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Abstract: The Dbar-dressing method is extended to investigate the derivative non-linear Schrödinger
equation with non-zero boundary conditions (DNLSENBC). Based on a meromorphic complex
function outside an annulus with center 0, a local Dbar-problem inside the annulus is constructed.
By use of the asymptotic expansion at infinity and zero, the spatial and temporal spectral problems
of DNLSENBC are worked out. Thus, the relation between the potential of DNLSENBC with the
solution of the Dbar-problem is established. Further, symmetry conditions and a special spectral
distribution matrix are presented to construct the explicit solutions of DNLSENBC. In addition, the
explicit expressions of the soliton solution, the breather solution and the solution of the interaction
between solitons and breathers are given.
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1. Introduction

As a result of a specific balance between non-linear effects and dispersion effects, the
soliton plays a pivotal role in three-level atomic systems, microcavity wires, and other
physical systems [1–3]. Non-linear integrable differential equations have soliton solutions
and elastic collision properties during propagation. In some suitable conditions, we can use
integrable equations to depict many important wave propagation phenomena. The non-
linear Schrödinger (NLS) equation is a classical physical model. It has extensive applications
in physical fields, such as the disturbance of water waves [4], the action of a particle’s
gravitational field on the quantum potential [5], and others [6–8]. The derivative non-linear
Schrödinger (DNLS) equation

iqt + qxx − i(|q|2q)x = 0, (1)

is an important non-linear physical model, which can describe the propagation of circular
polarized non-linear Alfvén waves in plasmas [9–14]. The DNLS equation has been studied
extensively in recent decades. For example, in [15–17], the involutive solutions of the DNLS
equation and generalized DNLS equation were developed, respectively. The multi-soliton
solutions were derived via Darboux transformation and Bäcklund transformation [18,19]. The
high-order rational solution and rogue wave of the DNLS equation were determined in
2012 [20]. The N-double-pole solution was investigated by means of inverse scattering
transformation in 2020 [21]. In addition, the existence of global solutions of the model (1)
was fully discussed in [22]. In 2022, combining profile decomposition techniques with the
integrability structure of the model (1), the global well-posedness of the DNLS equation
was proved in [23].

The Dbar-dressing method, which can also be referred to as the ∂-dressing method, is a
powerful tool to explore integrable non-linear systems and to derive corresponding soliton
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solutions. This approach was first introduced by Zakharov and Shabat [24]. Thereafter,
Beals, Coifman, Manakov, Ablowitz and Fokas developed it further [25–29]. By generalizing
a Riemann–Hilbert problem, a corresponding ∂-problem can be constructed. Then, based on
the obtained ∂-problem, the equation to be studied can be solved using the Dbar-dressing
procedure. In contrast to the numerical solutions provided in [30,31], the Dbar-dressing
method can be used to obtain the explicit solutions of soliton equations. At present, varieties
of well-known non-linear integrable equations, such as the NLS equation, the sine-Gordon
equation, the Gerdjikov–Ivanov equation and others, have been solved successfully by
means of this approach [32–40]. In particular, a new calculating rule of the Lie bracket
which contains the standard calculating rule was proposed in [41]. Based on this, a new
generalized NLS hierarchy and its reduction equations were worked out using the ∂-
method. The ∂-method is also a valuable method for researching high-dimensional systems;
in [42], it was applied to the Sawada–Kotera equation and some interesting results were
obtained.

Based on the dressing method proposed by Zakharov and Shabat, the inverse scatter-
ing transformation (IST) method is mainly used for the factorization of integral operators
on a line into a product of two Volterra operators and the Riemann–Hilbert (RH) prob-
lem. In our work, the Dbar-dressing method is the most powerful version of the dressing
method, which incorporates the ∂-problem formalism. New spectral problems, hierarchy
and soliton solutions can be readily discovered using the Dbar-dressing method. Compared
with other classical methods, the advantage of the Dbar-dressing method is that it can
deal with the RH problem with non-analytical jump matrices. From this perspective, this
method is an improved and upgraded version of the IST method and the RH method [43].
Moreover, compared to the existing reports described above, such as [38], our aim is to
construct N-soliton solutions of DNLSENBC using the Dbar-dressing method and to fully
analyze the properties of the solution. In our investigation, we mainly seek to improve the
analysis of solutions and to explore the relationship between the types of solutions and the
discrete spectrum.

For the purpose of describing and investigating complex magnetic fields more ac-
curately, the non-zero boundary conditions on the non-linear integrable equations are
imposed. In this paper, we extend the ∂-dressing method to construct the Lax pair and
N-soliton of the DNLS equation with non-zero boundary conditions (DNLSENBC)

iqt + qxx − 2i(|q|2 + q2
0)qx + q2

0(−|q|2 + q2
0)q− iq2qx = 0, (2)

and
q(x, t)→ ρ, |x| → ∞, (3)

where ρ is a constant and |ρ| = q0 6= 0.
The structure of this paper is as follows: In Section 2, we obtain the symmetry condition

of the eigenfunction as z → ∞ and z → 0 by considering a local 2× 2 matrix ∂-problem
with special non-canonical normalization. In Section 3, the Lax pair of DNLSENBC is
constructed. In Section 4, the symmetry conditions and particular spectral transformation
matrix are introduced to construct the N-soliton solutions of DNLSENBC. Moreover, as
applications of the N-soliton solutions, the explicit one- and two-soliton solutions, one-
and two-breather solutions, and soliton-breather solution are presented. The conclusions
are presented in the final section.

2. Dbar-Dressing Method and ∂-Problem for DNLSENBC

We introduce the framework of the Dbar-dressing method, in general, in Section 2.1
and obtain the symmetric constraint of the eigenfunction based on the eigenvalue problem
and the ∂-problem in Section 2.2, which plays a key role in the asymptotic expansion and
construction of the N-soliton solutions.
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2.1. Dbar-Dressing Method

As necessary knowledge for the Dbar-dressing method, we introduce the ∂-operator
and the Cauchy integral formula. By introducing the complex variable z = x + iy,
z = x− iy and directly calculating, we have

∂

∂z
=

1
2
(∂x + i∂y) ≡ ∂,

∂

∂z
=

1
2
(∂x − i∂y) ≡ ∂, ∂x = ∂ + ∂, ∂y = i(∂− ∂). (4)

The partial derivative ∂
∂z is called the ∂-operator and ∂ is the conjecture of ∂. Suppose

that g(z) is a given function in a simply connected domain D of the complex z plane, then
the equation

∂ f (z) = g(z), z ∈ D, (5)

is called a ∂-problem, where f (z) = f (z, z) is a complex function; here, we represent it as
f (z) for simplicity. If f (z) is analytical in a simply connected domain D, then, along its
closed contour ∂D, we have the Cauchy integral theorem∮

∂D
f (z)dz = 0, (6)

and the Cauchy integral formula

f (z) =
1

2πi

∮
∂D

f (ξ)
ξ − z

dξ, z ∈ D. (7)

In order to facilitate the calculation of Section 2.2, we provide the following propositions:

Proposition 1. Suppose that D is a domain with closed curve ∂D, f (z), g(z) and their derivatives
are continuous in D, then ∮

∂D
f (z)dz = −

∫ ∫
D

∂ f (z)dz ∧ dz,∮
∂D

g(z)dz =
∫ ∫

D
∂g(z)dz ∧ dz,

(8)

where dz ∧ dz = −2idx ∧ dy = −2idxdy, dx ∧ dy is a Lebesgue measure.

Proposition 2. Suppose that ∂D is a closed curve with boundary D, f (z) and its derivatives are
continuous and bounded in D, then we have the Cauchy–Green formula

f (z) =
1

2πi

∮
∂D

f (ξ)
ξ − z

dξ +
1

2πi

∫ ∫
D

∂ f (ξ)
ξ − z

dξ ∧ dξ, (9)

where ξ = ζ + iη and dξ ∧ dξ = (dζ + idη) ∧ (dζ − idη) = −2idζdη.

Define the complex δ function∫ ∫
D

ψ(z)δ(z− z0)dz ∧ dz = −2iψ(z0), (10)

and suppose that g(z) ∈ L1(z) ∩ L∞(z), then we can find that the ∂-problem (5) admits a
general solution

f (z) = a(z) +
1

2πi

∫ ∫
D

g(ξ)
ξ − z

dξ ∧ dξ, (11)
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where a(z) is an arbitrary analytical function. If f (z) is Hölder continuous on ∂D and
g(z) ∈ L1(z) ∩ L∞(z), then, using the Cauchy integral formula, we get

f (z) =
1

2πi

∮
∂D

f (ξ)
ξ − z

dξ +
1

2πi

∫ ∫
D

g(ξ)
ξ − z

dξ ∧ dξ, (12)

satisfying the ∂-problem (5) on D.

2.2. ∂-Problem for DNLSENBC

The DNLS equation has the following eigenvalue problem [44]

Φx = UΦ, Φt = VΦ, (13)

where

U =

[
ik2 kq
−kq −ik2

]
, V =

[
−2ik4 + i|q|2k2 −2k3q + |q|2qk + iqxk

2k3q− |q|2qk + iqxk 2ik4 − i|q|2k2

]
. (14)

Here the bar represents the complex conjugate and the subscript x (or t) stands for the
partial derivative of x (or t). As an arbitrary number, k is called the eigenvalue (or spectral
parameter) and Φ is called the eigenfunction associated with k.

In the asymptotic behavior of |x| → ∞, we note the variable z as z = k + λ and solve
the eigenvalues of U and V, and obtain

λ(z) = 1
2 (z +

q2
0
z ), k(z) = 1

2 (z−
q2

0
z ),

θ(x, t, z) = k(z)λ(z)(x− 2k(z)2t + q2
0t),

(15)

and the eigenfunction of (13)

(I +
i
z

σ3Q0)eiθ(x,t,z)σ3 ,

where

Q0 =

[
0 ρ
−ρ 0

]
, σ3 =

[
1 0
0 −1

]
. (16)

Here, we consider a 2× 2 matrix ∂-problem

∂Ψ(x, t, z) = Ψ(x, t, z)r(z), z ∈ C \ {0}, (17)

where r(z) is a 2× 2 matrix and is independent of x and t. Moreover, Ψ(x, t, z) is a 2× 2
matrix and has the non-canonical normalization conditions

Ψ(x, t, z) ∼ eiθ(x,t,z)σ3 , z→ ∞,
Ψ(x, t, z) ∼ i

z σ3Q0eiθ(x,t,z)σ3 , z→ 0.
(18)

For simplicity, we define

Ψ̂(x, t, z) = Ψ(x, t, z)e−iθ(x,t,z)σ3 , (19)

then Ψ̂ has the following asymptotic behavior

Ψ̂(x, t, z)→ I, z→ ∞, Ψ̂(x, t, z)→ i
z

σ3Q0, z→ 0. (20)

Now, we consider a new ∂−problem

∂Ψ̂(x, t, z) = Ψ̂(x, t, z)R(x, t, z), R(x, t, z) = eiθ(x,t,z)σ3 r(z)e−iθ(x,t,z)σ3 , z ∈ C \ {0}. (21)
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Based on the generalized Cauchy integral formula, we have

Ψ̂(z) = lim
ε→0,R→∞

1
2πi

∮
ΓR+Γε

Ψ̂(ξ)

ξ − z
dξ +

1
2πi

∫ ∫
ε<|ξ|<R

∂Ψ̂(ξ)

ξ − z
dξ ∧ dξ

= I +
i
z

σ3Q0 +
1

2πi

∫ ∫
ε<|ξ|<R

∂Ψ̂(ξ)

ξ − z
dξ ∧ dξ = N (Ψ) + JΨ̂(z), (22)

where Γε and ΓR are oriented circles with centers at the origin of the z plane with radii R
and ε.

We note the solution space F of the ∂-problem (17) as

F = {Ψ(x, t, z)|∂Ψ(x, t, z) = Ψ(x, t, z)r(z), z ∈ C \ {0}}. (23)

To investigate the DNLSENBC through the ∂-problem (17), we first introduce the
following constraint:

Proposition 3. Let Φ ∈ F and N (Φ) = I + i
z σ3Q0, then it satisfies

Φ(x, t, z) =
i
z

Φ(x, t,−
q2

0
z
)σ3Q0. (24)

Suppose that Φ(x, t, z) has the asymptotic expansion at z→ ∞ and z→ 0,

Φ(x, t, z) ∼ (I + ∑∞
l=1 al(x, t)z−l)eiθ(x,t,z)σ3 , z→ ∞,

Φ(x, t, z) ∼ (∑∞
l=−1 bm(x, t)zm)eiθ(x,t,z)σ3 , z→ 0.

(25)

By making use of the formula
∮

∂D f (z)dz = −
∫ ∫

D ∂ f (z)dz ∧ dz, the coefficients al
and bm can be determined

al(x, t) = δl,1iσ3Q0 −
1

2πi

∫ ∫
C\{0}

Φ(ξ, x, t)r(ξ)e−iθ(ξ)σ3 ξ l−1dξ ∧ dξ, l = 1, 2, · · · , (26)

bm(x, t) =

{
δm,0 +

1
2πi
∫ ∫

C\{0} Φ(ξ, x, t)r(ξ)e−iθ(ξ)σ3 ξ−m−1dξ ∧ dξ, m ≥ 0,

iσ3Q0, m = −1.
(27)

Remark 1. Based on the Proposition 3, we can find that the coefficients al(x, t) and bm(x, t) are
not independent and that satisfy

bm−1(x, t) =
i

(−1)mq2m
0

am(x, t)σ3Q0, m = 1, 2, · · · . (28)

3. Lax Pair of the DNLSENBC

In this section, we deduce the Lax pair of the DNLSENBC. We first introduce the
conclusion.

Proposition 4 ([37,38]). Suppose ΨR ∈ L1(C\{0}) ∩ L∞(C\{0}), then the homogeneous equa-
tion of (22) only has a zero solution for a small norm of the operator J, i.e., Ψ̂(I − J) = 0⇒ Ψ̂ = 0.

For Ψ1(x, t, z), Ψ2(x, t, z) ∈ F , the following conclusion can be derived from Proposition 4:

N (Ψ̂1(x, t, z)) = N (Ψ̂2(x, t, z))⇔ Ψ1(x, t, z) = Ψ2(x, t, z), (29)

which plays a crucial role in constructing the Lax pair of the DNLSENBC.
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Theorem 1. The DNLSENBC (2) has the following Lax pair

Φx = XΦ, Φt = TΦ, (30)

with

X = i(k2 + 1
2 q2

0)σ3 + kQ, Q =

[
0 q
−q 0

]
,

T = (−2ik4 + iq4
0)σ3 − ik2Q2σ3 − 2k3Q− kQ3 − ikQxσ3 + kq2

0Q.
(31)

which implies that DNLSENBC is Lax integrable.

Proof. If Φ ∈ F , then Φt and Φx belongs to the solution space F . From (25), we have, at
z→ ∞,

Φx =
[ ∞

∑
l=1

al,xz−l + (I +
∞

∑
l=1

alz−l)iθxσ3

]
eiθσ3

=
[ ∞

∑
l=1

al,xz−l +
i
4
(z−

q2
0

z
)(z +

q2
0

z
)σ3 +

i
4

∞

∑
l=1

al(z−
q2

0
z
)(z +

q2
0

z
)σ3z−l

]
eiθσ3

=
i
4

[
z2σ3 + a1σ3z + a2σ3 + O(

1
z
)
]
eiθσ3 .

(32)

At z→ 0, we have

Φx = (
∞

∑
m=−1

bm,xzm + i
∞

∑
m=−1

bmzmθxσ3)eiθσ3

=
[
b−1,xz−1 +

∞

∑
m=0

bm,xzm +
i
4

∞

∑
m=−1

bmzm(z−
q2

0
z
)(z +

q2
0

z
)σ3

]
eiθσ3

=
[
b−1,xz−1 − i

4
q4

0b−1z−3σ3 −
i
4

q4
0b0z−2σ3 −

i
4

q4
0b1z−1σ3 + O(1)

]
eiθσ3 .

(33)

By direct calculation, we find[
i(k2 +

1
2

q2
0)σ3 +

i
2

k(a1σ3 − σ3a1)
]
Φ =

i
4

[
z2σ3 + a1σ3z + a2σ3 + O(

1
z
)
]
eiθσ3 , z→ ∞,[

i(k2 +
1
2

q2
0)σ3 −

i
2

kq2
0(b0σ3 + σ3b0)b−1

−1

]
Φ =

[
(b−1,xz−1 − i

4
q4

0b−1z−3σ3 −
i
4

q4
0b0z−2σ3

− i
4

q4
0b1z−1σ3 + O(1)

]
eiθσ3 , z→ 0.

(34)

The relation of the coefficients al and bm in (28) gives that i
2 k(a1σ3 − σ3a1)

= − i
2 kq2

0(b0σ3 + σ3b0)b−1
−1. Thus, using (22), we obtain

N (Φ̂x) = N
[
(i(k2 +

1
2

q2
0)σ3 +

i
2

k(a1σ3 − σ3a1))Φ̂
]
, (35)

which gives the spatial linear spectral problem based on (29)

Φx =
[
i(k2 +

1
2

q2
0)σ3 + kQ

]
Φ, Q =

i
2
[a1, σ3]. (36)

Similarly, we can have

Φt = −
i
8

[
z4 − 4q2

0z2 + a1z3 + a2z2 + a3z + a4 − 4q2
0a1z− 4q2

0a2 + O(
1
z
)
]
, z→ ∞,

Φt =
i
8

q6
0

[
q2

0(b−1z−5 + b0z−4 + b1z−3 + b2z−2 + b3z−1)− 4(b−1z−3 + b0z−2 + b1z−1) + O(1)
]
, z→ 0.

(37)

And
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TΦ = − i
8

[
z4 − 4q2

0z2 + a1z3 + a2z2 + a3z + a4 − 4q2
0a1z− 4q2

0a2 + O(
1
z
)
]
, z→ ∞,

TΦ =
i
8

q6
0

[
q2

0(b−1z−5 + b0z−4 + b1z−3 + b2z−2 + b3z−1)− 4(b−1z−3 + b0z−2 + b1z−1) + O(1)
]
, z→ 0.

(38)

Again using (22), (29), (37) and (38) gives the temporal linear spectral problem.

Theorem 1 forms a connecting link between the preceding and the following: Starting
from the asymptotic expression of Φ(x, t, z) in Section 2, we obtain the spatial and temporal
linear spectral problem that Φ(x, t, z) satisfies in Theorem 1. Integrability is an extremely
important property of non-linear equations and Theorem 1 proves that the DNLSENBC is
Lax integrable. Moreover, Theorem 1 establishes the connection between the potential of the
DNLSENBC and the solution of the Dbar-problem, which paves the way for construction
of the N-soliton solutions of the DNLSENBC in the next section.

4. Solutions

In this section, we construct the N-soliton solutions of the DNLSENBC.

4.1. ∂-Dressing Method and N-Soliton Solutions

We first introduce the symmetry condition on the off-diagonal matrix Q in (36)

σ2Qσ2 = Q, σ2 =

[
0 −i
i 0

]
. (39)

Based on (39), we can find that the matrix eigenfunction Φ and the distribution r(z)
satisfy the symmetry conditions

Φ(x, t, z) = σ2Φ(x, t, z)σ2, r(z) = σ2r(z)σ2, (40)

which plays a key role in the construction of solutions.

Theorem 2. Suppose that ηj are 2N1 + N2 discrete spectra in a complex plane C. For the purpose
of obtaining the soliton solutions of the DNLSENBC, we choose a spectral transformation matrix
r(z) as

r(z) = π
2N1+N2

∑
j=1

[
0 cj(δ(z− ηj) + δ(z + ηj))

−cj(δ(z− η j) + δ(z + η j)) 0

]
, (41)

where cj ∈ C are all constants and

ηj = zj, ηN1+j = −
q2

0
zj

, η2N1+n = ζn, cN1+j =
ρq2

0
ρ·η2

j
cj, j = 1, 2, · · ·N1, n = 1, 2, · · ·N2.

(42)
Then, the DNLS Equation (2) with a non-zero boundary condition (3) admits the solutions

q = ρ− 2i detMa

detM , M = I + An,m, (43)

where Ma are (2N1 + N2 + 1)× (2N1 + N2 + 1) matrices defined as

Ma =

[
0 Y
F M

]
, Y = (Y1, Y2, · · ·Y2N1+N2), Yj = cje

2iθ(ηj), Dj(z) =
cj

z2 − η2
j

e2iθ(ηj),

F = ( f1, f2, · · · f2N1+N2), fn = 1− 2iρ
2N1+N2

∑
n=1

Dj(ηn), An,m = 4
2N1+N2

∑
j=1

η2
j Dj(ηn)Dm(η j),

θ(x, t, ηj) =
1
4
(η2

j −
q4

0
η2

j
)
[

x− 1
2
(η2

j +
q4

0
η2

j
)t + 2q2

0t
]
.
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Proof. From Equations (26) and (36), we have

Q = Q0 +
1

4π

[
σ3,
∫ ∫

C0
Φ̂(x, t, z)eiθ(z)σ3 r(z)e−iθ(z)σ3 dz ∧ dz

]
. (44)

Substituting (41) into (44), we have the solution of the DNLSENBC

q = ρ− 2i
2N1+N2

∑
j=1

cje
2iθ(ηj)Φ̂11(ηj). (45)

In order to obtain the explicit expression of q, the key is to determine the functions Φ̂11.
Making use of the properties of the δ function and the symmetry (24), from (22), we have

Φ̂11(z) = 1− 2
2N1+N2

∑
j=1

cj
η j

z2 − η2
j

e−2iθ(η j)Φ̂12(η j), (46)

Φ̂12(z) =
i
z

ρ + 2
2N1+N2

∑
m=1

cm
z

z2 − η2
m

e2iθ(ηm)Φ̂11(ηm). (47)

Taking z = ηn in (46) and z = η j in (47), a system of linear equations is obtained

Φ̂11(ηn) +
2N1+N2

∑
m=1

An,mΦ̂11(ηm) = fn, n = 1, 2, · · · 2N1 + N2, (48)

with

fn = 1− 2iρ
2N1+N2

∑
n=1

Dj(ηn), An,m = 4
2N1+N2

∑
j=1

η2
j Dj(ηn)Dm(η j), Dj(z) =

cj

z2 − η2
j

e2iθ(ηj).

For simplicity, we further note

M = I + An,m, F = ( f1, f2, · · · f2N1+N2)
T , Φ̌ = (Φ̂11(η1), Φ̂11(η2), · · · Φ̂11(η2N1+N2))

T .

Then (48) can be written in the matrix form

MΦ̌11 = F. (49)

Substituting the solution Φ̌11 of (49) into (45) gives the Formula (43).

4.2. Application of N-Soliton Formula

As applications of the Formula (43), we present explicit soliton solutions of the
DNLSENBC. For simplicity, we take |ρ| = 1 in the following.

Case 1. One-breather
In this case, we take N1 = 1, N2 = 0, η1 = reiα, c1 = eµ+iν , and ρ = eiφ. From (42), we

can determine η2 = − 1
r eiα, c2 = 1

r2 eµ+i(2φ+2α−ν). Substituting the above parameters in (43),
we have the one-breather solution (see Figure 1)

q(x, t) = 1− 2i

det

 0 Y1 Y2
f1 1 + A1,1 A1,2
f2 A2,1 1 + A2,2


det
[

1 + A1,1 A1,2
A2,1 1 + A2,2

] , (50)
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where
θ(x, t, ηj) =

1
4
(η2

j −
1
η2

j
)[x− 1

2
(η2

j +
1
η2

j
)t + 2t], j = 1, 2,

Dj(z) =
cj

z2 − η2
j

e2iθ(x,t,ηj), Yj = cje2iθ(x,t,ηj), j = 1, 2,

fn = 1− 2i
2

∑
n=1

Dj(ηn), An,m = 4
2

∑
j=1

η2
j Dj(ηn)Dm(η j), m, n = 1, 2.

(51)

(a) (b)

Figure 1. (a) One-breather of (50) with r = 0.5, α = 0.8, µ = 0.5, ν = 0.5, φ = 2π, q0 = 1, (b) the
corresponding density profile.

Case 2. One-soliton
Let N1 = 0 and N2 = 1. Based on (42), we take η1 = eiβ, c1 = eκ+iτ and ρ = eiφ. The

relation (43) gives rise to the one-soliton solution (see Figure 2)

q(x, t) = 1− 2i
−Y1 f1

1 + A1,1
, (52)

where

θ(x, t, η1) =
1
4
(η2

1 −
1
η2

1
)[x− 1

2
(η2

1 +
1
η2

1
)t + 2t], D1(η1) =

c1

η2
1 − η2

1
e2iθ(x,t,η1),

Y1 = c1e2iθ(x,t,η1), f1 = 1− 2iD1(η1), A1,1 = 4η2
1D1(η1)D1(η1).

(53)

(a)
(b)

Figure 2. (a) One-soliton of (52) with β = −1.46, κ = −1.35, τ = −1.35, φ = 2π, q0 = 1, (b) the
corresponding density profile.

On the one hand, when N1 = 1, N2 = 0, the one breather occurs for the parameters
r = 0.5, α = 0.8, µ = 0.5, ν = 0.5, φ = 2π, q0 = 1. On the other hand, when selecting N1 = 0,
N2 = 1, one soliton is displayed with β = −1.46, κ = −1.35, τ = −1.35, φ = 2π, q0 = 1.
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Thus, Figures 1 and 2 reveal that a single specific discrete spectrum leads to the appearance
of a specific type of soliton.

Case 3. Soliton-breather solution
Let N1 = 1 and N2 = 1. Based on (42), we can take η1 = reiα, η2 = − 1

r eiα,
η3 = eiβ, ρ = 1, c1 = eµ+iν, c2 = 1

r2 eµ+i(2α−ν), and c3 = eκ+iτ . Substituting these data
in (43) gives the soliton-breather solution (see Figure 3)

q(x, t) = 1− 2i
det
[

0 Y
f I + A

]
det
[
I + A

] , (54)

where
Y = (Y1, Y2, Y3), f = ( f1, f2, f3)

T , A = (Ai,j), i, j = 1, 2, 3,

θ(x, t, ηj) =
1
4
(η2

j −
1
η2

j
)[x− 1

2
(η2

j +
1
η2

j
)t + 2t], j = 1, 2, 3,

Dj(z) =
cj

z2 − η2
j

e2iθ(x,t,ηj), Yj = cje
2iθ(x,t,ηj), j = 1, 2, 3,

fn = 1− 2i
3

∑
n=1

Dj(ηn), An,m = 4
3

∑
j=1

η2
j Dj(ηn)Dm(η j), m, n = 1, 2, 3.

(55)

(a)

t=-0.1

t=1

t=3

-10 -5 0 5
x

1

2

3

4

5

6

7
|q|

(b)
(c)

Figure 3. (a,b) Interaction of the soliton and breather with r = 2.5, α = −0.72, β = 1.45,
µ = −0.45, ν = 1.5, κ = −0.5, τ = 1.55, ρ = 1, q0 = 1, (c) the corresponding density profile.

Under the specific parameters r = 2.5, α = −0.72, β = 1.45, µ = −0.45, ν = 1.5,
κ = −0.5, τ = 1.55, ρ = 1, q0 = 1 of case 3, we can find that the soliton-breather solution
propagates from right to left and the collision is elastic. Due to a mixed discrete spectrum,
(N1 = 1, N2 = 1) is introduced in (43), and the interaction of the bright soliton and the
bright breather emerges. This further reflects that the discrete spectrum N1 and N2 have
different effects on the type of solitons.

Case 4. Two-breather
Let N1 = 2 and N2 = 0. From (42), we can choose ηj = rje

iαj , ηN1+j = − 1
rj

eiαj

(j = 1, 2), ρ = 1, c1 = eµ+iν, c2 = eκ+iτ , cN1+j =
1
r2

j
eµ+i(2αj−ν). From (43), we obtain the

two-breather solution (see Figure 4)

q(x, t) = 1− 2i
det
[

0 Y
f I + A

]
det
[
I + A

] , (56)
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where

Y = (Y1, Y2, Y3, Y4), f = ( f1, f2, f3, f4)
T , A = (Ai,j), i, j = 1, 2, 3, 4,

θ(x, t, ηj) =
1
4
(η2

j −
1
η2

j
)[x− 1

2
(η2

j +
1
η2

j
)t + 2t], j = 1, 2, 3, 4,

Dj(z) =
cj

z2 − η2
j

e2iθ(x,t,ηj), Yj = cje
2iθ(x,t,ηj), j = 1, 2, 3, 4,

fn = 1− 2i
4

∑
n=1

Dj(ηn), An,m = 4
4

∑
j=1

η2
j Dj(ηn)Dm(η j), m, n = 1, 2, 3, 4.

(57)

(a)

t=-1

t=1

t=2

-10 -5 0 5 10
x

1

2

3

4

5
|q|

(b)
(c)

Figure 4. (a,b) Interaction of the two breathers with r1 = 0.42, r2 = 0.42, α1 = 0.25, α2 = 0.5,
µ = 0.2, ν = 0.2, κ = 0.5, τ = 0.5, ρ = 1, q0 = 1, (c) the corresponding density profile.

Figure 4 corresponds to the case where only N1 exists in the discrete spectrum and
N1 = 2, so the interaction of the two breathers naturally appears. As can be seen in Figure 4,
for the parameters r1 = 0.42, r2 = 0.42, α1 = 0.25, α2 = 0.5, µ = 0.2, ν = 0.2, κ = 0.5,
τ = 0.5, ρ = 1, q0 = 1, the two-breather solution propagates from left to right and the two
breathers collide elastically.

Case 5. Two-soliton
Let N1 = 0 and N2 = 2. From (42), we can choose ηj = eiβ j (j = 1, 2), c1 = eµ+iν,

c2 = eκ+iτ . Based on (43), we gain the two-soliton solution (see Figure 5)

q(x, t) = 1− 2i

det

 0 Y1 Y2
f1 1 + A1,1 A1,2
f2 A2,1 1 + A2,2


det
[

1 + A1,1 A1,2
A2,1 1 + A2,2

] , (58)

where
θ(x, t, ηj) =

1
4
(η2

j −
1
η2

j
)[x− 1

2
(η2

j +
1
η2

j
)t + 2t], j = 1, 2,

Dj(z) =
cj

z2 − η2
j

e2iθ(x,t,ηj), Yj = cje
2iθ(x,t,ηj), j = 1, 2,

fn = 1− 2i
2

∑
n=1

Dj(ηn), An,m = 4
2

∑
j=1

η2
j Dj(ηn)Dm(η j), m, n = 1, 2.

(59)
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(a)

t=-10

t=-1

t=10

-40 -20 0 20 40
x

1

2

3

4

5
|q|

(b)
(c)

Figure 5. (a,b) Interaction of the two solitons with β1 = −0.5, β2 = −1, µ = 1.2, ν = 0.3, κ = 1.2,
τ = 0.3, ρ = 1, q0 = 1, (c) the corresponding density profile.

Compared with case 4, case 5 has only N2 in the discrete spectrum and N2 = 2, so
we obtain the two soliton solution in Figure 5 for the parameters β1 = −0.5, β2 = −1,
µ = 1.2, ν = 0.3, κ = 1.2, τ = 0.3, ρ = 1, q0 = 1. At this time, the two-soliton solution
propagates from right to left and collides elastically.

The above results can be briefly described in Table 1:

Table 1. The relation between the type of soliton and the discrete spectrum N1 and N2.

N1 = 1, N2 = 0 N1 = 0, N2 = 1 N1 = 1, N2 = 1 N1 = 2, N2 = 0 N1 = 0, N2 = 2

one-breather one-soliton soliton-breather two-breather two-soliton

It is straightforward to find that the discrete spectrum N1 controls the generation of
breathers, while the discrete spectrum N2 leads to the appearance of solitons. When we take
the mixed discrete spectrum (i.e., N1 = N2 = 1), the interaction of the bright soliton and
the bright breather occurs. In the case of N1 = 2, N2 = 0, the solution of (56) displays the
interaction of the bright breather and the bright breather, which is shown in Figure 4. When
we take N1 = 0, N2 = 2, as shown in Figure 5, the solution of (58) exhibits the interaction of
the bright soliton and the bright soliton. Case 3 to case 5 show that the collision is elastic,
because the size and shape of the solitons remain unchanged before and after the collision.

5. Conclusions

In this paper, a special distribution and a symmetry matrix function were presented to
construct the DNLSENBC and its linear spectral problem. Thus, the the relation between
the potential of the DNLSENBC with the solution of the Dbar-problem was established.
We extended the Dbar-dressing method to study the DNLSENBC based on the fact that
the solution of the Dbar-problem was meromorphic outside an annulus with center 0 and
satisfied a local Dbar-problem inside the annulus. Further, 2N1 + N2 discrete eigenvalues
were introduced in the distribution and the N-soliton solution was worked out. An innova-
tive aspect of this investigation is the exploration of the relation between the type of soliton
and the values of the discrete spectrum N1 and N2. The discrete spectrum N1 is related
to the appearance of breathers, while the discrete spectrum N2 affects the generation of
solitons. The interaction of the soliton and the breather occurs with the introduction of
the mixed discrete spectrum. The dynamic behaviors of the soliton solution, the breather
solution, and the solution of the interaction between the solitons and the breathers, are
further elaborated in the figures and tables. Based on the results obtained in this study,
we intend to investigate the long time asymptotic behavior of the DNLSENBC in another
paper in the near future.
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