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Abstract: Sheffer’s work is about to turn 100 years after its publication. In reporting this important
event, we recall some interesting old and recent results, aware of the incompleteness of the wide
existing literature. Particularly, we recall Sheffer’s approach, the theory of Rota and his collaborators,
the isomorphism between the group of Sheffer polynomial sequences and the so-called Riordan
matrices group. This inspired the most recent approaches based on elementary matrix calculus.
The interesting problem of orthogonality in the context of Sheffer sequences is also reported, recalling
the results of Sheffer, Meixner, Shohat, and the very recent one of Galiffa et al., and of Costabile et al.
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1. Introduction

I.M. Sheffer’s 1939 seminal work [1] was inspired by Pincherle’s paper [2] on the study
of the difference equation

k

∑
n=1

cnφ(x + hn) = f (x). (1)

For the solution of this equation, Pincherle considered a set of Appell [3] polynomials,
and wrote the solutions as an infinite series of them.

Previously, in 1936, Sheffer [4] had studied the solution of the same equation by means
of a different Appell set. In [5] he treated the more general equation

L[y(x)] := a0y(x) + a1y′(x) + · · · = f (x),

and found a solution, under suitable conditions on L and f . As a tribute to Sheffer, we
reproduce part of his introduction in full.

“Here, too, it was possible to relate the equation to a corresponding problem of
expanding functions in series of Appell polynomials.

As is well known, Appell sets
{

Pn
}

n∈IN are characterized by one of the equivalent
conditions

P′n(x) = Pn−1(x), (Pn a polynomial of degree n); (2)

A(t)ext =
∞

∑
n=0

Pn(x)tn, (3)

where A(t) =
∞

∑
n=0

antn is a formal power series, and where the product on the left of (3) is

formally extended in a power series in accordance with the Cauchy rule. We shall say that
the series A(t) is the determining series for the set

{
Pn
}

n∈IN.
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For the particular equation

y(x + 1)− y(x) = f (x),

Pincherle used the Appell set with A(t) = 1
et−1 , getting essentially the Bernoulli

polynomials.
We used A(t) = et − 1, so that n!Pn(x) = (x + 1)n − xn.
Now this equation is also associated with the important set of Newton polynomials

N0(x) = 1, Nn(x) =
x(x− 1) · · · (x− n + 1)

n!
, n ≥ 1,

which is not an Appell set. Yet, it has properties analogous to those ((2) and (3)) of Appell
polynomials. In fact,

∆Nn(x) := Nn(x + 1)− Nn(x) = Nn−1(x),

(1 + t)x = 1 · ex log(1+t) =
∞

∑
n=0

Nn(x)tn.

It is thus suggested that we define a class of difference polynomial sets, of which{
Nn
}

n∈IN is a particular set, by means of the relations

∆Pn(x) = Pn−1(x), n ≥ 0.

And more generally, we can use other operators than d
dx and ∆, to define further sets.

We thus obtain all polynomial sets of type zero (as we denote them). The definition of sets of
type zero generalizes readily to give sets of type one, two, . . . and of infinite type” [1].

After the publicaton of Sheffer’s paper [1], a wide class of related works have been
written, many of which are quite recent. Some of these works also develope a basic-type of
characterization and relationship by modern umbral calculus (see for example [6–16]).

Other papers contains applications in various disciplines. For example:

• probability theory [17–22];
• number theory [23,24];
• linear recurrence [7,25];
• general linear interpolation [26–29];
• operators approximation theory [29–34];
• specific A-type zero orthogonal polynomial sequences [35–47];
• extension of Sheffer sequences also in the multidimensional case [48,49].

Moreover we point out that a sufficiently comprehensive bibliography up to 1995 is in [50].
According to Galiffa et al. [51] “Indeed, research on the Sheffer sequence is an active

area and important in its own right”.
The present paper is structured in two parts and in six main Sections, some of which

contain subsections:

• Part 1: 1939–2000

– Section 2: Sheffer’s approach
– Section 3: Rota’s et al. contributions

• Part 2: 2001–2022

– Section 4: The Riordan group and the Sheffer group
– Section 5: Elementary matrix calculus approach to umbral calculus
– Section 6: Sheffer A-type zero orthogonal polynomial sequences
– Section 7: Relationship between Sheffer A-type zero sequences and monomiality

principle.

We will use the following notations, unless otherwise specified:
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- P is the set of polynomials in the variable x ∈ IK (usually IR or IC); for any n ∈ IN, Pn
is the set of polynomials of degree ≤ n;

-
{

pn
}

n∈IN is a polynomial sequence (p.s.), that is, for any n ∈ IN, pn is a polynomial of
degree exactly n;

-
(
ai
)

i∈IN is a numerical sequence with elements ai;
- A =

(
ai,j
)

i,j∈IN is an infinite lower triangular matrix with entries ai,j; An is the leading
submatrix of order n.

Every time we insert a bibliographical citation we also intend to refer to the references therein.

PART 1.

2. Sheffer’S Approach

“. . . and more generally, we can use other operators than d
dx and ∆, to define further

sets. We thus obtain all polynomial sets of type zero (as we denote them).” [1].
Hence, in his paper, I.M. Sheffer had the goal of determining more general polynomial

sequences then those of P. Appell [3] and of binomial type [6,8,9,52]. However, preliminarly,
he introduced a classification of polynomial sequences into different types.

2.1. Sheffer Classification

Let φ =
{

φn
}

n∈IN be a p.s., that is, for any n ∈ IN, φn is a polynomial of degree exactly
n. We define the set of polynomials (not necessarly a p.s.) vn, n ≥ 0, by recurrence

v0(x)D φ1(x) = φ0(x)

vn(x)Dn+1 φn+1(x) = φn(x)−
n−1

∑
k=0

vk(x)Dk+1 φn+1(x), n > 0.
(4)

Remark 1. We note that, being φn of degree exactly n, for any n ∈ IN, it follows that vn is uniquely
defined and has degree ≤ n.

Let us define Vφ = {vn | ∀n ∈ IN, vn is polynomial as in (4)}.

Theorem 1 ([53]). For the p.s.
{

φn
}

n∈IN there exists a unique differential operator of the form

J := Jφ(x, D) =
∞

∑
k=0

vk(x)Dk+1, vk ∈ Vφ, ∀k ∈ IN, (5)

such that
J[φ0] = 0, J[φn] = φn−1, n ≥ 1. (6)

It is said that the p.s.
{

φn
}

n∈IN belongs to the operator J and that J is the operator
associated with the p.s.

{
φn
}

n∈IN.

Remark 2 ([53]). Not every operator of the form (5) is associated with a p.s. in the sense previously
defined. An operator J of the form (5) is associated with a p.s. if and only if J maps xn into n xn−1.
Hence it maps each polynomial of degree exactly n into a polynomial of degree exactly n− 1.

There is only one operator associated with a given p.s., but there are infinitely many
polynomial sequences belonging to the same operator.

Theorem 2 ([1]). To each operator J of the form (5) correspond infinitely many polynomial se-
quences for which (6) holds. In particular, one and only one of these polynomial sequences, which
we call the basic sequence and denote by

{
bn
}

n∈IN, is such that

b0(x) = 1, bn(0) = 0, n ≥ 1.
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Corollary 1 ([1]). Necessary and sufficient condition for
{

ψn
}

n∈IN to be a p.s. belonging to J is
that there exists a numerical sequence

(
an
)

n∈IN such that

ψn(x) =
n

∑
i=0

ai bn−i(x), a0 6= 0, ∀n ∈ IN, (7)

where
{

bn
}

n∈IN is the basic sequence for J.

Definition 1 ([1]). If no polynomial vk in the set Vφ is of degree greater than m, but at least one is
of degree m, the p.s.

{
φn
}

n∈IN is of A-type m. If the degrees of the polynomials vk are unbounded,
then

{
φn
}

n∈IN is of infinite type.

From Theorem 1 the following corollary holds.

Corollary 2 ([1]). There are infinitely many polynomial sequences for every A-type (finite or infinite).

Example 1 ([1,54]). Any Appell p.s. is of A-type zero. In fact, in this case, J = D.

Example 2 ([54]). Let
(
ai
)

i∈IN be a numerical sequence with a0 6= 0. It is proved [54] that the p.s.{
ak
}

k∈IN defined as

ak(x) =
k

∑
i=0

(
k
i

)
ak−i

xi

i!

is of A-type 1 and the corresponding operator is

Jφ(x, D) = D + xD2.

In order to characterize the polynomial sequences of A-type m, m > 0, we remember
the result of Huff and Rainville [55]. They showed, among other things, that a p.s. with
generating function

φ(t) f (xt) = φ(t) 0Fm(−; β1, β2, . . . , βm; σxt) =
∞

∑
n=0

yn(x)tn,

with σ constant and φ analytic and not zero at t = 0, is of A-type m.
The Sheffer paper [1] contains a study on polynomial sequences of any A-type, but

the most satisfying results are those related to polynomial sequences of A-type zero.

2.2. Polynomial Sequences of A-Type Zero

Sheffer found several characterizations of polynomial sequences of A-type zero. It will
be convenient to restate the conditions for a p.s. to be of A-type zero as follows:

{
φn
}

n∈IN
is a p.s. of A-type zero if

J[φn] = φn−1, n > 0,

where J is the operator

J[y] =
∞

∑
k=1

ck y(k), c1 6= 0, ck ∈ IK, ∀k ∈ IN. (8)

With the operator (8) Sheffer associated the formal power series

J(t) =
∞

∑
k=1

ck tk, (9)

called the generating function of the operator (8).
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The formal power series (9), being c1 6= 0, is invertible. Following Roman and Rota [8]
we call it a δ-series and we call its inverse compositional inverse. It is denoted by

H(t) =
∞

∑
k=1

sk tk, s1 6= 0, sk ∈ IK, ∀k ∈ IN, (10)

and verifies
J(H(t)) = H(J(t)) = t. (11)

Remark 3. Sheffer’s paper [1] (p. 596) in a footnote describes a recurrence procedure for the
calculation of the coefficients si = si

(
cj
)
, i ≥ 1. Indeed they can be numerically generated by means

of a formal algorithm [6] (pp. 6–8).

Then Sheffer gave the first characterization for polynomial sequences of A-type zero.

Theorem 3. A necessary and sufficient condition for
{

φn
}

n∈IN to be of A-type zero corresponding
to the operator J as in (8) is that a numerical sequence

(
ai
)

i∈IN, a0 6= 0, exists such that, setting

A(t) =
∞

∑
i=0

ai ti,

we get

A(t)exH(t) =
∞

∑
n=0

φn(x)tn, (12)

with H(t) as in (10).

Proof. The proof follows after observing that

ex H(t) =
∞

∑
n=0

bn(x)tn,

where
{

bn
}

n∈IN is the basic p.s. for J. Hence both the necessary and sufficient parts follow
by (7) in Corollary 1.

The formal power series

A(t) =
∞

∑
i=0

ai ti.

is called by Sheffer [1] determining series of the p.s.
{

φn
}

n∈IN.
It is observed, also, that every p.s. satisfies infinitely many linear functional equations.

One of the simplest equations for polynomial sequences of A-type zero is given in the
following theorem.

Theorem 4 ([1]). Let
{

φn
}

n∈IN be a p.s. of A-type zero corresponding to operator J, and let A(t)
be its determining series. Then

{
φn
}

n∈IN satisfies the equation

L[y(x)] :=
∞

∑
k=1

(qk,0 + x qk,1)Jk[y] = λy, (13)

where λ = n, for y = φn. The coefficients q are defined by

A′(t)
A(t)

=
∞

∑
k=0

qk+1,0 tn, (14)
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H′(t) =
∞

∑
k=0

qk+1,1 tk. (15)

Proof. The proof is based on (12).

From (13) in Theorem 4 a further characterization of polynomial sequences of A-type
zero, expressed only in terms of the elements of the p.s. itself, follows.

Theorem 5 ([1]). A necessary and sufficient condition for a p.s.
{

φn
}

n∈IN to be of A-type zero is
that constants qk,0, qk,1 exist so that

∞

∑
k=1

(qk,0 + x qk,1)φn−k(x) = n φn(x), φn−k(x) = 0 for k > n. (16)

The operator J and the determining series A for
{

φn
}

n∈IN are related to the coefficients q by (14)–(15).

By differentiating both sides of (12) with respect to x, by equating coefficients of the
same powers of t, we obtain

φ′n(x) = s1φn−1(x) + s2φn−2(x) + . . . + snφ0(x), n ≥ 1. (17)

This identity generates a further characterization.

Theorem 6 ([1]). A necessary and suffient condition for a p.s.
{

φn
}

n∈IN to be of A-type zero is that
a numerical sequence

(
sn
)

n∈IN exists for which (17) holds. In this case the operator J corresponding
to
{

φn
}

n∈IN is determined through
(
sn
)

n∈IN by means of (10) and (11).

Another important topic in Sheffer’s paper concerns the orthogonality of the polyno-
mial sequences of A-type zero. It is described in the following Subsection.

2.3. A-Type Zero Polynomial Sequences That Are Orthogonal Polynomials

J. Shohat [56] proved that Hermite polynomials [6] (p. 134) are an Appell p.s., hence
of A-type zero, but are also orthogonal polynomials [57,58]. Another orthogonal p.s. of
A-type zero is Laguerre p.s. [6] (p. 184). This suggests the problem of determining all
A-type zero polynomial sequences that are, also, orthogonal. J. Meixner [59] treated this
problem by using Laplace transformation and taking

A(t)exH(t) =
∞

∑
n=0

φn(x)tn (18)

as definition of A-type zero.
Sheffer in [1] gave a quite different treatment by means of the known properties

of A-type zero polynomial sequences and the three-term recurrence relation for monic
orthogonal polynomial sequences [57,58]

φn(x) = (x + λn)φn−1(x)− µnφn−2(x), n ≥ 1, (19)

with λn, µn real constants, µn > 0, n > 1.
Combining (16) and (19), the basic result of Sheffer is the following theorem.

Theorem 7 ([1]). A necessary and sufficient condition for an A-type zero p.s.
{

φn
}

n∈IN to satisfy
(19) is that

λn = α + b n, and µn = (n− 1)(c + dn), α, b, c, d ∈ IK,

with c + dn 6= 0 for n > 1.
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With further analysis Sheffer characterized the A-type zero polynomial sequences that
are, also, orthogonal, by the following result.

Theorem 8 ([1]). A p.s.
{

φn
}

n∈IN is of A-type zero and orthogonal if and only if the generating
function (18) is expressed in one of the following forms

A(t)exH(t) = µ(1− bt)ce
d+atx
1−bt , a, b, c, µ 6= 0; (20)

A(t)exH(t) = µ et (b + ax) + ct2
, a, c, µ 6= 0; (21)

A(t)exH(t) = µ ect(1− bt)d+ax, a, b, c, µ 6= 0; (22)

A(t)exH(t) = µ

(
1− t

c

)d1+
x
a
(

1− t
b

)d2− x
a
, a, b, c, µ 6= 0, b 6= c. (23)

By properly choosing each of the parameters in (20)–(23) we can obtain all the Sheffer
A-type zero orthogonal polynomial sequences (see [60]).

3. Rota’S et al. Contributions

In 1970 G.C. Rota and his pupils [10,11,22,52] began to construct a completely rigorous
theory of the “classical modern” umbral calculus. Classical umbral calculus, as it was from
1850 to 1970, consists of a symbolic technique for the manipulation of the sequences, whose
mathematical rigor leaves much to be desidered. Just remember Eric Temple Bell’s failed
attempt, in 1940, to persuade the mathematical community to accept umbral calculus as
a legitimate mathematical tool. The theory of Rota et al. is based on the ideas of linear
functional, linear operator and adjuint. In 1977 the authors was lucky enough to join in on
formal theory, that can be called modern umbral calculus. A full exposition of this theory
can be found in Roman’s book [9]. The second chapter of this book contains definitions
and general properties of the Sheffer sequences (i.e., A-type zero polynomial sequences)
that are the main object of the study.

Sheffer Polynomial Sequences

Let P be the algebra of polynomials in the single variable x over the field IK of
characteristic zero. Let P? be the vector space of all linear functionals on P . The authors
use the notation

〈L | p〉

to denote the action of a linear functional L on a polynomial p. The formal power series

f (t) =
∞

∑
k=0

ak
tk

k!
(24)

defines a linear functional on P by setting

〈 f | xn〉 = an.

If the notation tk is used for the k-th derivative operator on P , that is,

tkxn =

{
(n)k xn−k k ≤ n

0 k > n,

where (n)k = n(n− 1) · · · (n− k + 1), then any power series (24) is a liner operator on P .
It is defined as

f (t)xn =
n

∑
k=0

(
n
k

)
akxn−k.
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So f (t)p(x) denotes the action of the operator f (t) on the polynomial p(x). Thus a
formal power series plays three roles in the umbral calculus theory of Rota et al.: a formal
power series, a linear functional and a linear operator. S. Roman seems to encourage the
young reader: “A little familiarity should remove any discomfort that may be felt by the
use of this trinity” [9] (p. 12).

Let g be an invertible power series, that is,

g(t) =
∞

∑
k=0

ak
tk

k!
, a0 6= 0,

and lef f be a δ-power series, that is

f (t) =
∞

∑
k=1

bk
tk

k!
, b1 6= 0.

Theorem 9 ([9] (p. 17)). There exists a unique p.s.
{

sn
}

n∈IN satisfying the orthogonality condi-
tions 〈

g(t) f (t)k | sn(x)
〉
= n! δn,k, (25)

for all n, k ≥ 0.

Proof. The uniqueness is based on the order of the power series g(t) f (t)k, that is,
o
(

g(t) f (t)k
)
= k, for any k > 0. The existence of the solution sn, for any n ∈ IN, is obtained

from the solution of a nonsingular triangular system.

Following Roman’s book [9], we say that the p.s.
{

sn
}

n∈IN in (25) is the Sheffer
sequence for the pair (g(t), f (t)), or that

{
sn
}

n∈IN is Sheffer for (g(t), f (t)).

There are two important special cases of Sheffer sequences:

(a) the Sheffer sequence for (1, f (t)) is the associated sequence for f (t) (or the binomial
p.s. [6] (p. 24) or the basic p.s. for the operator f (t) [1]);

(b) the Sheffer sequence for (g(t), t) is the Appell p.s. [3] for g(t).

The term Appell sequence in other sources [1] can differs for the factor n!.

Roman gave some characterization of Sheffer sequences.

Theorem 10 ([9] (p.18)). The p.s.
{

sn
}

n∈IN is Sheffer for (g(t), f (t)) if and only if

1
g( f (t))

ey f (t) =
∞

∑
k=0

sk(y)
tk

k!
(26)

for all y ∈ IK, where f is the compositional inverse of f .

Remark 4. If we use for a formal power series the two variables x and t, we could write (26) as

1
g( f (t))

ex f (t) =
∞

∑
k=0

sk(x)
tk

k!
. (27)

It is the usual form for an exponential generating function.

Remark 5. Sheffer [1] characterized A-type zero polynomial sequences by the generating function

A(t)exH(t) =
∞

∑
k=0

uk(x) tk,

where A(t) is an invertible power series and H(t) is a δ-series.



Mathematics 2022, 10, 4435 9 of 28

From the comparison with (27) it follows that
{

sn
}

n∈IN is a Sheffer sequence in the sense of
Roman if and only if

{ 1
n! sn

}
n∈IN is a sequence of Sheffer A-type zero.

Remark 6. Just for historical record, polynomial sequences of Sheffer A-type zero are called
poweroids by Steffensen [61] and sequences of generalized Appell-type by Erdelyi [62].
Although in Boas and Buck [63] the latter term is used for a more general set of polynomial
sequences.

The generating function (27) provides a representation of Sheffer sequences in classical
monomials.

Theorem 11 ([9] (p.19)). The p.s
{

sn
}

n∈IN is Sheffer for (g(t), f (t)) if and only if

sn(x) =
n

∑
k=0

1
k!

〈
g
(

f (t)
)−1

f (t)k | xn
〉

xk, ∀n ∈ IN. (28)

Proof. The thesis follows by applying both sides of (26) to xn.

Remark 7. For an explicit calculation of the coefficients in (28) see [6] (pp. 11–13).

Theorem 12 ([9] (p.20)). A p.s
{

sn
}

n∈IN is Sheffer for (g(t), f (t)) if and only if

f (t)sn(x) = n sn−1(x).

Interesting is the characterization of Sheffer polynomial sequences that generalizes the
binomial formula.

Theorem 13 ([9] (p.21)). A p.s
{

sn
}

n∈IN is Sheffer for (g(t), f (t)) if and only if

sn(x + y) =
n

∑
k=0

(
n
k

)
pk(y)sn−k(x), ∀n ∈ IN, y ∈ IK, (29)

where
{

pn
}

n∈IN is the (binomial) p.s. associated (basic) with the linear operator f .

Corollary 3. By interchanging x and y in (29) and setting y = 0, we get

sn(x) =
n

∑
k=0

(
n
k

)
pk(x)sn−k(0), ∀n ∈ IN.

Thus, given a p.s.
{

pn
}

n∈IN associated (basic) with f , each Sheffer p.s.
{

sn
}

n∈IN that
uses f as its δ-power series is uniquely determined by the numerical sequence

(
sn(0)

)
n∈IN.

Another important topic introduced by Rota at al. is the umbral composition.

Theorem 14 ([9] (p.44)). The set of Sheffer sequences is a group under umbral composition. In
particular, if

{
sn
}

n∈IN is Sheffer for (g(t), f (t)) and
{

rn
}

n∈IN is Sheffer for (h(t), l(t)), then
{

rn ◦
sn
}

n∈IN is Sheffer for (g(t)h( f (t)), l( f (t))). The identity under umbral composition is the Sheffer

p.s.
{

xn}
n∈IN and the inverse of

{
sn
}

n∈IN is the Sheffer sequence for
(

g(t)
(

f (t)
)−1

, f (t)
)

.

Remark 8. In Roman’s book [9] the problem of orthogonal polynomial sequences which are also
Sheffer is mentioned [9] (p.156–159), but in a more general way.
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PART 2.
In the following Sections we want to discuss some of the more interesting results that

have appeared in the last thirty years or so.

4. The Riordan Group and the Sheffer Group

L. Shapiro et al. in 1991 [64] found a new group of infinite lower triangular matrices.
They called this group Riordan group. This name seems appropriate because due to J.
Riordan’s then recent death. Later the concept of Riordan matrices was generalized to
exponential Riordan matrices by many authors [65,66]. An exponential Riordan matrix is
an infinite lower triangular matrix whose j-th column (being the first indexed with 0) has
the generating function

1
j!

g(t) f (t)j,

where g(t) is an invertible power series and f (t) is a δ-series, that is,

g(t) =
∞

∑
i=0

ai
ti

i!
, a0 6= 0, f (t) =

∞

∑
i=1

bi
ti

i!
, b1 6= 0.

The exponential Riordan matrix generated by the formal power series g(t), f (t) is
denoted by [g(t), f (t)].

Remark 9. As mensioned in [67], “the concept of representing columns of an infinite matrix by
formal power series is not new and goes back to Shur’s paper and Faber polynomials in 1945”.

In the set of exponential Riordan matrices, given A = [g(t), f (t)] and B = [h(t), l(t)],
the matrix multiplication can be defined:

A · B = [g(t), f (t)] · [h(t), l(t)] = [g(t)h( f (t)), l( f (t))]. (30)

The reader will have no difficulty in proving by himself that

• the identity is I = [1, t];
• the inverse matrix is

[g(t), f (t)]−1 =

 1

g
(

f (t)
) , f (t)

,

where f (t) is the compositional inverse, hence is such that f
(

f (t)
)
= f ( f (t)) = t.

Theorem 15. [64] The set of exponential Riordan matrices is a group with respect to the operation
of matrix multiplication as defined in (30), called Riordan group.

In 2007 T.X. He et al. [68] considered the Sheffer group and proved that it is isomorphic
to the Riordan group.

Using the notation of He, a Sheffer p.s.
{

pn
}

n∈IN is defined as

g(t)ex f (t) =
∞

∑
n=0

pn(t)tn. (31)

This definition differs from Roman definition [9] by a constant n!, but it coincides with
that in [1].

In the set of Sheffer polynomial sequences, if
{

pn
}

n∈IN and
{

qn
}

n∈IN are Sheffer
polynomial sequences, He [68] defined the umbral composition “#” in this way:

pn#qn = rn, ∀n ∈ IN, (32)
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where, if pn(x) =
n

∑
k=0

pn,kxk and qn(x) =
n

∑
k=0

qn,kxk, then

rn(x) =
n

∑
k=0

rn,kxk,

with

rn,k =
n

∑
j=k

j!pn,jqj,k, n ≥ j ≥ k.

Theorem 16 ([68]). The set of all Sheffer polynomial sequences defined as in (31) with the operation
“#” defined as in (32) is a group called the Sheffer group and denoted by

({
pn
}

n∈IN, #
)

. The

identity of the group is
{

xn

n!

}
n∈IN

. The inverse of
{

pn
}

n∈IN generated by g(t)ex f (x) is the Sheffer
p.s. generated by

1

g
(

f (t)
) ex f (t),

being f the compositional inverse of f .

Remark 10. The result in the previous theorem, up to the factor n!, is conceptually identical to
Roman’s one [9] (p. 44).

Finally, the isomorphism between the groups is given by mapping{
pn
}

n∈IN −→ [g(t), f (t)],

that is, by associating with the Sheffer p.s. the exponential Riordan matrix whose rows are
the coefficients of the polynomial pn for any n.

For details we refer to [68], where there are also many examples and some applications.

5. Elementary Matrix Calculus Approach to Umbral Calculus

After isomorphism between Sheffer polynomials and exponential Riordan matrices
in [6,26–28,69–73], there is an attempt to construct the modern umbral calculus trought
elementary matrix calculus. This is in contrast with the previous approaches considered
very formal [74]. Furthermore S. Khan et al. wrote “The simplicity of the algebraic approach
to the Appell and Sheffer sequences established in [69,72], allows several applications” [49].

Let
{

pn
}

n∈IN be a p.s. with

pn(x) =
n

∑
k=0

tn,kxk, tn,k ∈ IK, tn,n 6= 0 ∀n ∈ IN. (33)

Setting
Tn =

(
ti,k
)

i,k∈IN, k ≤ i, i = 0, . . . , n, ∀n ∈ IN,

Xn =
[
1, x, x2, . . . , xn

]T
,

we have
Pn = Tn Xn, (34)

where
Pn = [p0(x), p1(x), . . . , pn(x)]T .

For n→ ∞, with obvious meaning of the symbols, we can write

P = T X, (35)
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where T =
(
tik
)

ik∈IN is an infinite, nonsingular, lower triangular matrix [75] and Tn is the
leader submatrix of order n, for any n ∈ IN. Formulas (34) and (35) are called matrix forms
of the p.s.

{
pn
}

n∈IN.
The concept of representing polynomial sequences by lower triangular matrices is not

new and goes back to G. Polya [76] and I. Shur [77]. In fact, Polya gave a solution of the
Cauchy-Bellman functional equation for matrices

M(x)M(y) = M(x + y) (36)

in the form 

1 0 0 . . . . . . 0

x 1
. . .

x2 2x 1
. . .

x3 3x2 3x 1
...

. . . 0
xn ( n

n−1)xn−1 ( n
n−2)xn−2 . . . . . . 1


.

Then Vein [12] observed that the (n + 1)-th row of the matrix contains the terms of the
polynomial expansion of (1 + x)n, and the elements in the (n + 1)-th column are the terms
of the infinite series expansion of (1− x)−(n+1).

Moreover, for the solution of (36), Vein in [13] proved the relation

M(x) = ex Q, (37)

where Q is an infinite triangular matrix with constant elements, and observed that

Q = M′(0). (38)

From this relation Vein proved some identities among triangular matrices and inverse
relations. Thereafter, he determined two sets of triangular matrices. The elements of one
set are related to the terms of Laguerre, Hermite, Bernoulli, Euler and Bessel polynomials,
whereas the elements of the other set consist of Stirling numbers of both kinds, the two-
parameter Eulerian numbers and a the numbers introduced by Touchard [78]. Hence it has
been shown that these matrices are related by a number of identities. Some known and
lesser known pairs of inverse scalar relations that arise in combinatorial analysis have been
shown to be derivable from simple and obviously inverse pairs of matrix relations. Vein
in [13] wrote “The referee has pointed out that this work is an explicit matrix version of the
umbra1 calculus as presented by Rota et al. [9–11]”.

In [6] the author aims to find well-known results on the umbral calculus and also new
identities and properties of Sheffer sequences, by means of elementary matrix calculus. The
approach is very different from Vein’s. In fact, the starting point are the relations (33)–(35)
and not (36)–(38), which indeed will be never considered.

Now we make a mention of the methods used in [6], through an historical and
constructive path.

5.1. Appell Polynomial Sequences

Let
(
ai
)

i∈IN be a numerical sequence with a0 6= 0. The infinite lower triangular matrix
A =

(
ai,j
)

i,j∈IN with

ai,j =

(
i
j

)
ai−j
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is called Appell-type matrix [6] (pp. 9–10). Then we consider the p.s.
{

an
}

n∈IN with

an(x) =
n

∑
j=0

an,jxj =
n

∑
j=0

(
n
j

)
an−jxj, ∀n ∈ IN, (39)

called Appell p.s.
It’s easy to verify that the matrix form

A X = A, and An Xn = An, ∀n ∈ IN, (40)

holds, where

A = [a0(x), a1(x), . . . , an(x), . . . ]T , X =
[
1, x, x2, . . . , xn, . . .

]T

and
An = [a0(x), a1(x), . . . , an(x)]T , Xn =

[
1, x, x2, . . . , xn

]T
.

The Appell-type matrix is nonsingular and its inverse is also an Appell-type matrix [6].
Moreover, if we set

g(t) =
∞

∑
i=0

ai
ti

i!
, a0 6= 0,

g(t) is an invertible power series and its inverse is

1
g(t)

=
∞

∑
i=0

ai
ti

i!
,

where
n

∑
k=0

(
n
k

)
akan−k = δn,0, ∀n ∈ IN.

Then, if we set A−1 = A =
(
ai,j
)

i,j∈IN, we have

ai,j =

(
i
j

)
ai−j. (41)

The matrix A generates the p.s.
{

an
}

n∈IN such that

an(x) =
n

∑
j=0

(
n
j

)
an−jxj.

Moreover
A X = A, and An Xn = An, ∀n ∈ IN.

For details we refer to [6] (p. 14).
The p.s.

{
an
}

n∈IN is hence an Appell p.s., called conjugate of the p.s.
{

an
}

n∈IN.
The reader will have no difficulty in proving by himself the known identities

a′n(x) = n an−1(x), n ≥ 1 (42)

g(t)ext =
∞

∑
n=0

an(x)
tn

n!

that characterize an Appell p.s. [3].
From the matrix form (40) we get

Xn = AnAn (43)
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and

xn =
n

∑
j=0

an,jaj(x), ∀n ∈ IN. (44)

From the latest formula we can derive a recurrence formula and a determinant form.

Theorem 17 ([6]). For the Appell p.s.
{

an
}

n∈IN defined as in (39) the following identities hold:

a0(x) =
1
a0

and, for any n ≥ 1,

an(x) =
1
a0

[
xn −

n−1

∑
k=0

(
n
k

)
an,kak(x)

]
; (45)

an(x) =
(−1)n

an+1
0

∣∣∣∣∣∣∣∣∣∣∣∣

1 x · · · xn−1 xn

a0 a1 · · · an−1 an
...

. . . . . .
...

...
. . . . . .

...
0 · · · · · · a0 ( n

n−1)a1

∣∣∣∣∣∣∣∣∣∣∣∣
. (46)

Proof. Relation (45) follows from (43). The (46) follows by Cramer’s rule applied to the
linear system (44), with n = 0, . . . , M, for any M ∈ IN.

The details can be found in [6] (pp. 83–84).

Remark 11. We note that the determinant form (46) is in [69]. Almost in the same period a similar
form has been given by Yang et al. [79], but with very different and more sophisticated techniques.

An analogous result as in Theorem 17 holds for the conjugate sequence
{

pn
}

n∈IN.

For an Appell p.s. a second recurrence relation and determinant form hold.

Theorem 18 ([6]). With the previous hypothesis and relations, for an Appell p.s. the following
relations hold

an+1(x) = (x + b0)an(x) +
n−1

∑
k=0

(
n
k

)
bn−kak(x), (47)

where
(
bi
)

i∈IN is the numerical sequence given by

g′(t)
g(t)

=
∞

∑
i=0

bi
ti

i!
; (48)

and
a0(x) = 1,

an+1(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x + b0 −1 0 · · · · · · 0
b1 x + b0 −1 0 · · · 0
b2 (2

1)b1 x + b0 −1 · · · 0
...

. . . . . .
...

...
. . . . . .

...
bn (n

1)bn−1 · · · · · · ( n
n−1)b1 x + b0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(49)

with bi as in (48).

Proof. Cfr. [6] (pp. 83–86).



Mathematics 2022, 10, 4435 15 of 28

Remark 12. For the numerical sequence
(
bi
)

i∈IN as in (48) we have the representation

bn =
n

∑
k=0

(
n
k

)
ak+1an−k, ∀n ∈ IN.

Remark 13. We observe that if

n−2

∑
k=0

(
n
k

)
bn−kak(x) = 0, ∀x ∈ IR, ∀n ≥ 2,

then the recurrence relation (47) becomes a three-term relation and, consequently, in suitable
hypothesis, the sequence

{
an
}

n∈IN is also orthogonal [57,80]. It is known [56] that among classical
orthogonal polynomials, only the Hermite sequence is, also, an Appell p.s. We will consider this
topic afterwards.

Remark 14. The second recurrence relation and the second determinant form for Appell polynomial
sequences are, also, in [81], but they are determined by a more general and complicate procedure.

The previous recurrence relations generate some differential equations for Appell
polynomial sequences. For this, firstly we observe that from (42) we have

an−k(x) =
a(k)n (x)

n(n− 1) · · · (n− k + 1)
, ∀k = 0, . . . , n. (50)

Then, using this relation we can prove the following theorem.

Theorem 19 ([6]). Let
{

an
}

n∈IN be the A.p.s. associated with matrix A =
(
ai,j
)

i,j∈IN. Then{
an
}

n∈IN satisfies the following differential equation

an

n!
y(n)(x) +

an−1

(n− 1)!
y(n−1)(x) + · · ·+ a0y(x) = xn.

Proof. The proof is obtained by putting (50) in the first recurrence relation.

Combining (50) and (47), a second differential equation for Appell polynomial se-
quences can be obtained.

The first determinant form (46) allows to calculate the numerical value of an(x) for
every fixed value of the variable x. In fact, it is knows that Gauss elimination without
pivoting for an Hessenberg matrix is stable [82]. Moreover, it allows to prove the following
orthogonality property.

Let L be a linear functional on P . If we set

L
(

xi
)
= ai, i ≥ 0,

the relation (46) allows to define the Appell p.s. denoted by
{

aL
n
}

n∈IN. Then we consider
the n + 1 linear functionals Li, i = 0, . . . , n such that

L0

(
xi
)
= L

(
xi
)

, Lj

(
xi
)
= L

(
Djxi

)
, j ≤ i, i = 0, . . . , n. (51)

Theorem 20 ([26,27]). For the Appell p.s.
{

an
}

n∈IN the following relations hold

Li

(
aL

n

)
= n!δi,n, i = 0, · · · , n.

Proof. The proof follows from (46).
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Corollary 4. The Appell p.s.
{

aL
n
}

n∈IN is the solution of the general linear interpolation problem

Li(an(x)) = n!δi,n, i = 0, · · · , n, (52)

Remark 15. We note that (52) is equivalent to Theorem 2.3.1 in [8] for Appell polynomial se-
quences.

Theorem 21 ([28]). (Representation theorem) With the previous hypothesis and notations, for
any Pn(x) ∈ Pn we have

Pn(x) =
n

∑
k=0

L
(

P(k)
n

)
k!

aL
k (x). (53)

Relation (53) is a natural generalization of the classic Taylor polynomials.

The previous theorem is extensible to the linear space X of real continuous functions
defined in the interval [a, b], with continuous derivatives of all necessary orders.

Theorem 22 ([28]). For any f ∈ X the polynomial

Pn[ f ](x) =
n

∑
i=0

L
(

f (i)
)

i!
aL

i (x) (54)

is the unique polynomial of degree ≤ n such that

L
(

Pn[ f ](i)
)
= L

(
f (i)
)

, i = 0, . . . , n. (55)

The polynomial (54) is called Appell or umbral interpolant for the function f .
In [28] the estimation of the remainder

Rn[ f ](x) = f (x)− Pn[ f ](x)

can be found.
The second determinant form (49) allows to say that any Appell polynomial is the char-

acteristic polynomial of a suitable Hessenberg matrix. In fact it has been proved [6] (p. 86)
that if

{
an
}

n∈IN is the Appell p.s. with matrix A and related conjugate matrix A, then every
an(x) is the characteristic polynomial of the production matrix [6] (p. 18) of A, that is,

Rn = An Ân,

where Ân is the matrix An with its first row and last column removed. Hence the roots of
an Appell polynomial an(x) are the eingenvalues of matrix Rn.

For other properties we refer to a wide literature (see [6]).

5.2. Binomial-Type Polynomial Sequences

Roman and Rota [8] observed: “It remains a mystery why so many polynomial
sequences occurring in various mathematical circumstances turn out to be of binomial-
type”. They said, also, that “the notion of polynomial sequences of binomial-type goes
back to E.T. Bell” [83,84], and we add to Aitken [85], “Steffens was the first to observe that
the sequence associated with delta operators in the way as D is to xn are of the binomial-
type, but failed to notice the converse of this fact, which was first stated and proved by
Mullin and Rota [52]”. In 1970 Mullin and Rota gave the first systematic theory, using
operators methods instead of the less efficient generating functions methods [1], that had
been exclusively used until then.
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Garsia [74] observed: “Unfortunately, the notions and the proofs in that very original
paper ([52], A/N) in some instances leave something to be desidered, and even tend to
obscure the remarkable simplicity and beauty of the results”.

An algebraic approach to Rota-Mullin theory has been considered in [14].
In the following we will use a matrix-calculus based approach.
Let

(
bi
)

i∈IN, b0 = 0, b1 6= 0, bi ∈ IK, i ≥ 0, be a numerical sequence. We define the
matrix P =

(
pn,k
)

n,k∈IN [6] (pp. 7–8) such that

pn,0 = δn,0 n ≥ 0

pn,1 = bn n ≥ 1

pn,k =
1
k

n−k+1

∑
i=1

(
n
i

)
pi,1 pn−i,k−1 n ≥ 2; k = 2, . . . , n

pn,k = 0 k > n.

(56)

P is called binomial-type matrix [6]. It is a non singular, infinite lower triangular matrix.
Then we can consider the polynomial sequence

p0(x) = 1

p1(x) = p1,0 + p1,1(x)

· · ·
pn(x) = pn,0 + pn,1(x) + · · ·+ pn,nxn

· · ·

It will be called binomial-type polynomial sequence (b.p.s. in the following).
The following carachterization explains the construction of a binomial-type matrix P

as in (56).

Theorem 23 ([6] (pp. 24,26)). Let
{

pn
}

n∈IN be a polynomial sequence. It is a b.p.s. if and only if
there exists a numerical sequence

(
bi
)

i∈IN, with b0 = 0, b1 6= 0, such that, for any n ∈ IN, p′n(x) =
n

∑
i=1

(
n
i

)
bi pn−i(x) =

n−1

∑
i=0

(
n
i

)
bn−i pi(x)

pn(0) = 0, p0(x) = 1

and

ex f (t) =
∞

∑
n=0

pn(x)
tn

n!
, (57)

where f (t) =
∞

∑
i=0

bi
ti

i!
.

Proof. Let
{

pn
}

n∈IN be a b.p.s.. Hence there exists a numerical sequence
(
bi
)

i∈IN with
b0 = 0, b1 6= 0 such that pn(x) = ∑n

k=0 pn,kxk, where pn,k are defined as in (56). Then we
have

p′n(x) =
n

∑
k=1

pn,kk xk−1 =
n

∑
k=1

(
n−k+1

∑
i=1

(
n
i

)
bi pn−i,k−1

)
xk−1 =

n

∑
k=1

(
n
k

)
bk pn−k(x). (58)

With the reverse procedure, after integration, the opposite implication follows.
Property (57) follows by easy manipulations [6] (pp. 26–27).
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Proposition 1 ([6] (pp. 6–9)). With the previous notations and hypothesis we get

f
(

f (t)
)
= f ( f (t)) = t

if and only if

f (t) =
∞

∑
i=0

bi
ti

i!
,

where
(
bi
)

i∈IN is defined by
n

∑
k=1

pn,kbk = δn,1, n ≥ 1,

being pn,k as in (56).

Power series f (t) and f (t) are the compositional inverse of each other. From the
numerical sequence

(
bk
)

k∈IN we can construct the matrix P =
(

pn,k
)

n,k∈IN, called the
conjugate binomial matrix of P. It is proved [6] (p. 14) that P = P−1. The matrix P allows
considering the p.s.

{
pn
}

n∈IN, called the conjugate p.s. of
{

pn
}

n∈IN, with elements

p0(x) = 1

p1(x) = p1,0 + p1,1(x)

· · ·
pn(x) = pn,0 + pn,1(x) + · · ·+ pn,nxn

· · ·

Proposition 2. If
{

pn
}

n∈IN and
{

pn
}

n∈IN are conjugate b.p.s., we have

(pn ◦ pn)(x) = pn(pn(x)) = pn(pn(x)) = xn. (59)

Theorem 24. Let B be the set of binomial polynomial sequences and “◦” the umbral composi-
tion [86] defined in B. Then the algebraic structure (B, ◦) is a group.

Remark 16. An analogous result holds for the set A of Appell polynomial sequences. That is, the
algebraic structure (A, ◦) is a group.

For the conjugate b.p.s.
{

pn
}

n∈IN and
{

pn
}

n∈IN, if we set

P̂(x) = [p0(x), . . . , pn(x), . . . ], P(x) = [p0(x), . . . , pn(x), . . . ],

we get the matrix forms

P̂ = P X, and P̂n = Pn Xn, ∀n ∈ IN,

P = P X, and Pn = Pn Xn, ∀n ∈ IN.

Theorem 25 ([6]). For the conjugate b.p.s.
{

pn
}

n∈IN and
{

pn
}

n∈IN the following identities hold

• pn(x) =
1

pn,n

[
xn −

n−1

∑
k=0

pn,k pk(x)

]
;

• pn(x) =
1

pn,n

[
xn −

n−1

∑
k=0

pn,k pk(x)

]
;
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• ĉ0 pn+1(x) = −(nĉ1 − x)pn(x)−
n

∑
k=2

ĉk pn−k+1(x), where

n

∑
k=0

(
n
k

)
ĉkbn−k+1 = δn,0, ∀n ∈ IN,

with initial conditions ĉ0 = 1, b1 = 1, p0(x) = x;

• pn(x) =
(−1)n+1

∏n
k=0 pk,k

∣∣∣∣∣∣∣∣∣∣∣∣

x x2 · · · xn−1 xn

p1,1 p2,1 · · · pn−1,1 pn,1
0 p2,2 · · · pn−1,2 pn,2
...

. . .
...

...
0 · · · pn−1,n−1 pn,n−1

∣∣∣∣∣∣∣∣∣∣∣∣
, n ≥ 1

and

pn(x) =
(−1)n+1

∏n
k=0 pk,k

∣∣∣∣∣∣∣∣∣∣∣

x x2 · · · xn−1 xn

p1,1 p2,1 · · · pn−1,1 pn,1
0 p2,2 · · · pn−1,2 pn,2
...

. . .
...

...
0 · · · pn−1,n−1 pn,n−1

∣∣∣∣∣∣∣∣∣∣∣
, n ≥ 1;

• referring to Sheffer’s approach, the operator J := J(x, D) =
∞

∑
i=1

biD(i), is the corresponding

operator to the b.p.s.
{

pn
}

n∈IN and this is the basic sequence for J, that is, J[pn] = n pn−1 [6]
(p. 36).

For further details and properties we refer to [6] (pp. 24–45).

5.3. Sheffer Polynomial Sequences

In order to give an appropriate matrix-calculus based approach of Sheffer A-type zero
polynomial sequences we consider

• two numerical sequences(
an
)

n∈IN, with a0 6= 0, ai ∈ IK, i ∈ IN,(
bn
)

n∈IN with b0 = 0, b1 6= 0, bi ∈ IK, i ∈ IN;

• the Appell-type matrix A =
(
ai,j
)

i,j∈IN, with ai,j =

(
i
j

)
ai−j;

• the binomial-type matrix P =
(

pi,j
)

i,j∈IN, with pi,j defined as in (56);

• the Appell p.s.
{

an
}

n∈IN with

an(x) =
n

∑
k=0

(
n
k

)
an−kxk, ∀n ∈ IN;

• the binomial p.s.
{

pn
}

n∈IN with

pn(x) =
n

∑
k=0

pn,kxk, ∀n ∈ IN;

• the formal power series

g(t) =
∞

∑
i=0

ai
ti

i!
, f (t) =

∞

∑
i=0

bi
ti

i!
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and the related inverse and compositional inverse

1
g(t)

=
∞

∑
i=0

ai
ti

i!
, f (t) =

∞

∑
i=0

bi
ti

i!
;

• the linear operator

J[y] =
∞

∑
i=1

bi
y(i)

i!
,

where
(
bi
)

i∈IN is defined as in Proposition 1.

Then we consider the umbral composition of the polynomial sequences
{

an
}

n∈IN and{
pn
}

n∈IN, denoted by
{

sn
}

n∈IN, that is [86],

sn(x) =
n

∑
i=0

(
n
i

)
an−i pi(x), ∀n ∈ IN. (60)

We call Sheffer p.s. the sequence
{

sn
}

n∈IN related to the numerical sequences
(
ai
)

i∈IN,(
bi
)

i∈IN as defined above [72].
We denote by S =

(
si,j
)

i,j∈IN the infinite lower triangular matrix associated with the

p.s.
{

sn
}

n∈IN, that is,

sn(x) =
n

∑
k=0

sn,kxk, ∀n ∈ IN. (61)

Proposition 3. With the previous notations and hypothesis we get

S = A P. (62)

Proof. See [6,72].

As for Appell and binomial-type polynomial sequences, we will define the conjugate
sequence of a Sheffer p.s.

{
sn
}

n∈IN, that is, the p.s. with matrix S−1 (see [6] (p. 14,
pp. 150–151)).

For that, we consider the p.s.
{

sn
}

n∈IN such that

sn(x) =
n

∑
i=0

sn,j xj, ∀n ∈ IN,

where

sn,j =
n

∑
k=0

(
n
k

)
gk pn−k,j, j = 0, . . . , n, n ∈ IN

being
(

gi
)

i∈IN defined by

k

∑
i=0

(
k
i

)
ŝi gk−i = δk,0, with ŝk =

k

∑
j=1

aj pk,j.

Let S =
(
si,j
)

i,j∈IN be the infinite lower triangular matrix associated with the p.s.{
sn
}

n∈IN.

Proposition 4 ([6] (p. 14)). With the previous notations and hypothesis we get

S = S−1. (63)
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Remark 17. By construction the matrix S is the product of an Appell matrix and a binomial-type
matrix. This is not evident from (62).

Hence the p.s.
{

sn
}

n∈IN, being the umbral composition of an Appell and a binomial-type p.s.,
is a Sheffer p.s., called conjugate of the p.s.

{
sn
}

n∈IN.

Now we give the matrix form of a Sheffer p.s. We set

S(x) = [s0(x), . . . , sn(x), . . . ], and Sn(x) = [s0(x), . . . , sn(x)], ∀n ∈ IN,

S(x) = [s0(x), . . . , sn(x), . . . ], and Sn(x) = [s0(x), . . . , sn(x)], ∀n ∈ IN,

P(x) = [p0(x), . . . , pn(x), . . . ], and Pn(x) = [p0(x), . . . , pn(x)], ∀n ∈ IN.

Therefore we have
S(x) = S X = (A P) X = A (P X) (64)

and
Sn(x) = Sn Xn = (An Pn) Xn = An (Pn Xn).

From these matrix forms we can derive recurrence relations, determinant forms and
differential equations. For details we refer to [6] (pp. 149–165).

Theorem 26 ([6] (pp. 158–159)). For the Sheffer p.s.
{

sn
}

n∈IN the following identities hold

1
k!

s(k)n (x) =
n

∑
i=k

(
n
i

)
pi,ksn−i(x), ∀n ∈ IN, k = 0, . . . , n.

Particularly, for k = 1,

s′n(x) =
n−1

∑
i=0

(
n
i

)
bn−isi(x).

Proof. The proof follows by differentiation of (60), taking into account (64) and (56).

Proposition 5 ([6] (p. 159)). The following recurrence relation for the columns of the matrix S
holds

sn,k+1 =
1

k + 1

n

∑
i=k

(
n
i

)
bn−isi,k =

1
k + 1

n−k

∑
i=1

(
n
i

)
bisn−i,k, k = 0, . . . , n− 1,

with boundary conditions

sn,0 = an, sn,n = a0bn
1 , n ≥ 0.

In order to determine the relationship with Sheffer A-type zero polynomial sequences
we get the following theorem.

Theorem 27 ([6] (p. 153)). For a Sheffer p.s.
{

sn
}

n∈IN defined as in (60) or (61) we have

g(t)ex f (t) =
∞

∑
n=0

sn(x)
tn

n!
,

J sn = n sn−1.

Now we can say that the p.s.
{

sn
}

n∈IN, defined above, is a Sheffer A-type zero p.s.
For other properties we refer to a wide existing literature (see, for example [6]).

Finally we can observe that the previous construction allows us to write an explicit
algorithm (Algorithm 1) for the numerical generation of a Sheffer p.s.



Mathematics 2022, 10, 4435 22 of 28

Algorithm 1 Appell, binomial-type, Sheffer polynomial sequences.

1: Inizialization: N, ai, bi, i = 0, . . . , N;
2: Appell-type matrix:

A =
(
ai,j
)

i,j=0,...,N , ai,j =

(
i
j

)
ai−j, i = 0, . . . , N, j = 0, . . . , i;

3: binomial-type matrix:
P =

(
pn,k
)

n,k=0,...,N ,

pn,k as in (56);
4: Appell p.s.:

an(x) =
n

∑
k=0

(
n
k

)
an−kxk, n = 0, . . . , N;

plot an;
5: binomial-type p.s.:

pn(x) =
n

∑
k=0

pn,kxk, n = 0, . . . , N;

plot pn;
6: Sheffer-type matrix:

S =
(
si,j
)

i,j=0,...,N , si,j =
j

∑
k=0

(
i
k

)
ai−k pk,j, i = 0, . . . , N, j = 0, . . . , i;

7: Sheffer p.s.:

sn(x) =
n

∑
k=0

(
n
k

)
an−k pk(x), n = 0, . . . , N;

plot sn;
8: end.

6. Sheffer A-Type Zero Orthogonal Polynomial Sequences

We have observed that I.M. Sheffer in his work [1] characterized the A-type zero
polynomial sequences which satisfy, also, an orthogonal condition.

This problem has been considered before by Meixner [59], Sholat [56], but with a
different analysis. Recently, D.J. Galiffa et al. [51] showed that all Sheffer A-type zero
orthogonal polynomial sequences can be characterisized by using only the generating
function that defines this class and a monic three-term recurrence relation. They, therefore,
simplified Sheffer’s analysis.

6.1. Galiffa et al. Analysis

It is suitable to use the same definitions and notations as in [51].

Definition 2. A p.s.
{

Pn
}

n∈IN is classified as A-type zero if there exist two numerical sequences(
ai
)

i∈IN and
(
hi
)

i∈IN such that

A(t)exH(t) =
∞

∑
n=0

Pn(x)tn, (65)

with

A(t) =
∞

∑
i=0

aiti, a0 = 1,

H(t) =
∞

∑
i=1

hiti, h1 = 1.
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To determine which orthogonal set satisfy (65), Sheffer used a monic three-term
recurrence relation of the form [57,58]

Pn+1(x) = (x + λn+1)Pn(x)− µn+1Pn−1(x), n ≥ 0, (66)

with µn > 0, for any n ∈ IN and P−1 = 0.
The idea of Galiffa et al. [51] consists in obtaining some coefficients of Pn by (65). They

observed that

∞

∑
n=0

antnex(t+h2t2+h3t3+··· ) =
∞

∑
n=0

antnexteh2xt2
eh3xt3 · · ·

=
∞

∑
k0=0

ak0 tk0
∞

∑
k1=0

(xt)k1

k1!

∞

∑
k2=0

(h2xt2)k2

k2!

∞

∑
k3=0

(h3xt3)k3

k3!
· · · .

The general term in each of the products above is

ak0 tk0
xk1 tk1

k1!
hk2

2 xk2 t2k2

k2!
hk3

3 xk3 t3k3

k3!
. . .

Thus, discovering the coefficient of xrtr is equivalent to determining all of the nonneg-
ative integer solutions {k0, k1, k2, . . . } of the linear Diophantine equations

k1 + k2 + k3 + · · · = r (67)

k0 + k1 + 2k2 + 3k3 + · · · = s, (68)

where (67) represents the x-exponents and (68) the t-exponents.
In order to satisfy (66) we have to observe the coefficients xntn, xn−1tn−1 and xn−2tn−2.

We omit the calculation, for which we refer to [51].

Lemma 1. For the Sheffer A-type zero polynomial Pn(x) = cn,0xn + cn,1xn−1 + cn,2xn−2 +
O
(

xn−3) as in (66) we have

cn,0 =
1
n!

, cn,1 =
a1

(n− 1)!
+

h2

(n− 2)!

cn,2 =
a2

(n− 2)!
+

a1h2 + h3

(n− 3)!
+

h2
2

2!(n− 4)!
.

Interestingly enough, the coefficients cn,0, cn,1, cn,2 above are expressed in terms of only
the first two nonunitary coefficients of t in A(t) as H(t), that is a1, a2, h2, h3.

Then the authors in [51] showed that Sheffer A-type zero polynomial sequences satisfy
a monic three-term recurrence relation if and only if

λn+1 = a1 + 2h2n

µn+1 =
(
a2

1 − 2a2 + 2a1h2 − 4h2
2 + 3h3

)
n +

(
4h2

2 − 3h3
)
n2.

Hence the following orthogonal polynomial sequences all necessarily belong to the
Sheffer A-type zero classes{

(−1)nn!L(α)
n (x)

}
,
{

2−nHn(x)
}

, {(−a)nCn(x; a)},{
cn(β)n

(c− 1)n Mn(x; β, c)
}

,
{
(2 sin φ)−nn!P(λ)

n (x; φ)
}

, {(−N)n pnKn(x; p, N)}.

These are respectively the monic forms of the Laguerre, Hermite, Charlier, Meixner,
Meixner–Pollaczek and Krawtchouk polynomials, as defined in [51,60].
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6.2. A Further Note on the Orthogonality of Sheffer A-Type Zero Polynomial Sequences

The analysis of Galiffa et al. in [51] can be further improved, by using an equivalent
definition of Sheffer A-type zero polynomial sequences. In fact, assuming as definition a
differential relation by using Theorem 26 and Proposition 5, we get

Theorem 28 ([54]). For monic Sheffer A-type zero polynomial sequences we have

sn,n = 1, sn,n−1 = na1 +
n(n− 1)

2
b2,

sn,n−2 =
n(n− 1)

2
a2 +

n(n− 1)(n− 2)
2

a1b2 +
n(n− 1)(n− 2)

6
b3

+
n(n− 1)(n− 2)(n− 3)

8
b2

2.

Proof. Cfr. [54].

Theorem 29 ([54]). A monic Sheffer p.s. satisfies the three-term recurrence relation if and only if

λn+1 = −(a1 + n b2)

µn+1 = n
(

a2
1 − a2 + a1b2 − b2

2 +
1
2

b3

)
+ n2

(
b2

2 −
1
2

b3

)
.

Proof. From the comparison between (66) and (61) we have

λn+1 = sn,n−1 − sn+1,n

µn+1 = −λn+1sn,n−1 + sn,n−2 − sn+1,n−1.

From Theorem 28 we get the result.

We observe that these results coincide with the ones in [51].

Remark 18. In the set of the Appell polynomial sequences we have the family of the monic orthogo-
nal polynomials with

λn+1 = −a1, µn+1 =
(

a2
1 − a2

)
n, a2

1 − a2 > 0.

In particular, among the classic orgonal polynomials only Hermite polynomial sequences [6]
(p. 134) are also Appell polynomial sequences.

7. Relationship between Sheffer A-Type Zero Sequences and Monomiality Principle

The idea of monomiality goes back to J. Steffenson [61] but only in the last thirty years
this idea has been systematically used by other authors (see [87–89]).

Definition 3. A polynomial sequence
{

pn
}

n∈IN is quasi monomial if and only if there exist two
linear operators P̂, M̂, independent on n, called derivative and multiplicative operators, respectively,
verifying the identities

P̂(pn(x)) = n pn−1(x), n ≥ 1, (69)

M̂(pn(x)) = pn+1(x), n ≥ 0. (70)

Hence P̂ and M̂ play an analogous role to that of derivative and multiplicative opera-
tors, respectively, on classic monomials.

The operators P̂ and M̂ satisfy the following commutative property[
P̂, M̂

]
= P̂ M̂− M̂ P̂ = 1̂,
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so they display a Veyl group structure.
Let the p.s.

{
pn
}

n∈IN be quasi monomial with respect to the operators P̂, M̂. Then
some of its properties can be easily derived from those of the operators themselves:

1. if P̂, M̂ have a differential representation, that is, P̂ = P̂(Dx), M̂ = M̂(x, Dx), then for
any n ∈ IN the polynomial pn satisfies the differential equations

M̂P̂(pn(x)) = n pn(x),

P̂M̂(pn(x)) = (n + 1)pn(x);

2. assuming p0(x) = 1, pn can be explicitely constructed as

pn(x) = M̂n(1);

3. from the above identity it follows that the exponential generating function of
{

pn
}

n∈IN
is given by

etM̂(1) =
∞

∑
n=0

(
tM̂
)n

n!
(1),

and therefore

etM̂(1) =
∞

∑
n=0

pn(x)
tn

n!
.

Let
{

sn
}

n∈IN be a Sheffer A-type zero p.s. with exponential generating function [6]
(p. 153)

g(t)ex f (t) =
∞

∑
n=0

sn(x)
tn

n!
,

where

g(t) =
∞

∑
i=0

ai
ti

i!
, a0 6= 0, ai ∈ IK,

f (t) =
∞

∑
i=1

bi
ti

i!
, b1 6= 0, bi ∈ IK.

It has been showed [90,91] that a Sheffer A-type zero p.s. is quasi monomial with
respect to the differential operators

P̂ = f (Dx)

M̂ = x f ′
(

f (Dx)
)
+

g′
(

f (Dx)
)

g
(

f (Dx)
) .

Conversely, if
{

sn
}

n∈IN is a p.s. satisfying (69), (70), with M̂ = M̂(x, Dx), P̂ = P̂(x, Dx),
then necessarily it is of Sheffer A-type zero.

8. Conclusions

As the centenary of the publication of I.M. Sheffer’s famous paper approaches, we
wanted to honor his memory by recalling some old and recent results. In particular we
recalled the idea of the classification of polynomials by means of suitable linear differential
operators and Sheffer’s method for the study of A-type zero polynomials.

Later Rota et al., in 1970, framed the study of A-type zero polynomials with the umbral
calculus. Indeed, after the theory of Rota et al., modern umbral calculus was essentially
confused with the study of polynomials of A-type zero. Another relevant idea was the
isomorphism between the group of A-type zero polynomials and the Riordan group of
exponential-type matrices introduced at the end of the last century. This gave a different
vision to the subject and allowed the development of algebraic methods. For example, the
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attempt to set modern umbral calculus on elementary matrix calculus. The simplicity of
this result has allowed numerous theoretical and computational applications.

The constant proliferation of new ideas, theoretical and applicative, involving polyno-
mial sets, make us believe that the Sheffer sequences are an active and important research
area in its own right.
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