = (1 +
√

1 + 4t2
n)/2,

θn = (tt − 1)/tn+1

Next, we use the Breast Cancer, Heart Disease UCI and Ionosphere data sets for
classifying which are detailed as follows:

Wisconsin Breast Cancer data set [58]: W.H. Wolberg created this data set, at the
General Surgery Department, University of Wisconsin, Clinical Sciences Center, W.N.
Street, and O.L. Mangasarian, Computer Sciences Department, University of Wisconsin. It
contains 2 classes, 569 observations, and 30 attributes.

Heart Disease UCI [59]: This data set contains 76 attributes. However, all published
studies use only a subset of 14 of them. This data set shows the patient’s presence of heart
disease. Our goal is to divide the data into two categories.

Ionosphere data set [60]: This radar data set, from the Ionosphere collection, was
gathered by a system near Goose Bay, Labrador. This data set consists of 351 observations
and 34 attributes. Radar results indicating signs of an ionosphere structure are considered
“good”. Bad returns are those whose transmissions do not penetrate the ionosphere.

We set up the training and testing data on Table 2.
We performed the experiments in order to compare the performance of each studied

algorithm, namely Algorithm 2, PISFBA, and FISTA. In each data set, we use the number
of hidden nodes M and the number of iterations I as follows:
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The number of hidden nodes M depends on the characteristic of each data set and the
number of iterations for each data set is selected to achieve the highest performance for
each studied algorithm.

Table 2. Data sets of Breast Cancer, Heart Disease UCI, and Ionosphere, 70% of training and 30% of
testing of each data set.

Data Set Features
Sample

Training Set Testing Set

Breast Cancer 14 478 205

Heart Disease UCI 14 213 90

Ionosphere 34 205 146

The following numerical experiments are obtained by each algorithm and each data
set under the control sequences in Table 1 and the selected parameters for each data set in
Table 3.

Table 3. Number of hidden nodes and iterations for each data set.

Data Sets Number of Hidden Nodes
(M) Number of Iterations (I)

Breast Cancer 100 400

Heart Disease UCI 350 500

Ionosphere 50 100

In Table 4, we use acc.Train and acc.Test to represent the accuracy of training and
testing, respectively.

Table 4. Performance comparison using different methods.

Data Set
Algorithm 2 PISFBA FISTA

acc.Train acc.Test acc.Train acc.Test acc.Train acc.Test

Breast
Cancer 97.11 97.46 96.11 95.89 92.64 93.25

Heart
Disease

UCI
78.34 79.01 72.54 73.84 69.64 68.52

Ionosphere 93.98 94.09 90.54 90.71 91.33 91.71

We observe from Table 4 that our proposed algorithm, Algorithm 2, has a higher
performance than PISFBA and FISTA in terms of the accuracy of training and testing of
each data set. So, we can conclude from our experiments that Algorithm 2 can be used
for data classifications of the selected data sets with higher accuracy compared to PISFBA
and FISTA.

Remark 2. Limitations of the proposed algorithm and its applications.
Our proposed algorithm, Algorithm 2, guarantees weak convergence in a setting of real Hilbert

spaces under the control sequences {αn} and {βn} together with the inertial parameter $n such
that the conditions αn → 1, βn ∈ [a, b] ⊂ (0, 1) and $n ≥ 0, ∑∞

n=1 $n < ∞. For applications of
Algorithm 2, we have to choose {αn}, {βn} and {$n} under above restrictions. However, in finite-
dimensional Euclidean spaces, we obtain a strong convergence of Algorithm 2. Another limitation of
Algorithm 2 is computation technique for Lipschitzian constant of∇ f when f (x) = ‖Hρ−T‖2

2. In
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the case of big data sets, it may cause difficulty in such computation because of the large dimension
of the matrix H.

6. Discussions

In this work, we propose a new accelerated common fixed-point algorithm, Algo-
rithm 2, and employ it to solve data classifications of Breast Cancer, Heart Diseases and
Ionosphere. A convergence theorem of the proposed algorithm is established under some
control conditions αn → 1, βn ∈ [a, b] ⊂ (0, 1) and $n ≥ 0, ∑∞

n=1 $n < ∞. From our experi-
ments, Algorithm 2 has a higher performance than PISFBA and FISTA. The performance of
our proposed algorithm depends on the inertial parameter $n. We note that if we choose
$n which is closed to 1, then we obtain a higher performance of Algorithm 2. We also
observe that the performance Algorithm 2 depends on the number of hidden nodes and
characteristics of data sets. However, future research will focus on finding new methods or
techniques that increase the performance of algorithms for the classification of big real data
sets of NCDs of patients from the Sriphat medical center, the faculty of medicine, Chiang
Mai University, Thailand.

7. Conclusions

We introduce and prove the weak convergence theorem of an inertial modified
S-algorithm (IMSA) for finding a common fixed point of two countable families of G-
nonexpansive mappings. Firstly, we proved the weak convergence of IMSA. Secondly, we
proposed a new forward-backward inertial modified S-algorithm (FBIMSA) for solving the
convex minimization problem. Finally, we applied the proposed algorithm to solve the
data classification of Breast Cancer, Heart Diseases and Ionosphere. The numerical results
demonstrated the advantages of the proposed algorithm.
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