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Abstract: Background and aim: Machine learning methods are examined by many researchers to
identify weeds in crop images captured by drones. However, metaheuristic optimization is rarely
used in optimizing the machine learning models used in weed classification. Therefore, this research
targets developing a new optimization algorithm that can be used to optimize machine learning
models and ensemble models to boost the classification accuracy of weed images. Methodology: This
work proposes a new approach for classifying weed and wheat images captured by a sprayer drone.
The proposed approach is based on a voting classifier that consists of three base models, namely,
neural networks (NNs), support vector machines (SVMs), and K-nearest neighbors (KNN). This
voting classifier is optimized using a new optimization algorithm composed of a hybrid of sine cosine
and grey wolf optimizers. The features used in training the voting classifier are extracted based on
AlexNet through transfer learning. The significant features are selected from the extracted features
using a new feature selection algorithm. Results: The accuracy, precision, recall, false positive rate,
and kappa coefficient were employed to assess the performance of the proposed voting classifier. In
addition, a statistical analysis is performed using the one-way analysis of variance (ANOVA), and
Wilcoxon signed-rank tests to measure the stability and significance of the proposed approach. On the
other hand, a sensitivity analysis is performed to study the behavior of the parameters of the proposed
approach in achieving the recorded results. Experimental results confirmed the effectiveness and
superiority of the proposed approach when compared to the other competing optimization methods.
The achieved detection accuracy using the proposed optimized voting classifier is 97.70%, F-score
is 98.60%, specificity is 95.20%, and sensitivity is 98.40%. Conclusion: The proposed approach is
confirmed to achieve better classification accuracy and outperforms other competing approaches.

Keywords: smart farming; metaheuristic optimization; weed detection; machine learning; sine cosine
algorithm; grey wolf optimization algorithms
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1. Introduction

Climate change and worldwide population expansion are exerting significant pressure
on agriculture to expand food production in terms of quality and quantity. Because the
global population is expected to grow to nine billion people by 2050, agricultural production
will need to quadruple to keep up [1]. Plant diseases, pests, and weed infestation pose
enormous problems to agriculture [2–5]. Weeds are unwelcome plants that take nutrients
from the soil, compete with profitable crops for light, water, and other resources, and
spread by seeds or rhizomes. Weeds, pests, and diseases diminish crop yields and quality,
reducing the amount of food, fiber, and biofuel that can be produced. Losses might be
sudden or long-term, but on average, 42% of a few key food crops’ productions is lost.

To achieve reasonable weed control and increased crop output, farmers invest billions
of dollars every year in weed management. It is, therefore, critical to managing weeds in
horticulture crops, as failure to do such results in lower yields and product quality [6]. If
not handled properly, the employment of chemical and cultural control methods might
negatively affect the ecosystem. Weed control will be more successful and long-lasting
with low-cost technology for identifying and mapping weeds early in their life cycle. Crop
diseases and pests can be reduced, and crop yields can be increased by as much as 34%
when early weed management is used [7]. Weeds may be managed in various ways, all
of which take environmental considerations into account. Image processing is one of the
most promising of these methods. Unmanned aerial vehicles (UAVs) are used in image
processing to monitor crops and capture images of potential weeds in the fields. Due to
their capacity to cover enormous areas quickly, UAVs have been proven to be helpful in
agriculture because they do not create soil compaction or damage in the fields [8]. It is still a
challenge to turn data gathered by UAVs into relevant information. Due to the manual labor
required for segment size tweaking, feature selection, and rule-based classifier building,
conventional data gathering and classification cannot be automated.

With the goal of increasing crop productivity while decreasing the prevalence of un-
wanted weeds, agricultural mechanization has emerged as the leading research field [9].
The intelligent spraying system relies heavily on accurately identifying weed plants to
maximize agricultural yield [10]. Many machine learning-based algorithms have been de-
veloped for weed identification, making it a promising area of study for data scientists [11].
Many scientists used computer vision algorithms to categorize agricultural, and weed
plants [12]. Various deep learning and hand-crafted models have also been published and
have made substantial contributions [13]. Color classification strategies for perennial weed
identification [12], CNN-based method/approach for distinguishing sugar beet plants from
weeds [14], deep convolutional neural network (DNN) [15], Gabor wavelets and neural
network [16], hyperspectral imaging with wavelet analysis [17], decision trees, and artificial
neural network [18] have all been proposed for the classification of weeds. The agriculture
industry has benefited greatly from these strategies, which have produced extraordinary
results. Better weed plant classification, however, requires more advanced and efficient
methodologies to boost the accuracy of weed detection.

In this work, a publicly available wheat images dataset is employed as the overarching
inspiration for this research. This dataset is utilized for training a deep neural network
through transfer learning and feature extraction. In addition, to boost the classification
accuracy of weed images, a new optimization algorithm is proposed to optimize the
parameters of a new voting ensemble classifier composed of neural network (NN), k-
nearest neighbors (KNN), and support vector machine (SVM) machine learning models.
Moreover, a binary optimizer is proposed to optimize the feature selection process to select
the best set of features. To evaluate the performance of the proposed methodology, a set of
evaluation criteria is adopted to assess the effectiveness of the feature selection algorithm
and an optimized voting ensemble model. On the other hand, statistical tests, such as the
one-way analysis of variance and the Wilcoxon signed-rank test, are conducted to evaluate
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the significance and statistical difference of the proposed methodology. The recorded
results are compared to those of other algorithms to show the superiority of the proposed
approach.

This paper is structured in terms of five sections. Section 1 presents the introduction
of the problem addressed in this paper and a summary of the proposed solution. Section 2
discusses the main milestones in the literature related to the task of weed detection. The
materials and methods employed in the proposed solution are presented in Section 3. The
proposed algorithms and solutions are explained in Section 4, and the experimental results
are discussed in Section 5. Finally, the conclusions are presented in Section 6.

2. Literature Review

Weed identification using machine learning and image analysis has been increasingly
popular in recent years, and the research presented here examines some of the most
notable examples. Weed maps may be generated using several classification methods using
UAV images [19–22]. However, recent state-of-the-art publications [23] reveal that machine
learning algorithms are superior to traditional parametric methods in terms of accuracy and
efficiency when dealing with complex data. The random forest (RF) classifier is one of the
most well-liked machine learning algorithms for use in remote sensing [24]. This is because
of its high generalization performance and fast processing time. The classification of high-
resolution UAV images and agricultural mapping with RF has been proven beneficial. SVM
is another well-known machine learning classifier [25–28], and it has been widely used to
categorize weeds and crops. Meanwhile, the authors in [29] employed the KNN method to
identify spreading thistles in sugar beet fields. New efforts on a machine learning-based
approach for weed detection are summarized in Table 1.

Table 1. Weed detection approaches published in the literature.

Reference Task Target Crop Model Precision

[3] Detection and
classification of weeds Unspecified RF 95%

[4] Canopy structure
measurement Avocado tree RF 96%

[5] Recognition of weed
types Maize KNN, RF 81%, 76.95%

[30] Early weed mapping Sunflower, cotton RF 87.90%
[31] Weed detection by UAV Maize YOLOv3 98%

[24] Water aquatic
vegetation monitoring Stratiotes aloides RF 92.19%

[25] Mapping of land cover 9 perennial crops SVM 84.80%

[26] Recognition of weed
types 8 weed plants SVM 92.35%

[27] Detection of weeds
using shape feature Sugar beet SVM 95%

[28] Detection of weeds Soybean SVM 95.07%

[32] Weed detection using
image processing Chilli RF 96%

[33]
Mapping of weeds
using images from

UAV
Maize, Sunflower SVM 95.50%

In [25], the authors create a land cover map of the Riverina region in New South Wales,
Australia, covering a total area of 6200 km2, to identify and categorize perennial crops in
this vast region. They used object-based image analysis with supervised support vector
machine classification to improve precision. After analyzing the data, they determined that
the accuracy for a total item count using all twelve classes was 84.80%, but it increased to
90.20% when weighted by object area. The outcomes proved the feasibility of employing a
succession of medium-resolution remote sensing images to generate comprehensive land
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cover maps over extensive perennial cropping regions. With an RF classifier, the authors
of [3] created a real-time computer vision-based system to identify weeds in agricultural
fields. The classification model was trained using the authors’ dataset, and then field data
were used to verify its accuracy. They also created a fluid flow control system based on
pulse width modulation, which uses the information provided by the vision system to
regulate the spraying of an agrochemical. As a result, the authors proved the utility of their
pesticide spraying method based on real-time vision.

In [34], a support vector machine (SVM) technique is used to detect weeds in chili
field images. Examining how well the SVM classifier functions within a comprehensive
weed-control strategy was the focus of their study. Five distinct types of weeds were
depicted in the images they took of Bangladeshi chili crops. The authors used a global
thresholding-based binarization algorithm to segment the images, separating the plants
from the ground to extract features. Fourteen features were extracted from each image and
sorted into color, shape, and moment invariants. Eventually, a support vector machine
classifier was utilized to search for weeds. Their experiments determined that the SVM
was 97% accurate over a set of 224 images. The authors of [27] presented a method for
weed identification in sugar beet cultivation by utilizing a combination of numerous form
elements to establish patterns that would be used to distinguish between sugar beets and
weeds, which are visually quite similar. Images of sugar beet farms at Shiraz University
served as the basis for this study. These images were altered using the MATLAB toolbox.
Shape factors, moment invariants, and Fourier descriptors were among the properties of
geometric space that the authors investigated to establish a distinction between weeds
and sugar beets. Next, the authors utilized KNN and SVM classifiers, whose combined
accuracy was 92.92% and 95%, respectively.

A color-index-based histogram is utilized to distinguish between weed, soybean, and
soil classes, and a monochrome image is produced, as described in [28]. After scaling the
image to a range of 0–255, greyscale images were obtained by creating and normalizing
image histograms, which were then utilized for training BPNN and SVM classifiers. This
study set out to find an alternate feature vector that will guarantee a high weed identifica-
tion rate while also being computationally straightforward. In total, this method yielded
accuracies of 96.60% for BPNN and 95.08% for SVM. The authors presented an automated
weed identification system in [31] that could identify weeds at different developmental
stages. In this case, sensors mounted on an unmanned aerial vehicle (UAV) were used to
acquire color, multispectral, and thermal imagery. Using color images as the ground truth,
researchers manually drew bounding boxes around plant bulbs and labeled them by hand.
Next, they turned the gathered images into normalized difference vegetation index (NDVI)
images using image processing techniques. At last, they used machine learning techniques
to sort the weeds from the useful plants.

Images were obtained from a plant laboratory in Belgium, and the authors of [5]
studied how well a hyperspectral snapshot mosaic camera worked at identifying weeds
and maize. The calibration formula reflectance was obtained after these raw images were
processed for the band features. One hundred eighty-five features were discovered across
reflectance, NDVI, and RVI in the VB and NIR spectrums. To further streamline the process,
the authors turned to a principal component analysis-based feature reduction technique.
This data was then fed into feature selection algorithms, which were used to isolate relevant
features. In the end, an RF classifier was employed to distinguish between weeds and
crops. Accuracy for identifying various weeds was up to 81% overall. At an early stage
in the development of herbaceous crops, the authors of [30] proposed an automated, RF-
based image processing method for weed detection. This method combines digital surface
models (DSMs) with orthomosaic methods using images captured by unmanned aerial
vehicles (UAVs). After that, an RF classifier was utilized to differentiate between weeds
and crops/soil, with results of 87.90% for sunflower fields and 84% for cotton fields, respec-
tively. Obtaining radiometrically calibrated multispectral imaging, segmenting images, and
employing a machine learning model are the essential components of a straightforward
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methodology presented in [24] for monitoring emerging and submerged invasive water
soldiers. The eBee mapping drone was used to get the imagery. Pix4Dmapper Pro 3.0 was
used to create the orthomosaic from the multispectral images.

The authors of [4] presented a method that uses UAVs to precisely predict when
avocado plants are at particular stages of development. They shot the multispectral images
with a Parrot Sequoia camera. After separating the digital terrain model from the digital
surface model, a canopy height model was utilized to determine the height of the trees.
Then, they used orthomosaic at-surface reflectance images and a variety of vegetation
indices depending on the brightness of the plants in the red edge and NIR bands. The final
step was implementing an RF method, which ended up being 96% accurate. UAV images
from sunflower and maize fields were utilized in a weed mapping strategy proposed for
precision agriculture in [33]. Object-based image analysis (OBIA) with a support vector
machine (SVM) method linked with feature selection approaches was utilized to solve the
spectral similarity problem for crop and weed pixels in the early growth stage. Spain’s
private farms, La Monclova and El-Mazorcal, had images of sunflower and corn fields
captured by the UAV. After that, the images were mosaicked with the help of the Agisoft
Photoscan program, and then the items in the subsample were labeled using unsupervised
feature selection approaches. At the same time, the automatic labeling was done under
human oversight. These items were categorized as color histograms and data features
based on remote-sensing measurements (first-order statistics, textures, etc.). The results
showed that this SVM-based method had an overall accuracy of about 95.50%.

3. Materials and Methods

In this section, the dataset employed in this study is presented along with the key ma-
chine learning techniques, such as baseline classification models and ensemble approaches.
In addition, the basics of grey wolf and sine cosine optimization methods forming the basis
of the proposed optimization algorithm are presented in this section.

3.1. Data Collection

Field crops can be captured using sensors and UAVs equipped with cameras. In this
work, the wheat crop images are captured using an autonomous sprayer drone, and the
dataset is freely available on Kaggle [35]. Sample images in this dataset are shown in
Figure 1. The collection dataset consists of 1176 wheat images and 4851 weed images in the
training set. The testing set is composed of 130 wheat images and 540 weed images.

Figure 1. Sample wheat and weed images in the employed dataset.
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3.2. Pre-Trained AlexNet

Convolutional neural networks (CNNs) are a subset of multi-layer neural networks
that extract information from images by analyzing their pixels [36]. Convolution, pooling,
and fully linked layers are conventional CNN’s three fundamental building blocks. Convo-
lution layers do the bulk of a CNN’s computations and are the most important building
blocks. In other words, it filters the input using a convolutional filter and sends the result to
the following layer. The input is filtered by the applied filter, which also serves as a feature
identifier, yielding a feature map. The pooling layer’s job is to lower the space needed for
the spatial representation and the computations that follow each successive convolution.
Each sliced input is pooled in the pooling layer, lowering the computational burden of
the subsequent convolution layer. Extraction and reduction of features from input images
is achieved by applying convolution and pooling layers. When the fully linked layer is
used, an amount of output proportional to the number of classes is produced. The layers
that make up a CNN architecture are layered versions of each other. Despite some subtle
differences, all CNNs are built on the same basic structure. In this work, the AlexNet
pre-trained architecture is employed to extract useful features for classifying wheat and
weed images.

3.3. Grey Wolf Optimizer

Grey wolf optimizer (GWO) motions are based on those of genuine wolves while
they are on the prowl or hunting. Wolves tend to live in packs of varied sizes. A pack of
wolves has a minimum of five members and a maximum of twelve members. There are
four distinct varieties of wolves, each with a specific function within the pack. These are
known as alpha, beta, omega, and delta [37]. Alpha-type wolves often make decisions on
when and where to go for a stroll, hunt, and sleep with the assistance of beta-type wolves in
the pack. It is generally accepted that alpha wolves are dominant wolves, with beta wolves
serving as their subordinates. There are few better candidates to take over for the alpha
wolf when they die. When alphas make judgments, the betas are there to support them
and provide feedback to the alphas so they may make better decisions in the future; when
it comes to the wolves of types alpha and beta, the delta wolves are typically subservient
to the omegas. Delta wolves are divided into five groups: caretakers, hunters, elders, and
scouts. In the group, each category has a distinct purpose. As the group’s "scapegoats," the
omega-type wolves had to submit to all the other wolves in the pack.

The grey wolf optimizer uses alpha, beta, and delta agents to lead the search for the
optimum solution. In contrast, omega agents follow these three agents in the quest for the
best solution. The alpha solution is considered the best-fitting solution in the grey wolf
optimizer. On the other hand, the solutions of type beta and delta signify the second and
third most suitable solutions.

Mathematically, the first, second, and third fittest solutions are denoted by (Pα), (Pβ),
and (Pδ), respectively, whereas (Pω) refers to all other solutions. The update process of
the GWO algorithm is depicted in Figure 2. In this figure, the gamma wolves and other
hunters are guided by the alpha, beta, and delta wolves, to efficiently manage the hunting
process. The position updating is performed as follows.

P(t + 1) = Ps(t)−A.|C.Ps(t)− P(t)| (1)

where P is the wolf’s current location and t is the number of iterations the search algorithm
has gone through. The prey’s location is denoted by Ps(t), and the coefficient vectors A
and C are defined as follows.

A = 2a.r1 − a (2)

C = 2r2 (3)
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Figure 2. The updating process of the grey wolf optimization algorithm.

There are two sets of random values for the vectors r1 and r2, and the values of a
are chosen from the range [0, 2] in descending order. The updated values of the vector a
govern the balance between the exploitation and exploration operations [37]. The following
formula calculates the most recent change to this vector.

a = 2− t.
2

Mt
(4)

where Mt is the number of possible iterations. These positions are utilized to lead the
other solutions, given by the symbol Pω, to move in the direction of the prey, as seen in
the search process in Figure 2. The three best-fitting solutions are Pα, Pβ, and Pδ. The
process of updating the positions of the wolves is described using the following equations
by substitution of Ps(t) in Equation (1) by Pα, Pβ, and Pδ.

Dα = |C1.Pα − P(t)|, P1 = Pα −A1.Dα

Dβ = |C2.Pβ − P(t)|, P2 = Pβ −A2.Dβ

Dδ = |C3.Pδ − P(t)|, P3 = Pδ −A3.Dδ

(5)

The calculations of A1–A3 and C1–C3 are performed by Equations (2) and (3), respec-
tively. The population’s new position is calculated as follows.

P(t + 1) =
P1 + P2 + P3

3
(6)

3.4. Sine Cosine Algorithm

In [38], the sine cosine algorithm (SCA) was presented for the first time. The sine
cosine oscillation function plays a crucial role in identifying the best possible solution
locations, as shown in Figure 3. A set of random variables are used to represent the steps of
the SCA’s operation [39,40].
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• The movement location.
• The motion direction.
• Swapping between the sine and cosine components.
• Emphasizing/de-emphasizing the destination effect.

The update process of the candidate solutions is performed using the following
equation.

S(t + 1) =

{
S(t) + r1.sin(r2).|r3P(t)− S(t)| r4 < 0.5
S(t) + r1.cos(r2).|r3P(t)− S(t)| r4 ≥ 0.5

(7)

where t is the iteration number, the positions of the current and previous solutions at
iterations t + 1 and t are denoted by S(t + 1), and S(t), respectively. The position of the
best solution is referred to as P. The values of [0− 1] are allocated to the random variables
r2, r3, and r4. The equation shows, for instance, that the positions of the optimal solutions
affect the location of the current solution, making it simpler to reach the optimal solution.
The following equation expresses the dynamic change in the value of r1.

r1 = a− a× t
tmax

(8)

where a is a constant, t and tmax represent the current and maximum iterations, respectively.
Due to its reliance on a single optimal solution to guide the other solutions, the SCA

algorithm is more robust than many other meta-heuristic algorithms presented in the
literature [39,40]. The convergence speed and memory usage of this approach are relatively
low when compared to other algorithms. However, as the number of locally optimal
solutions increases, the algorithm’s performance degrades. To avoid being stuck in a local
optimum, the proposed new algorithm incorporates the SCA optimizer and the GWO
algorithm, taking advantage of their rapid convergence rates and memory efficiency and
ensuring a balanced set of exploration and exploitation activities.

Figure 3. Tolerance given to the solutions that proceed in either direction toward or away from the
destination for sine and cosine functions [41].

3.5. Baseline Machine Learning Models

This paper employs three baseline machine learning models to form the proposed
ensemble voting approach. These base models are neural networks, k-nearest neighbors,
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and support vector machines. In this section, the basics of these models are presented
briefly. On the other hand, ensemble methods cover two main types of ensemble methods:
bagging classifier with a random forest as a type of averaging technique and Adaboost
with a voting ensemble as a type of boosting technique. An introduction to these types of
ensemble models is also presented in this section.

3.5.1. Neural Networks (NN)

Two or more layers of neurons and connections in the neural network structure allow
it to learn a non-linear decision boundary. The term “processing elements” refers to what
these neurons are often known as (PEs). The PEs use special training algorithms (such as
ADAM and SGD) to try to mimic the operation of the human nervous system [42]. Input
and output data can be separated by a “hidden layer”, a layer between the two that is not
visible to the user. The calculation of the node output value weighted total is as follows:

Sj =
n

∑
i=1

wij Ii + β j (9)

in which Ii is the input variable i, and wij represents the hidden layer connection weight
between Ii and neuron j its β j, the bias. The sigmoid activation function may be used to
define the node j output as follows:

f j(Sj) =
1

1 + exp−Sj
(10)

The value of f j(Sj) is used to define the network output using the previously hidden
layer neurons as:

yk =
m

∑
j=1

wjk f j(Sj) + βk (11)

The weights between neurons in the hidden layer and the output node are represented
by wjk and βk, respectively.

3.5.2. K-Nearest Neighbors (KNN)

The K-nearest-neighbors (KNN) method is a non-parametric supervised classification
technique that is both straightforward and useful in many contexts. Among classifiers used
for pattern recognition, the KNN classifier is recommended due to its simple implementa-
tion, high accuracy, and speed of results [25]. It has various applications, including pattern
recognition, machine learning, text classification, data mining, and object recognition. The
KNN method employs a technique known as “classification by analogy”, wherein an un-
known data item is compared to its neighbors in the training set. The Euclidean distance is
the standard for comparing two samples’ degrees of similarity. Attributes with broader
ranges are not given more weight than attributes with lower ranges by normalizing their
attribute values. Using KNN, the most common category is used to categorize an unknown
pattern. The following Euclidean distance equation is used to measure the distance between
known/unknown data to determine the best category of the unknown label.

To classify dataset samples using the KNN approach, the nearest samples are consid-
ered to determine the final decision [43]. This approach depends mainly on the value of K,
which represents the number of neighbors considered in classifying the dataset samples in
terms of the following Euclidean distance.

D(xtrain, xtest) =

√√√√ k

∑
i=1

(xtrain − xtest)2 (12)

This technique is used in conjunction with the NN in the proposed voting ensemble
classifier for boosting the classification accuracy of wheat and weed images.
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3.5.3. Support Vector Machine (SVM)

Support vector machine (SVM) is one of the effective machine learning models that can
achieve promising performance when combined with deep networks and other machine
learning models [44]. The basic formula of SVM is presented in the following.

f (a) = w.a + d (13)

where a is the input variable, w is the weight vector, and d is the model’s error value. The
discrepancy between anticipated and actual values can be reduced using SVM. According
to the error indicator, SVM predicts the output label using an error reduction strategy based
on the following optimization model.

Minimize :
1
2
||w||2 + c

k

∑
i=1

(c−i − c+i ) (14)

Subject(to) : (wxi + d)− bi < ε + c+i , (15)

bi − (wiai + d) ≤ (ε + ε−) (16)

There are data violations whose varied values are larger than ε, the acceptable range
with observable values, which are denoted by the coefficient of punishment C, the weight of
the variables, the input variable, and the target observation (wi), ai and bi. The values of the
variables in Equations (15) and (16) are estimated to be used in Equation (14). It is possible
to use a kernel function in SVM to describe the high-dimensional feature space of the input
data points. The kernels are equipped to deal with a wide range of problems. Sigmoid,
linear, polynomial, and radial basis functions (RBF) are among the four well-known SVM
kernels employed. Because the RBF kernel has been shown to be capable of generalizing
well to varied datasets, it was utilized in this investigation. As a result, Equation (13) may
be interpreted as follows:

f (a) = w.H(a, ai) + d (17)

H(a, ai) = exp
(
− a− ai

2γ2

)
(18)

where H(a, ai) is the kernel function and γ is the parameter of this function. Unknown
values of SVM parameters such as C and ε are used as decision variables. The optimization
procedure must thus include them.

3.5.4. Ensemble Models

Because of the reduced variance, the ensemble approaches aim to combine the outputs
of machine learning (ML) classifiers. Several classifiers are built independently, and their
results are then averaged (e.g., bagging classifier, random forest, and voting techniques)
(soft and hard). Overfitting is less of an issue with these methods. One of the most often
used and effective ensemble techniques for classification and regression is random choice
forests (RF). Compared to single classifiers, ensemble models have attracted much attention
because of their accuracy, and noise tolerance [45]. The average ensemble classifier results
from the output predictions using the following formula.

f̂ =
1
B

B

∑
b=1

fb(x′) (19)

Using a set of weak classifiers, the boosting approach of ensemble models creates a
robust classifier. If you want to forecast unexpected observations accurately, this technique
uses a set of classifier weights and a training data case for each iteration. Any machine
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learning approach that takes weights on the training set can be used as a base estimator.
Various classifiers are trained on randomly generated training sets to generate the final
result. The test sample is classified by combining the outputs of all models using uniform
averaging or voting procedures over class labels by all classifiers in the ensemble. Because
of the randomization in its structural approach, this methodology may be utilized to reduce
variance and subsequently be used to form an ensemble. Machine learning estimators are
combined, and a majority vote (i.e., the output of each estimator) is termed hard voting
in this approach. The class label is returned as the argmax of the sum of the predicted
probabilities via soft voting or average predicted probabilities on the other hand [46]. For
each classifier, the anticipated class probabilities are gathered. An average of the weights
assigned to each classifier is then calculated. The class label determines the final class label
(i.e., the highest average probability). ML classifiers of equivalent performance can use this
strategy to counteract one other’s flaws.

4. The Proposed Methodology

In this section, the proposed methodology is explained. The methodology starts with
extracting the features of the input images using the deep network through transfer learning.
The extracted features are then processed to select the most relevant features that boost
the classification accuracy. The selected features are then used to learn three base models:
NN, KNN, and SVM. These models are employed in a voting classifier optimized using the
proposed optimization algorithm. The steps of the proposed methodology are depicted in
Figure 4. The next section discusses the main steps of the proposed methodology.

Figure 4. The proposed methodology for weed/wheat classification.

4.1. Transfer Learning

In deep learning applications, the process of transfer learning is widely used [47],
which is beneficial in the case of a limited dataset. To learn a new classification task, a
pre-trained network is considered, such as AlexNet. In this work, we adopted AlexNet,
which is trained using a large dataset, ImageNet. In the transfer learning process, the
three connected layers of the AlexNet are replaced with the proposed voting classifier. The
transfer learning process employed in this work is depicted in Figure 5.
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Figure 5. The transfer learning process.

4.2. Feature Extraction

Processing raw data to extract additional variables that aid machine learning algo-
rithms is the focus of the feature extraction process. This work adopts AlexNet [48] for
feature extraction. Figure 4 shows how AlexNet enlarges the input image to a fixed size
of 227 × 227 × 3, using a 256-layer convolution filter with a window shape of 11 × 11, a
256-layer filter with a window shape of 5 × 5, and then 384, 384, and 256-layer convolution
filters with a window size of 3 × 3 for the remaining three layers of the process. After the
first, second, and final convolutional layers, the network has a maximum number of 3 × 3
pooling layers with a stride of 2. There are two fully connected layers with 4096 neuron
outputs following the fifth convolutional layer in addition to these five layers. Afterward,
there is a single completely linked output layer at the end of the network, which originally
had 1000 output classes. In the end, Dropout, ReLU, and preprocessing are critical if you
want top results in computer vision applications. This work replaces the last three layers
with the proposed optimized voting ensemble model, which classifies only two classes
(wheat and weed).

4.3. The Proposed Optimization Algorithm

The optimization of the proposed voting ensemble classifier is performed in terms of
a new optimization algorithm based on the SCA and GWO optimization algorithms. The
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proposed optimization algorithm is referred to as the adaptive dynamic sine cosine fitness
grey wolf optimization (ADSCFGWO) algorithm, with the steps listed in Algorithm 1.

Algorithm 1: The proposed ADSCFGWO algorithm.
1: Initialize population Pi(i = 1, 2, ..., n) with size n, maximum iterations IterMax,

fitness function Hn, a, A1, A2, A3, C1, C2, r1, r2, r3, r4
2: procedure DYNAMICSEARCH(Hn)
3: if (Fitness Hn did not change for three iterations) then
4: Increase the exploration group solutions
5: Decrease the exploitation group solutions
6: end if
7: end procedure
8: Calculate Hn fitness for each Pi
9: Find the first three best solutions denoted by Pα, Pβ, Pδ

10: Set t = 1
11: while t ≤ IterMax do
12: Update r1 by r1 = a

(
1− t

IterMax

)
13: for (i = 1 : i < n1 + 1) do
14: DynamicSearch(Hn)
15: Update Hα = Hα

Hα+Hβ+Hδ

16: Update Hβ =
Hβ

Hα+Hβ+Hδ

17: Update Hδ =
Hδ

Hα+Hβ+Hδ

18: Calculate M = |C1.(Hα ∗ Pα + Hβ ∗ Pβ + Hδ ∗ Pδ)− P(t)|
19: Calculate V1 = Pα −A1.M
20: Calculate V2 = Pβ −A2.M
21: Calculate V3 = Pδ −A3.M
22: Update positions as P(t + 1) = V1+V2+V3

3
23: if (r4 < 0.5) then
24: P(t + 1) = P(t) + r1 × sin(r2)× |r3Pα − P(t)|
25: end if
26: end for
27: for (i = 1 : i < n2 + 1) do
28: DynamicSearch(Hn)
29: Update Hα = Hα

Hα+Hβ+Hδ

30: Update Hβ =
Hβ

Hα+Hβ+Hδ

31: Update Hδ =
Hδ

Hα+Hβ+Hδ

32: Calculate M = |C2.(Hα ∗ Pα + Hβ ∗ Pβ + Hδ ∗ Pδ)− P(t)|
33: Calculate V1 = Pα −A1.M
34: Calculate V2 = Pβ −A2.M
35: Calculate V3 = Pδ −A3.M
36: Update positions as P(t + 1) = V1+V2+V3

3
37: if (r4 ≥ 0.5) then
38: P(t + 1) = P(t) + r1 × cos(r2)× |r3Pα − P(t)|
39: end if
40: end for
41: Update Hn, A1, A2, A3, C1, C2, r1, r2, r3, r4, Pα, Pβ, Pδ, t
42: Find best individual P∗

43: end while
44: Return P∗
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Exploration/Exploitation Balance

The proposed ADSCFGWO algorithm automatically strikes the right balance between
exploration and exploitation by dividing the population into smaller groups. Exploration
and exploitation groups make up 70% of the population in this algorithm, which divides
the population into two categories. An early exploration group with a high number of
participants helps to identify new and intriguing search regions. Overall fitness grows, but
the number of exploration group members drops from 70% to 30% due to more exploitative
people gaining fitness values. If a better solution cannot be identified, an elitist technique
maintains convergence by keeping the process leader in place in subsequent populations.
ADSCFGWO can expand the size of the exploration group at any point if the fitness of the
group’s leader has not increased sufficiently throughout three iterations.

4.3.1. Fitness Function

The following equation is used to assess the quality of the solutions discovered by the
optimization algorithms.

Hn = αError(P) + β
|S|
|A| (20)

where P stands for the model’s variables. It can be noted that a certain trait is important to
the population by looking for the values of α ∈ [0 to 1] and β = 1− α. The total number of
features is denoted by |S|.

4.4. Feature Selection

Features that meet particular criteria, such as originality, consistency, and meaning-
fulness, are selected and identified throughout the feature selection process. Two binary
values (0 and 1) are utilized in the feature selection procedure to limit the search space.
Therefore, continuous values-based optimizers require an update to deal with this problem
effectively. This is the essential phase in feature engineering since it allows optimizers to
choose the most optimal features for maximum performance. There are several ways to
think about selecting features, such as a binary vector, in which each feature has an equal
chance of being included in the solution or not [49]. Random populations of vectors with
random features can be utilized as a starting point for meta-heuristic algorithms. This is
followed by an iterative process of exploring and exploiting to identify the best collection
of features [50]. To determine whether a feature is relevant, the search space is confined to
binary values (0 and 1) alone. The proposed binary ADSCFGWO (bADSCFGWO) method is
proposed to transform the continuous values from the continuous ADSCFGWO algorithm
into binary {0, 1} values to fit the feature selection procedure. The Sigmoid function used to
convert the continuous solution to binary values is represented by the following equation,
and the steps of the proposed binary optimization algorithm are listed in Algorithm 2.

Algorithm 2: The proposed bADSCFGWO feature selection algorithm.
1: Initialize the population, and configuration parameters
2: Convert the solution to binary {0, 1}.
3: Select the best solutions using the objective function
4: while t ≤ IterMax do
5: Run the proposed ADSCFGWO algorithm
6: Convert solutions to binary using Equation (21)
7: Measure fitness function
8: Update the algorithm parameters
9: end while

10: Return P∗
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B(t+1) =

{
1 if Sigmoid(m) ≥ 0.5
0 otherwise

,

Sigmoid(m) =
1

1 + e−10(m−0.5)

(21)

where at iteration t, m refers to the best answer.

5. Experimental Results

To evaluate the proposed approach of weed detection, a set of experiments were con-
ducted to assess the performance of the process of the proposed approach. The assessment
included the steps of feature selection, classification methods, and the proposed optimized
voting classifiers approach. The coming sections present the details of the achievements.

5.1. Configuration Parameters

The first set of experiments was conducted to determine the best collection of values
assigned to the configuration parameters. Table 2 presents the set of values of the param-
eters of the optimization of the feature selection process. In addition, the configuration
parameters of the grey wolf and other optimization algorithms are presented in Table 3.
The values of these parameters are employed in the proposed optimization algorithm and
the algorithms used in the comparison experiments.

Table 2. Configuration parameters of the proposed feature selection method.

Parameter Value

Iterations 100
Agents 10

α of Equation (20) 0.99
β of Equation (20) 0.01

θ [0, 12π]
a [−10, 10]
b [−10, 10]

Table 3. Configuration parameters of the optimization algorithms.

Algorithm Parameter Value

GA Cross over 0.9
Agents 10

Iterations 80
Selection mechanism Roulette wheel

Mutation ratio 0.1
PSO Acceleration constants [2,2]

Iterations 80
Inertia Wmin, Wmax [0.6, 0.9]

Particles 10
WOA r [0, 1]

Whales 10
Iterations 80

a 2 to 0
GWO a 2 to 0

Iterations 80
Wolves 10

FA Iterations 80
Fireflies 10
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5.2. Evaluation Metrics

The metrics used to assess the feature selection approach are presented in Table 4.
These criteria include the average fitness size, average error, standard deviation, best
fitness, worst fitness, and mean error. In their criteria, M refers to the number of runs of the
optimizer, j refers to the run number, g∗j is the best solution at run number j, and the size
of the best solution vector is referred to as size(g∗j ), the number of points in the test set is
denoted by N. The output class label is Ci for the data point i corresponding to the label Li.
D denotes the total number of features.

On the other hand, the metrics used to assess the proposed voting classifier are
presented in Table 5. These metrics include F1-score, specificity, accuracy, sensitivity,
Nvalue, and Pvalue. The true positive, true negative, false positive, and false negative
measures used in these metrics are denoted by TP, TN, FP, and FN, respectively.

Table 4. Evaluation metrics used in assessing the feature selection approach.

Metric Formula

Average fitness size 1
M ∑M

i=1 size(gi
∗)

Average error 1
M ∑M

j=1
1
N ∑N

i=1 mse(Ci, Li)

Standard deviation
√

1
M−1 ∑M

i=1
(

gi∗ −Mean
)2

Best fitness minM
i=1gi

∗

Worst fitness maxM
i=1gi

∗

Mean 1
M ∑M

i=1 gi
∗

Table 5. Evaluation metrics used in assessing the proposed optimized voting classifier.

Metric Formula

F1-score TP
TP+0.5(FP+FN)

Specificity (TNR) TN
TN+FP

Accuracy TP+TN
TP+TN+FP+FN

Sensitivity (TPR) TP
TP+FN

Nvalue (NPV) TN
TN+FN

Pvalue (PPV) TP
TP+FP

5.3. Feature Extraction Results

Deep learning is one of the main approaches to extracting effective features from
images. In this work, to select the deep network that selects the best features from the given
images, an experiment is conducted to study the effectiveness of the features extracted from
three deep networks, namely, VGGNet, ResNet-50, and AlexNet. The results are recorded
and presented in Table 6. As presented in this table, the best results are achieved using
AlexNet, and thus this network is adopted for the rest of the conducted experiments.
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Table 6. Evaluation of three deep networks for feature extraction.

VGGNet ResNet-50 AlexNet

Accuracy 0.769 0.833 0.847
Specificity (TNR) 0.800 0.800 0.783
Sensitivity (TPR) 0.714 0.862 0.889

Nvalue (NPV) 0.833 0.833 0.818
Pvalue (PPV) 0.667 0.833 0.865

F-score 0.690 0.847 0.877

5.4. Evaluating the Proposed Feature Selection Method

The feature selection applied to the weed features is performed using the proposed
binary ADSCFGWO. The achieved results are compared with other state-of-the-art binary
optimization techniques; namely, grey wolf optimizer (GWO) [51], hybrid GWO and PSO
(bGWO_PSO) [52], particle swarm optimization (PSO) [53], whale optimization algorithm
(WOA) [54], firefly algorithm (FA) [55], and genetic algorithm (GA) [56]. The evaluation
results are presented in Table 7. As presented in the table, the proposed binary ADSCFGWO
algorithm achieved the best average error (0.69504) compared to the other optimization
algorithms. In addition, average select size, mean fitness, worst fitness, and standard
deviation are superior for the proposed algorithm compared to the other algorithms.

Table 7. Evaluation of the proposed feature selection method and three other competing methods.

bADSCFGWO bGWO bGWO_PSO bPSO bWAO bFA bGA

Average select size 0.647 0.847 0.981 0.847 1.011 0.882 0.790
Std fitness 0.580 0.585 0.603 0.584 0.586 0.621 0.586
Average fitness 0.758 0.774 0.782 0.772 0.780 0.824 0.785
Average error 0.695 0.712 0.751 0.746 0.745 0.744 0.725
Worst fitness 0.758 0.761 0.846 0.820 0.820 0.841 0.804
Best fitness 0.660 0.694 0.736 0.753 0.744 0.743 0.689

5.5. Evaluating The Proposed Optimized Voting Classifier

Three baseline models have been experimented with and evaluated separately. These
models are KNN, SVM, and NN. The recorded results are presented in Table 8. In this
table, the accuracy achieved by KNN, SVM, and NN is 89.1%, 92.1%, and 93.5%, respec-
tively. From these results, it can be noted that the NN baseline model achieves the best
performance.

Table 8. Evaluating the results achieved by three baseline machine learning models.

KNN SVM NN

Accuracy 0.891 0.921 0.935
Specificity (TNR) 0.743 0.857 0.870
Sensitivity (TPR) 0.952 0.952 0.971

Nvalue (NPV) 0.867 0.900 0.943
Pvalue (PPV) 0.899 0.930 0.930

F-score 0.925 0.941 0.950

The proposed ADSCFGWO algorithm is used to optimize the parameters of a voting
ensemble model composed of the three baseline models. To prove the proposed approach’s
superiority, the results are compared to those of four other optimization algorithms, namely,
WOA, GWO, GA, and PSO. Table 9 presents the recorded results. In this table, it can be
noted that the results achieved by the proposed optimized voting ensemble are better than
those achieved by optimizing the voting ensemble using other optimization methods.

On the other hand, a set of experiments is conducted to analyze the proposed ap-
proach’s performance statistically. Table 10 presents the statistical analysis results. This
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table shows that based on 20 random samples, the mean accuracy is 97.74% and the
standard deviation is relatively tiny (0.0004894), indicating the proposed approach’s robust-
ness. When these results are compared to those of the other optimization algorithms, the
superiority of the proposed approach is obvious.

Table 9. Evaluation of the results achieved by optimizing the proposed voting classifier using the
proposed optimization method and three other optimizers.

Voting
(ADSCFGWO) Voting (WOA) Voting (GWO) Voting (GA) Voting (PSO)

Accuracy 0.977 0.943 0.945 0.951 0.954
Specificity (TNR) 0.952 0.870 0.870 0.870 0.870
Sensitivity (TPR) 0.984 0.977 0.977 0.981 0.983
Nvalue (NPV) 0.943 0.943 0.943 0.943 0.943
Pvalue (PPV) 0.987 0.943 0.945 0.954 0.958
F-score 0.986 0.960 0.961 0.967 0.970

Table 10. Statistical analysis of the achieved classification results using the proposed optimized
voting ensemble model.

ADSCFGWO WOA GWO GA PSO

Number of values 20 20 20 20 20
25% Percentile 0.9774 0.943 0.945 0.951 0.954
75% Percentile 0.9774 0.943 0.945 0.951 0.954
Std. error of mean 0.0001 0.001 0.001 0.001 0.001
Std. deviation 0.0004 0.003 0.003 0.004 0.003
Mean 0.9775 0.9439 0.945 0.950 0.954
Minimum 0.9774 0.934 0.935 0.938 0.944
Maximum 0.9794 0.951 0.956 0.955 0.964
Median 0.9774 0.943 0.945 0.951 0.954
Range 0.002 0.017 0.021 0.0172 0.020
Upper 95% CI of mean 0.9777 0.945 0.947 0.952 0.956
Lower 95% CI of mean 0.9773 0.942 0.944 0.949 0.953
Coefficient of variation 0.0501% 0.353% 0.366% 0.397% 0.340%
Geometric SD factor 1.001 1.004 1.004 1.004 1.003
Geometric mean 0.9775 0.944 0.945 0.950 0.954
Upper 95% CI of harm. mean 0.9777 0.945 0.947 0.952 0.956
Lower 95% CI of harm. mean 0.9773 0.942 0.944 0.949 0.953
Sum 19.55 18.88 18.90 19.01 19.09

The significance and stability of the proposed approach are studied in terms of the
analysis of variance (ANOVA) and Wilcoxon signed-rank tests. The results are shown in
Tables 11 and 12. The measured p-value of the ANOVA and Wilcoxon tests is (p < 0.0001),
which indicates the significance of the proposed approach.

Table 11. ANOVA test of the achieved classification results using the optimized voting ensemble
model.

SS DF MS F (DFn, DFd) p Value

Treatment 0.01496 4 0.003739 F (4, 95) = 389.0 p < 0.0001
Residual 0.0009132 95 0.000009612

Total 0.01587 99
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Table 12. Wilcoxon signed-rank test of the results achieved by the proposed optimized voting
classifier.

ADSCFGWO WOA GWO GA PSO

Theoretical median 0 0 0 0 0
Actual median 0.9774 0.9434 0.9449 0.9513 0.9544
Number of values 20 20 20 20 20
Wilcoxon signed-rank test
p value (two-tailed) <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
Sum of positive ranks 210 210 210 210 210
Sum of signed ranks (W) 210 210 210 210 210
Sum of negative ranks 0 0 0 0 0
Exact or estimate? Exact Exact Exact Exact Exact
p value summary **** **** **** **** ****
Discrepancy 0.9774 0.9434 0.9449 0.9513 0.9544
Significant (alpha = 0.05)? Yes Yes Yes Yes Yes

A visual representation of the results achieved by the proposed approach is shown in
Figure 6. This figure shows the residual plot with residual error in the range of (−0.015
to 0.010). The homoscedasticity and QQ plots show a robust prediction of the class labels.
On the other hand, the heatmap indicates a promising performance using the proposed
ADSCFGWO algorithm, which is better than the other optimization algorithms.

Figure 6. Residual, homoscedasticity, and QQ plots and heatmap of the ADSCFGWO and compared
algorithms.

The receiver operating characteristic (ROC) plot depicted in Figure 7 shows robust
detection results. In addition, this figure’s accuracy and histogram plots show a promising
performance that outperforms the results of the other optimization algorithms.
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Figure 7. ROC, accuracy, and histogram plots of the ADSCFGWO and compared algorithms.

5.6. Sensitivity Analysis of the Proposed Approach

One-at-a-time (OAT) sensitivity analysis was used to study the sensitivity analysis.
Regarding sensitivity analysis, OAT is one of the most straightforward methods. To test the
algorithm’s performance, one parameter at a time is changed while the other parameters
remain the same. As the values of various factors were varied, the convergence time
and ADSCFGWO’s fitness values changed accordingly (as presented in Tables 13–16).
When evaluating each parameter, 20 values are selected in that parameter’s interval by
multiplying the interval’s length by 5%. As a result, the algorithm ran ten times for each
number; the results are shown in the table below. It took 100 runs of ADSCFGWO for each
parameter.

Table 13. Convergence time results (in seconds) for different values of ADSCFGWO’s parameters (1).

r1 r2 r3 r4

Values Time Values Time Values Time Values Time

0.05 12.21 0.05 11.99 0.05 11.82 0.05 11.89
0.10 12.21 0.10 11.64 0.10 12.21 0.10 11.63
0.15 12.36 0.15 12.15 0.15 12.01 0.15 11.61
0.20 11.82 0.20 12.20 0.20 11.98 0.20 12.32
0.25 11.77 0.25 12.04 0.25 12.12 0.25 12.02
0.30 11.98 0.30 11.73 0.30 11.59 0.30 12.15
0.35 12.31 0.35 11.59 0.35 12.40 0.35 12.00
0.40 12.00 0.40 12.35 0.40 11.63 0.40 11.78
0.45 12.44 0.45 11.72 0.45 12.06 0.45 12.44
0.50 12.07 0.50 12.31 0.50 11.61 0.50 11.73
0.55 11.64 0.55 11.88 0.55 12.35 0.55 12.45
0.60 11.65 0.60 11.81 0.60 12.06 0.60 12.05
0.65 12.20 0.65 11.80 0.65 11.62 0.65 12.04
0.70 12.14 0.70 11.77 0.70 11.76 0.70 12.44
0.75 11.61 0.75 11.76 0.75 11.58 0.75 12.24
0.80 12.20 0.80 11.68 0.80 12.15 0.80 12.26
0.85 11.76 0.85 11.67 0.85 11.62 0.85 11.97
0.90 11.83 0.90 11.91 0.90 11.68 0.90 12.16
0.95 11.78 0.95 12.36 0.95 11.94 0.95 11.80
1.00 11.95 1.00 12.25 1.00 11.79 1.00 12.15
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Table 14. Convergence time results (in seconds) for different values of ADSCFGWO’s parameters (2).

A1 A2 A3 C1 C2

Values Time Values Time Values Time Values Time Values Time

0.05 11.63 0.10 11.78 0.10 11.60 0.10 11.68 0.10 11.70
0.10 12.40 0.20 11.73 0.20 11.88 0.20 12.06 0.20 12.21
0.15 12.39 0.30 11.58 0.30 12.41 0.30 11.62 0.30 11.75
0.20 11.83 0.40 11.63 0.40 12.30 0.40 12.26 0.40 12.37
0.25 11.90 0.50 11.77 0.50 11.62 0.50 11.87 0.50 12.38
0.30 12.02 0.60 12.24 0.60 12.11 0.60 12.27 0.60 11.98
0.35 11.88 0.70 12.36 0.70 11.67 0.70 12.17 0.70 11.65
0.40 12.12 0.80 11.61 0.80 12.21 0.80 12.11 0.80 12.32
0.45 12.38 0.90 12.32 0.90 11.88 0.90 12.24 0.90 11.85
0.50 12.08 1.00 11.67 1.00 11.93 1.00 11.72 1.00 12.32
0.55 11.69 1.10 11.66 1.10 12.17 1.10 12.26 1.10 12.09
0.60 11.90 1.20 11.64 1.20 12.10 1.20 11.63 1.20 12.27
0.65 11.97 1.30 11.89 1.30 11.71 1.30 11.70 1.30 12.23
0.70 12.39 1.40 12.10 1.40 11.84 1.40 11.96 1.40 12.18
0.75 11.75 1.50 12.24 1.50 11.84 1.50 12.35 1.50 12.29
0.80 12.33 1.60 12.44 1.60 12.14 1.60 11.68 1.60 12.41
0.85 11.63 1.70 12.34 1.70 11.77 1.70 12.03 1.70 12.04
0.90 12.40 1.80 11.95 1.80 12.12 1.80 11.61 1.80 12.13
0.95 12.19 1.90 12.21 1.90 12.29 1.90 12.43 1.90 11.65
1.00 12.29 2.00 11.68 2.00 11.92 2.00 12.04 2.00 12.41

Table 15. Minimization results for different values of ADSCFGWO’s parameters (1).

r1 r2 r3 r4

Values Fitness Values Fitness Values Fitness Values Fitness

0.05 117.51 0.05 116.11 0.05 117.04 0.05 116.53
0.10 117.37 0.10 117.58 0.10 115.64 0.10 116.46
0.15 115.86 0.15 115.45 0.15 116.76 0.15 117.46
0.20 116.21 0.20 117.57 0.20 115.54 0.20 116.39
0.25 115.61 0.25 117.61 0.25 116.95 0.25 116.76
0.30 115.89 0.30 117.02 0.30 117.42 0.30 116.16
0.35 116.52 0.35 117.57 0.35 116.80 0.35 116.15
0.40 115.60 0.40 116.54 0.40 116.81 0.40 117.11
0.45 116.00 0.45 117.51 0.45 116.21 0.45 116.09
0.50 116.13 0.50 115.55 0.50 115.46 0.50 116.99
0.55 117.47 0.55 117.54 0.55 117.38 0.55 116.64
0.60 115.76 0.60 116.78 0.60 116.21 0.60 117.15
0.65 116.36 0.65 115.88 0.65 117.05 0.65 116.83
0.70 115.80 0.70 117.00 0.70 116.63 0.70 116.90
0.75 116.67 0.75 116.39 0.75 116.49 0.75 116.97
0.80 117.29 0.80 116.46 0.80 116.62 0.80 116.72
0.85 117.32 0.85 115.57 0.85 116.92 0.85 116.10
0.90 115.82 0.90 117.43 0.90 117.28 0.90 116.42
0.95 115.40 0.95 117.28 0.95 117.22 0.95 116.52
1.00 115.50 1.00 116.75 1.00 116.08 1.00 115.64
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Table 16. Minimization results for different values of ADSCFGWO’s parameters (2).

A1 A2 A3 C1 C2

Values Fitness Values Fitness Values Fitness Values Fitness Values Fitness

0.05 116.77 0.10 115.88 0.10 116.87 0.10 116.45 0.10 117.25
0.10 116.62 0.20 117.05 0.20 116.45 0.20 117.06 0.20 115.41
0.15 117.38 0.30 117.58 0.30 116.97 0.30 116.05 0.30 115.71
0.20 117.53 0.40 115.96 0.40 117.58 0.40 115.97 0.40 117.01
0.25 116.93 0.50 115.64 0.50 116.53 0.50 117.66 0.50 115.44
0.30 117.54 0.60 115.48 0.60 116.67 0.60 116.82 0.60 116.53
0.35 116.24 0.70 116.61 0.70 116.47 0.70 116.93 0.70 115.99
0.40 116.83 0.80 117.02 0.80 116.67 0.80 116.16 0.80 117.20
0.45 115.75 0.90 116.78 0.90 116.39 0.90 117.17 0.90 115.40
0.50 117.03 1.00 115.74 1.00 116.78 1.00 117.24 1.00 116.36
0.55 115.36 1.10 115.43 1.10 116.82 1.10 117.02 1.10 115.67
0.60 116.75 1.20 115.82 1.20 117.17 1.20 117.28 1.20 115.84
0.65 116.77 1.30 116.93 1.30 116.63 1.30 115.83 1.30 117.19
0.70 116.93 1.40 115.50 1.40 115.76 1.40 116.47 1.40 116.32
0.75 115.98 1.50 115.92 1.50 116.40 1.50 116.04 1.50 116.02
0.80 116.82 1.60 117.51 1.60 116.88 1.60 115.79 1.60 117.02
0.85 115.55 1.70 117.36 1.70 115.55 1.70 115.96 1.70 116.86
0.90 115.79 1.80 117.35 1.80 116.52 1.80 117.10 1.80 116.63
0.95 116.55 1.90 115.80 1.90 117.28 1.90 116.05 1.90 116.78
1.00 117.50 2.00 116.91 2.00 115.82 2.00 116.44 2.00 116.54

5.6.1. Statistical Significance of the Results

The one-way analysis of variance (ANOVA) is performed to assess the significant
difference between the proposed approach and other approaches. While modifying the
settings of ADSCFGWO, two ANOVA tests are applied to both the convergence time and
the fitness values. Table 17 shows the ANOVA test results for ADSCFGWO’s convergence
time and lowest fitness. Table 18 shows that p-values are less than (0.05) and F is larger than
the F-critical level. Because of this, there is a statistically significant difference between the
average of each parameter’s five groups of convergence time. When each parameter’s value
is changed, a statistically significant difference can be seen between the means of all five
minimal fitness groups. ANOVA does not tell which groups have statistical significance.
As a result, a post hoc analysis is carried out between each pair of groups. A significance
threshold of (0.05) was used for this purpose in a one-tailed t-test. Table 19 tested the
algorithm’s parameters using the t-test based on the convergence time and minimum
fitness of ADSCFGWO. There is a statistically significant difference between groups, with
p-values less than (0.05) according to the table. As for convergence time, there is a t-test
between the exploration percentage and mutation rate that is statistically significant (0.05).
This proposes that no statistically significant difference exists between their impacts on
the time of convergence. The number of iterations or the mutation rate does not affect the
minimal fitness. A visual representation of the study of the sensitivity of the algorithm
parameters is represented by the plots shown in Figure 8. In this figure, the residual
plot and homoscedasticity show the stability of the parameters. In addition, the QQ and
heatmap plots show the robustness of the optimized parameters.

Table 17. ANOVA test analyzing the convergence time.

SS DF MS F (DFn, DFd) p Value

Treatment 0.7603 8 0.09504 F (8, 171) = 1.336 p = 0.002288
Residual 12.17 171 0.07115

Total 12.93 179
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Table 18. Wilcoxon signed-rank test of the convergence time.

r1 r2 r3 r4 A1 A2 A3 C1 C2

Number of values 20 20 20 20 20 20 20 20 20
Actual mean 12 11.94 11.9 12.06 12.06 11.95 11.98 11.99 12.12
Theoretical mean 0 0 0 0 0 0 0 0 0
df df = 19 df = 19 df = 19 df = 19 df = 19 df = 19 df = 19 df = 19 df = 19
t t = 209.6 t = 208.2 t = 200.1 t = 207.8 t = 196.0 t = 175.3 t = 222.7 t = 195.7 t = 205.8
p value (two-tailed) <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
Discrepancy 12 11.94 11.9 12.06 12.06 11.95 11.98 11.99 12.12
Significant (alpha = 0.05)? Yes Yes Yes Yes Yes Yes Yes Yes Yes
SEM of discrepancy 0.0572 0.0573 0.0594 0.0580 0.0615 0.0681 0.0538 0.0612 0.0588
SD of discrepancy 0.2561 0.2564 0.266 0.2596 0.2752 0.3048 0.2406 0.2739 0.2633
R squared 0.9996 0.9996 0.9995 0.9996 0.9995 0.9994 0.9996 0.9995 0.9996
95% confidence (From) 11.88 11.82 11.78 11.94 11.93 11.81 11.87 11.86 11.99
95% confidence (To) 12.12 12.06 12.03 12.18 12.19 12.09 12.09 12.12 12.24

Table 19. Statistical analysis of the convergence time.

r1 r2 r3 r4 A1 A2 A3 C1 C2

Number of values 20 20 20 20 20 20 20 20 20
Minimum 11.61 11.6 11.58 11.62 11.64 11.58 11.61 11.61 11.65
Range 0.830 0.760 0.820 0.830 0.760 0.860 0.800 0.820 0.760
25% Percentile 11.78 11.73 11.62 11.83 11.85 11.67 11.79 11.69 11.88
75% Percentile 12.21 12.19 12.11 12.26 12.37 12.25 12.17 12.26 12.32
Mean 12.0 11.94 11.90 12.06 12.06 11.95 11.98 11.99 12.12
Median 11.99 11.85 11.89 12.05 12.05 11.84 11.93 12.04 12.20
Maximum 12.45 12.37 12.41 12.46 12.41 12.45 12.41 12.43 12.42
Std. error of mean 0.057 0.057 0.059 0.058 0.061 0.068 0.053 0.061 0.058
Std. deviation 0.256 0.256 0.266 0.259 0.275 0.304 0.240 0.273 0.263
Sum 240.0 238.7 238.0 241.2 241.3 239.0 239.6 239.8 242.3

Figure 8. Residual, homoscedasticity, and QQ plots and heatmap of ADSCFGWO’s parameters (r1,
r2, r3, r4, A1, A2, A3, C1, and C2) based on convergence time.
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The histogram depicted in Figure 9 shows the convergence time of the parameters
of the proposed algorithm. In this figure, it can be noted that some parameters converge
faster than others. For example, r3, r2, A2, and C1 converge faster than the other param-
eters. However, all the parameters converge in 12.4 s. In addition, the histogram of the
convergence time of the proposed ADSCFGWO is depicted in Figure 10.

Figure 9. Convergence time of ADSCFGWO’s parameters (r1, r2, r3, r4, A1, A2, A3, C1, and C2).

Figure 10. Histogram of convergence time of ADSCFGWO’s parameters (r1, r2, r3, r4, A1, A2, A3, C1,
and C2).

A study of the sensitivity of the fitness of the proposed approach is conducted, and the
results are recorded in Tables 20–22. These tables represent the ANOVA test, the Wilcoxon
test, and the statistical analysis of the achieved results. It can be noted from these tables
that the parameters of the proposed algorithm as the p-value < 0.0001.
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Table 20. Wilcoxon signed-rank test of the fitness of the proposed ADSCFGWO algorithm.

r1 r2 r3 r4 A1 A2 A3 C1 C2

Number of values 20 20 20 20 20 20 20 20 20
Actual mean 116.3 116.8 116.6 116.6 116.6 116.4 116.6 116.6 116.4
Theoretical mean 0 0 0 0 0 0 0 0 0
df df = 19 df = 19 df = 19 df = 19 df = 19 df = 19 df = 19 df = 19 df = 19
t t = 721.8 t = 694.1 t = 872.0 t = 1178 t = 791.3 t = 685.0 t = 1051 t = 903.7 t = 818.3
Discrepancy 116.3 116.8 116.6 116.6 116.6 116.4 116.6 116.6 116.4
p value (two-tailed) <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
Significant (alpha = 0.05)? Yes Yes Yes Yes Yes Yes Yes Yes Yes
SEM of discrepancy 0.1611 0.1683 0.1337 0.09896 0.1474 0.1699 0.1109 0.129 0.1422
SD of discrepancy 0.7206 0.7525 0.5981 0.4426 0.6592 0.76 0.496 0.5769 0.6359
R squared 1 1 1 1 1 1 1 1 1
95% confidence (from) 116.0 116.4 116.4 116.4 116.3 116.1 116.4 116.3 116.1
95% confidence (to) 116.6 117.1 116.9 116.8 116.9 116.8 116.8 116.8 116.7

The fitness of the parameters of the proposed approach is analyzed, and the results are
presented in Tables 20–22 in terms of the statistical analysis using Wilcoxon and ANOVA
tests. These results show the effectiveness of the analyzed parameters in solving the
optimization problem.

More investigation of the effectiveness of the parameters of the proposed approach
is performed using the set of plots depicted in Figures 11–13. These figures show the
significance of the parameters in the optimization problem and the convergence of the
fitness.

Table 21. ANOVA test of the fitness of the proposed ADSCFGWO algorithm.

SS DF MS F (DFn, DFd) p Value

Treatment 3.749 8 0.4686 F (8, 171) = 1.160 p = 0.003259
Residual 69.05 171 0.4038

Total 72.8 179

Table 22. Statistical analysis of the fitness achieved by the proposed optimization algorithm.

r1 r2 r3 r4 A1 A2 A3 C1 C2

Number of values 20 20 20 20 20 20 20 20 20
Range 2.108 2.158 1.967 1.824 2.176 2.148 2.029 1.87 1.851
25% Percentile 115.8 116.2 116.2 116.2 116.1 115.8 116.4 116.0 115.7
75% Percentile 117.1 117.5 117.1 117.0 117.0 117.0 116.9 117.1 117.0
Minimum 115.4 115.5 115.5 115.6 115.4 115.4 115.6 115.8 115.4
Mean 116.3 116.8 116.6 116.6 116.6 116.4 116.6 116.6 116.4
Median 116.1 116.9 116.8 116.6 116.8 116.3 116.7 116.5 116.4
Maximum 117.5 117.6 117.4 117.5 117.5 117.6 117.6 117.7 117.3
Std. error of mean 0.161 0.168 0.133 0.098 0.147 0.169 0.111 0.129 0.142
Std. deviation 0.721 0.752 0.598 0.442 0.659 0.760 0.496 0.577 0.636
Sum 2326 2336 2333 2332 2333 2328 2332 2332 2327
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Figure 11. Convergence fitness of ADSCFGWO’s parameters (r1, r2, r3, r4, A1, A2, A3, C1, and C2).

Figure 12. Residual, homoscedasticity, and QQ plots and heatmap of ADSCFGWO’s parameters (r1,
r2, r3, r4, A1, A2, A3, C1, and C2) based on convergence fitness.

Figure 13. Histogram of convergence fitness of ADSCFGWO’s parameters (r1, r2, r3, r4, A1, A2, A3,
C1, and C2).
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5.6.2. Discussion and Ranking of Parameters

The parameters of the proposed ADSCFGWO algorithm can be ordered according to
their effect on the fitness values as follows: C2, A1, r4, r1, C1, A3, A2, r2, and r3. It is also
possible to rank the following variables in the order of their impact on the convergence
time: r1, A2, C2, r3, r4, A1, C1, and r2. The ADSCFGWO algorithm’s convergence time is
influenced by r2. The value of r2 has the least impact on the algorithm’s convergence for all
of these reasons. The ADSCFGWO algorithm’s convergence time is strongly influenced by
r1, r2, r3, and A2 values. The ADSCFGWO algorithm has a convergence time sensitive to
exploration percentages larger than 25%. In terms of fitness, C2 and A1 significantly impact
the algorithm’s performance.

5.7. Discussion

A set of experimental setups is used to evaluate the effectiveness of the proposed
methodology in identifying wheat/weed images. Firstly, positive results indicate the effec-
tiveness of the features derived from the AlexNet architecture through transfer learning.
The features retrieved from AlexNet are then used in a feature selection scenario. In the
second scenario, the proposed ADSCFGWO algorithm proves both stable and depend-
able in its quest to identify the best possible collection of features in a reasonable period.
In addition, the Wilcoxon rank-sum test highlights the relevance of the proposed AD-
SCFGWO algorithm by demonstrating its statistical significance. On the other hand, other
experiments are conducted to demonstrate that the proposed optimized voting classifier
outperforms the competing methods when classifying the input crop image, with a mean
accuracy of (97.75%). A sensitivity analysis is carried out to ensure the proposed method
is reliable. Testing and results show that the proposed technique is highly effective in
classifying wheat/weed images.

6. Conclusions

This paper proposes a new approach to classify wheat and weed in drone-captured
images based on metaheuristic optimization and machine learning. The proposed approach
is based on a new optimized voting classifier that could efficiently classify the features
extracted using AlexNet. To boost the classification accuracy, the extracted features are
optimized to select the significant features based on a new binary optimization algorithm.
The optimization of the voting classifier and the binary optimization algorithm developed
for feature selection are based on the GWO and SCA optimization algorithms in a new
hybrid optimization algorithm referred to as the ADSCFGWO algorithm. The proposed
voting classifier comprises three machine-learning models: NN, SVM, and KNN. These
classifiers’ contribution to the final results is optimized using the proposed optimization
algorithm. The proposed approach’s efficiency was evaluated using various metrics,
including accuracy, precision, recall, false positive rate, and kappa coefficient. In addition,
the ANOVA and Wilcoxon signed-rank tests are used to assess the reliability and validity
of the proposed methodology. Moreover, a sensitivity analysis is carried out to investigate
the impact of varying parameters of the proposed approach on the observed outcomes.
The proposed methodology was superior to existing optimization strategies in a series
of experiments with a detection accuracy of 97.70%, an F-score of 98.60%, a specificity of
95.20%, and a sensitivity of 98.40%. From the statistical analysis, the ANOVA and Wilcoxon
signed-rank tests showed the value of p as (p < 0.005), indicating the proposed approach’s
statistical difference.
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