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Abstract: In this paper, a thermomechanical coupled phase field method is developed to model
cracks with frictional contact. Compared to discrete methods, the phase field method can represent
arbitrary crack geometry without an explicit representation of the crack surface. The two distin-
guishable features of the proposed phase field method are: (1) for the mechanical phase, no specific
algorithm is needed for imposing contact constraints on the fracture surfaces; (2) for the thermal
phase, formulations are proposed for incorporating the phase field damage parameter so that dif-
ferent thermal conductance conditions are accommodated. While the stress is updated explicitly
in the regularized interface regions under different contact conditions, the thermal conductivity is
determined under different conductance conditions. In particular, we consider a pressure-dependent
thermal conductance model (PDM) that is fully coupled with the mechanical phase, along with the
other three thermal conductance models, i.e., the fully conductive model (FCM), the adiabatic model
(ACM), and the uncoupled model (UCM). The potential of this formulation is showcased by several
benchmark problems. We gain insights into the role of the temperature field affecting the mechanical
field. Several 2D boundary value problems are addressed, demonstrating the model’s ability to
capture cracking phenomena with the effect of the thermal field. We compare our results with the
discrete methods as well as other phase field methods, and a very good agreement is achieved.

Keywords: coupled thermomechanical problem; frictional contact; phase field method; cracks and
fractures

MSC: 70-08; 82M36; 82M37

1. Introduction

Thermomechanical contact cracks are ubiquitous in engineering applications, ranging
from metal forming and powder compaction processes [1] to heat conduction across the
contact interfaces in cooling systems of microelectronics [2]. It is essential yet challenging
to accurately model the frictional crack phenomena, including fracture onset, propaga-
tion, and branching, particularly in a multi-physical environment [1,3,4]. To tackle the
aforementioned complex physical phenomena with regard to cracks and fractures that
cannot be resolved using analytical methods, developments within the context of computa-
tional mechanics and numerical simulations have been a matter of intensive research in
recent years.

In general, thermomechanical contact constraints are treated using methods such as
the Lagrange multiplier method and augmented Lagrange multiplier method [5–8], or the
penalty method [9], which are inherited from the discontinuous Galerkin (DG) method. In
these methods, the contact constraints are either enforced through the Lagrange multipliers
or by penalty regularization. When using the Lagrange multiplier method, an inf–sup
stability requirement needs to be satisfied with the additional unknown degree of free-
dom [6,7]. On the other hand, for the penalty method, while it remains primal and is
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easy to implement, a carefully chosen penalty parameter is crucial to avoiding the loss of
coercivity [10] and ill-conditioned systems with too many constraints [11]. The Nitsche-
type method, originally proposed to enforce element boundaries in a weak sense [12,13],
is another method used to model contact and frictional conditions [2,10,14,15]. Different
from the Penalty-type method, the Nitsche-type method is generally consistent without
penetration. One advantage of the Nitsche-type method over the Lagrange multiplier
method is that it contains appropriate and consistent terms that only involve the primary
fields, i.e., there is no need to fulfill the inf–sup condition [10]. Despite all the advantages of
the Nitsche-type method, the interface weighting parameters and stability parameters are
user-defined with special treatments. To resolve this issue in Nitsche’s method with regard
to user-defined parameters, the variational multiscale discontinuous Galerkin (VMDG)
method [16,17] has been proposed to provide a primal formulation with interfacial stabi-
lization for both weak and strong discontinuities using the variational multiscale (VMS)
technique. In the VMDG method, the formulation is naturally derived, and no ad hoc
parameters are appended. Nevertheless, in all these interfacial element formulations, conti-
nuity restrictions are imposed at the junction of overlapping finite element grids, and all
methods exhibit element-wise conservative approximations [14,18] for cracks. Moreover,
the discontinuities are aligned with element boundaries. Due to the complexity of the crack
patterns, meshes should be fine enough around the crack region to ensure arbitrary crack
branching [18]. On the other hand, allow the discontinuity to be embedded inside elements,
local remeshing techniques, such as the advanced methods based on X-FEM [19–21] or E-
FEM [22–24], are used near crack regions for sharp crack propagation. However, these local
enrichment strategies suffer in three-dimensional (3D) applications [3,25,26] and present
limitations when predicting crack initiation, branching, and coalescence for multiple crack
fronts [27]. In addition, in the context of fracture mechanics, modeling the structural be-
havior of multiaxial fatigue problems is challenging. The experimental results show that
it is essential to model the fracture surface based on qualitative fractography [28] and to
understand the fracture surface response based on fracture surface topography parame-
ters [29]. In the work recently published by Lanwer et al. [30], a combined experimental
and computational method is proposed to investigate the fatigue and degradation behavior
of the fiber-matrix composite. In their work, a mechanism-oriented bonding model on the
inserted fiber–matrix interfaces is developed for FE analysis. However, to better understand
the fiber–matrix bond mechanism and the possibility of cracks propagating in the matrix, it
is desired to have a numerical method where the crack path is not defined a priori.

The phase field method is a feasible algorithm proposed in recent years that provides
a new perspective toward simulating complex crack topologies [3]. Different from the
discrete methods such as the above-mentioned VMDG, Nitsche’s, penalty, or Lagrange
multiplier methods, the phase field method is rooted in classical energy-based Griffith’s
theory [26,31]. The sharp crack surface is regularized within a thin band of a diffusive
crack zone governed by a scale variable, called the damage parameter, that distinguishes
the damaged and undamaged domains [3,25]. This nonlocal damage variable is governed
by a Poisson-type partial differential equation (PDE) and evolves with crack propagation.
Compared to discrete methods, the phase field method has decisive advantages; the ex-
plicit crack interface tracking is unveiled by this scale variable [32], and the numerical
implementation is straightforward [3]. This method has gained extensive attention in
recent years, making remarkable contributions to modeling quasi-static and dynamic brittle
fractures [4,26,33,34], ductile fractures [35,36], fatigue [37–43], and multi-physics applica-
tions [32,44–46]. For modeling frictional cracks, because preexisting phase field models for
fractures only consider non-contact or stick contact conditions without incorporating a fric-
tional slip condition, Fei and Choo [47,48] proposed a stress decomposition scheme within
the context of the phase field method to model frictional slip condition. In their approach,
unlike discrete methods, there is no need to implement specific tracking strategies for
the interface/cracking surface and for the evolution of the gap function along the contact
surface. Their approach, although very promising, only works for pure mechanical prob-
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lems. Other phase field methods for multi-physics applications [32,44–46] only degrade
or maintain the effect of thermal conductivity based on the damage variable, which is not
sufficient to accommodate different thermal conductance conditions at the contact surfaces.
In discrete modeling, the contact heat flux is characterized by a pressure-dependent thermal
contact conductance as well as by the temperature jump across the contact interface [49,50].
A similar treatment should be developed within the context of the phase field method. To
the best of the authors’ knowledge, there is no such phase field model that accommodates
different scenarios for thermal conductance.

In the present work, following the work done by Fei and Choo [47,48], we extend the
pure mechanical phase field formulation to a thermomechanically coupled formulation for
frictional contact problems. The proposed framework has the following features: (1) the
contact constraints at the interfaces are represented without any explicit functions or algo-
rithms, and (2) different thermal conductance conditions, including the pressure-dependent
thermal conductance, are accommodated via the existence of the contact pressure and the
phase field damage parameter. In other words, the key idea of the proposed method is to
incorporate the thermal conductance constraints through the suitable calculation of the ther-
mal conductivity in the fracture surface region. In addition to the proper calculations of the
stress tensor for different contact behaviors and constraints for the mechanical phase [47], a
fully coupled thermomechanical formulation for frictional contact problems is derived in
the current work. The proposed phase field method is able to handle the complex crack
geometry and the contact condition in the mechanical phase while coping with the different
thermal conductance conditions in the thermal phase.

In the following sections, we first briefly introduce of the phase field method for
coupled thermomechanical problems in Section 2. In Section 3, we develop the governing
equations and corresponding weak forms for coupled thermomechanical problems that
involve frictional contact. In Section 4, following a summary of the approach used to
explicitly generate the stress tensor at the contact interfaces based on the different contact
conditions, we introduce a new strategy to calculate the thermal conductivity within the
interface region. A set of numerical simulations verifying the proposed algorithm is shown
in Section 5, followed by concluding remarks in Section 6.

2. Phase Field Method for Coupled Thermomechanical Problems

The purpose of this section is to develop a new phase field formulation that accommo-
dates both thermal and mechanical constraints within the fracture surface region. The for-
mulation is derived along the same lines as [48] to model general frictional interfaces in
solids, which we extend to incorporate thermal conductance constraints. This formulation
is useful for modeling frictional contact problems in a thermomechanical setting.

2.1. Regularized Variational Framework

We first establish the regularized variational framework for thermomechanical prob-
lems in developing governing equations for the phase field problem. As shown in Figure 1,
let Ω be the open domain and ΓI the curve for the possible cracks. In a regularized frame-
work, the scalar parameter d in the fracture surface energy equation is used to approximate
the crack geometry, while lc is interpolated to control the thickness of the crack in its
regularized form. The scalar parameter d ∈ [0, 1] is incorporated to denote the damage
crack region (d = 1) and the intact bulk domain (d = 0).

The variational approach for fracture mechanics proposed by Francfort and Marigo [18]
states the energy function for the cracked body [25]. Based on the energy functions from [18],
the regularized form of the energy describing the cracked structure induced by the thermo-
mechanical effects can be expressed as follows:

E(u, θ, d,∇d) = Ee(u, θ, d) + Ed(d,∇d) (1)
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where Ee(u, θ, d) is the elastic energy stored in the cracked body, Ed(d,∇d) is the fracture
surface energy, u is the displacement field, and θ = T− Tref is the relative temperature field
of the current temperature T with respect to the reference temperature Tref.

Figure 1. Schematic representation of a domain with its boundary conditions and a strong disconti-
nuity at ΓI.

In the standard linear theory of elasticity for isotropic solids, the global energy storage
functional is the sum of the elastic energy and the fracture energy:

E(u, θ, d,∇d) =
∫

Ω
Ψ(ε, θ, d) dΩ +

∫
ΓI

GcdΓI (2)

where Ψ(ε, θ, d) is the energy density of the bulk and Gc is the Griffth’s critical energy
release. Assuming the quadratic free energy functional, the undamaged strain energy
functional Ψ(ε, θ) can be expressed as

Ψ(ε, θ) =
1
2

ε : C : ε− θm : ε−
1
2

cv

Tref
θ2 (3)

where ε is the strain, C is the fourth-order tensor representing the material moduli for the
bulk domain, cv = ρ0cp is the volumetric heat capacity (with ρ0 being the density and cp
the specific heat capacity), and m is the second-order thermomechanical coupling tensor,
which is discussed in detail in Section 3.

In Equation (2), Gc is the Griffth’s critical energy release, with
∫

ΓI
GcdΓI =

∫
Ω Gc

γ(d,∇d) dΩ measuring the critical fracture energy; γ(d,∇d) is the crack surface density
functional, and we adopt the most common one, which is written as the convex function

γ(d,∇d) =
1

2lc
d2 +

lc
2
(∇d)2 (4)

2.2. Phase Field Approximation

It is noted that the crack surface behavior is governed by the unilateral conditions of
stress carrying capacity, depending on whether the solid is in tension or compression [1,51].
In the present work, we follow the idea from Miehe [3]. Considering the unilateral contact,
the damage is assumed to only modify the positive part of the strain energy, with the
positive part defined in terms of the principal strains at which spectral decomposition of
the strain tensor is required. Based on this, the free energy density function in Equation (3)
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can be rewritten as Ψ(ε, θ, d) in the bulk to accommodate the damage parameter d, then
decomposed to the positive part and negative part, as shown in Equation (5).

Ψ(ε, θ, d) = [g(d) + k]Ψ+(ε, θ) + Ψ−(ε, θ) (5)

The existence of the small positive variable k is used to ensure that the partly broken
systems are well-posed when numerical discretization is applied [3]. In the following
applications, we set k = 10−8. A simple degradation function that describes the degradation
of the tensile part of the stored energy evolving damage is interpolated as g(d) = (1− d)2.
It is assumed to have the following properties: (1) g(d = 0) = 1 represents the undamaged
phase; (2) g(d = 1) = 0 represents the fully damaged phase; (3) g′(d = 1) = 0 guarantees
that the energetic fracture force converges to a finite value when the fully damaged phase is
reached [3]. Here, Ψ+(ε) and Ψ−(ε) are the strain energies decomposed from the positive
and negative components of the strain tensor.

In order to define the positive and negative parts of the stored energy, the strain field
is decomposed into the tensile and compressive modes, as follows:

ε = ε+ + ε− (6)

where ε± = ∑nel
i=1〈ε

i〉± ni⊗ ni, with εi defined as the principal strain, and ni as the principal
strain direction, and where 〈x〉± = (x± |x|)/2. Using the definitions above, the positive
(tensile) part Ψ+(ε) and the negative (compressive) part Ψ−(ε) of the stored energy due to
the mechanical loadings are decomposed as follows:

Ψ±(ε) =
λ

2
(〈tr(ε)〉±)2 + µtr{(ε±)2} =

κ

2
(〈tr(ε)〉±)2 + µtr{(ε±dev)

2} (7)

By substituting Equation (4) and Equation (5) into Equation (2) and taking the vari-
ational derivative with respect to the damage parameter d, the governing equation for
the phase field problem to be solved by evaluating the phase field d(x, t) at time t is
summarized as follows:

g′(d)H−Gc(
d
lc
− lc∆d) = 0 in Ω (8)

d(x, t) = 1 on ΓI (9)

∇d(x, t) · n = 0 on ∂Ω (10)

whereH is the strain history function, Gc is the fracture energy, and n is the outward unit
normal to ∂Ω.

As stated in [48],H can be arbitrarily defined as a constant for models with stationary
cracks, meaning that the phase field equation only needs to be solved once in order to find
the distribution of the phase field parameter. When dealing with crack propagation, H
needs to be calculated based on the updated stress tensor and the phase field parameter.
For the calculation of the strain history functionalH, we adopt the idea from Miehe et al. [3],
as follows:

H(x, tn+1) = max
ø∈[0,tn]

{Ψ+(x, τ)}. (11)

3. Governing Equations and Corresponding Weak Forms

The balance of the linear momentum, as well as the balance of the energy of the
problem, are provided below:

0 = ∇ · σ + ρb (12)

ρcp θ̇ = −∇ · q− Trefm : ∇v + r (13)
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where σ is the Cauchy stress tensor, ∇ · (·) = tr[grad(·)] is the divergence operator, ρ > 0
is the density, b is the mass-specific body force, cp is the specific heat capacity, θ = T − Tref
is the temperature difference of the current temperature T with respect to the reference
temperature Tref, θ̇ is the time derivative of the temperature field, q is the heat flux vector, v
is the velocity of the mechanical field, r is the heat source, and m = 3κβI is the second-order
thermomechanical coupling tensor, where κ is the bulk modulus and β is the coefficient of
thermal expansion. Using Fourier’s relation, the heat flux vector is defined as q = −k∇θ; by
assuming isotropic, k = kI is defined as the thermal conductivity.

Remark 1. It should be noted that Equations (12) and (13) are fully coupled through the existence
of the second-order thermomechanical coupling tensor m.

The boundary conditions of this coupled problem are provided by

u = ū on Γg (14)

σ · n = t̄ on Γh (15)

θ = θ̄ on Γθ (16)

q · n = −q̄ on Γq (17)

where ū, t̄, θ̄, and q̄ are the prescribed displacement, traction, temperature, and heat flux,
respectively, and n is the unit normal vector pointing outwards at the boundaries shown in
Figure 1.

The corresponding weak forms are summarized as follows by multiplying the test
functions {η, δθ, δd}, integrating by part, and applying the divergence theorem. The formal
statement of the weak forms is as follows: given {Gc,H, lc, ρ, b, r, ū, t̄, cp, k, Tref, θ̄, q̄}, find
{u, θ, d} such that Equations (18)–(20) are satisfied for all {η, δθ, δd}.

Weak form of the phase field:

∫
Ω

δd · {g′(d)H−
Gc

lc
d}dΩ−

∫
Ω
Gclc(∇δd) · (∇d)dΩ = 0 (18)

Weak form of the balance of momentum:∫
Ω
(∇η : σ − η · ρb)dV −

∫
Γh

t̄ · ηdΓh = 0 (19)

Weak form of the balance of energy:∫
Ω
[−ρcp θ̇ · δθ −∇δ · (k∇θ)]dV +

∫
Ω
[−Tref(m : ∇ν) · δθ + r · δθ]dV

+
∫

Γq
q̄ · δθdΓq = 0

(20)

In the context of phase field modeling with the expression of g(d) mentioned in the
previous section, in Equation (19) we can express the stress tensor in the domain as a
combination of the stress for the bulk and the interface [48], as follows:

σ = g(d)σbulk + [1− g(d)]σinterface (21)

where σbulk and σinterface are the stresses in the interior and on the interface, respectively.
Equation (21) is considered a generalized expression of the stress in the phase field model
for the frictional contact problem [47].

The bulk Cauchy stress tensor σbulk is represented as σ = C : ε−mθ, where C is the
fourth-order tensor representing the elastic modulus of the bulk material and ε is the strain
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as defined in Section 2.1. The calculation of the interface stress σinterface is discussed in
Section 4 under different contact conditions.

In a similar fashion, we propose a generalized expression of the thermal conductivity
k in Equation (20) for the coupled thermomechanical problem as

k = (1− A)kbulk + Akinterface (22)

where kbulk = kbulkI is the thermal conductivity of the interior domain, kinterface = kinterfaceI
is the thermal conductivity of the interface domain, and A is a triggering value that
distinguishes the bulk from the interface domain. We discuss how to decide this triggering
parameter A and provide the expressions for the bulk and interface thermal conductivity
kbulk and kinterface in Section 4.

4. Stress Tensor and Thermal Conductivity Calculation for Different
Contact Conditions
4.1. Stress Tensor σ Updates in the Phase Field Modeling

For the mechanical phase, following [47], updates to the Cauchy stress are made to
incorporate the contact-dependent mechanical response of the interface based on different
contact conditions.

We first summarize the stress tensor updates of σinterface in Equation (21) based on the
different contact conditions. The normal strain is calculated to determine the following
debonding/contact conditions:

εN = ε : (n⊗ n)
{

> 0 : non-contact
≤ 0 : in contact

(23)

For the non-contact condition with εN > 0, the stress free state results in the interface
stress tensor σinterface = 0, and there is an open crack between two surfaces. Therefore,
the stress tensor in Equation (21) is expressed as σ = g(d)σbulk.

For the in contact condition with εN ≤ 0, the yield function f (tT , tN) is introduced
to distinguish the stick and slip conditions. The yield function f (tT , tN) with a frictional
coefficient µ f for the frictional Coulomb model is defined as

f (tT , tN) = ‖tT‖+ µ f tN

{
< 0 : stick
≥ 0 : slip

(24)

where tT = (I− n⊗ n)σbulk and tN = σbulk : (n⊗ n).
When the interface is considered in the stick condition, there is no relative motion

between the bulk and interface domains [47], and σbulk = σinterface yields the stress tensor
in Equation (21) as σ = σbulk. On the other hand, when the interface is considered in the
slip condition with f (tT , tN) ≤ 0, the interface stress tensor is calculated by decomposing
into a frictional part σfriction and a no-penetration part σno-penetration, as proposed by Fei
and Choo [47], with the expressions as follows:

σfriction = µ f tNsign(tT)(n⊗m + m⊗ n) (25)

σno-penetration = σbulk − ‖tT‖(n⊗m + m⊗ n) (26)

When substituting Equations (25) and (26) into Equation (21), the overall stress tensor
under the slip condition is obtained as

σ = σbulk + (1− g(d))(µ f tNsign(tT)− ‖tT‖)(n⊗m + m⊗ n) (27)

The procedures for updating the interface stress tensor σinterface and the overall stress
tensor σ are summarized in Box 1, where xint represents the geometry description of an
integration point.
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Box 1. Stress update algorithm for phase field modeling of the frictional contact problem.

Step 1: Inputs at xint: strain ε, phase field variable d, the normal unit vector n,
and the tangential unit vector m.

Step 2: If the phase field variable d = 0, THEN
Bulk domain,
Set σ = σbulk = C : ε−mθ,
EXIT

Step 3: ELSE Interface domain. Calculate the normal strain εN = ε : (n⊗ n)
If εN > 0, THEN

Non−contact condition, σinterface = 0,
Set σ = g(d)σbulk,
EXIT

ELSE tN ≤ 0,
Contact condition,
Calculate frictional yield function f = ‖tT‖+ µ f tN ,
THEN go to Step 4.

Step 4: Contact condition.
IF f < 0 THEN

Stick condition, σinterface = σbulk,
Set σ = g(d)σbulk + [1− g(d)]σinterface = σbulk,
EXIT

ELSE,
Slip condition, σinterface = σfriction + σno-penetration,
Set σ = σbulk + (1− g(d))(µ f tN)sign(tT)− ‖tT‖(n⊗m + m⊗ n),
EXIT

END

4.2. Thermal Conductivity Tensor k Updates in Phase Field Modeling

To the best of our knowledge, there is no specific formulation of thermal conductivity
in the existing literature on the phase field method for coupled thermomechanical problems
when considering frictional contact. In most existing phase field models, the thermal
conductivity k is degraded as g(d)k when considering the damage effect. To accommodate
frictional contact in the thermal field, we consider the heat transfer associated with the
fracture damage as well as different types of thermal contact conditions. To this end, we
present thermal conductivity k updates based on four thermal conductance contact models.

As shown in the Figure 2, we enlarge the domain near the crack region in Figure 1,
and the crack is shown in Figure 2a. Using the phase field method, the crack is modeled
by the thin diffusive damage band shown in Figure 2b. As provided in Equation (22),
the trigger parameter A is used to distinguish the bulk and interface domains. By setting
the threshold to the damage value, the distribution of the trigger parameter A is shown
in Figure 2c. The procedure for updating the thermal conductivity for different regions is
explained in Box 2; the value of A is determined by comparing the phase field variable d
with the threshold, then jumping into the corresponding thermal conductivity updates.

Remark 2. Recalling the phase field governing equation Equation (8), the analytical solution can
be written as d = e−|x|/lc , where x is the distance from the current location to the nearest d = 1
point. This argument is strong evidence for defining the damage threshold. From this equation,
the width of the diffusive band is determined by the length parameter lc. We set the threshold as
d = e−1 ≈ 0.378, where x = lc, to divide the bulk and interface regions. When the damage value at
the integration point surpasses this value, we assume that the interface area is entered.
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(a) (b) (c)

Figure 2. Crack evolution of proposed phase field method in the thermal field: (a) actual crack;
(b) crack description in the phase field method; (c) crack description under trigger parameter A.

With Box 2, different thermal situations can be monitored in the phase field method.
In this section, we introduce four different thermal models and demonstrate how to define
kbulk and kinterface for the respective models.

Box 2. Thermal conductivity update algorithm for phase field modeling.

Step 1: Inputs at xint: phase field variable d,
thermal conductivity kbulk and kinterface.

Step 2: Set k = (1− A)kbulk + Akinterface
Step 3: If d > threshold, Interface domain

A = 1, THEN k = kinterface
ELSE, Bulk domain

A = 0, THEN k = kbulk
END

Four Thermal Conductance Contact Models

Four different thermal conductance models are introduced in this section and imple-
mented in the following applications. The definitions of kbulk and kinterface in different
thermal scenarios are displayed in Table 1. For the fully conductive model (FCM), the ther-
mal conductivity is kept as a constant, assuming the whole model is in the undamaged
region with k = k0. For the adiabatic model (ADM), a small enough value for the kinterface
avoids heat interaction through the crack region. Normal contact stress is utilized for both
the pressure-dependent (PDM) and uncoupled (UCM) models, meaning that the capability
of heat transfer is dominated by both the mechanical loading and the damage effect. It is
noted that the thermal expansion coefficient β is set to be very small in the UCM in order to
eliminate the coupling effect from the mechanical and thermal field.
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Table 1. Four different thermal conductance models with different settings of thermal conductivity k
and thermal expansion coefficient β.

Thermal Conductance Models kbulk kinterface Thermal Expansion Coefficient

Pressure dependent model (PDM) k0g(d) k0g(d)(
tn

He
)εc β = 2.386× 10−3/◦C

Uncoupled model (UCM) k0g(d) k0g(d)(
tn

He
)εc β = 2.386× 10−24/◦C

Fully conductive model (FCM) k0 k0 β = 2.386× 10−3/◦C

Adiabatic contact model (ACM) k0g(d) 10−7 β = 2.386× 10−3/◦C

Here, we use the pressure-dependent thermal contact model as an example to show
how the process of thermal conductivity updating works. Instead of having a thermal
contact conductance formulation at the contact surface, in the phase field formulation, for
the first time, we develop a formulation for the interfacial thermal conductivity that is a
function of the phase-field variable and the contact pressure, which accounts for the normal
stress-related heat exchange through the spots. Inspired by the thermal conductance
expression from discrete methods [52], we propose the following formulation for the
pressure-dependent thermal conductivity:

kinterface = g(d)

(
tN,bulk

He

)εc

kbulk (28)

where tN,bulk is the contact traction in the normal direction, He is the Vickers hardness
coefficient, and εc is the thermal constant. The updates for the thermal conductivity based
on the pressure-dependent contact conditions are summarized in Box 3. The bulk and
interface thermal domains are separated by the phase field variable d with the threshold
setting. When d < threshold, we consider the bulk domain with A = 0, and employ the
expression of kbulk for the thermal conductivity. Otherwise, we consider the interface
domain with A = 1 and kinterface. For the pressure-dependent model, we use the norm of
the normal strain to differentiate the contact and debonding conditions. When εN ≤ 0, we
apply the pressure-dependent model to calculate kinterface.

Box 3. Thermal conductivity update algorithm for phase field modeling of the pressure-
dependent contact model.

Step 1: Inputs at xint: the strain ε, the thermal conductivity k0, the phase field
variable d, the normal unit vector n, and the tangential
unit vector m, the threshold value: e−1 ≈ 0.378.

Step 2: Set k = (1− A)kbulk + Akinterface
Step 3: If the phase field variable d < threshold, Bulk domain

A = 0, THEN k = kbulk
Set kbulk = g(d)k0
EXIT

Step 4: ELSE, the phase field variable d ≥ threshold, Interface domain
A = 1, THEN k = kinterface
Calculate the normal strain εN = ε : (n⊗ n)
If εN > 0, THEN

Non−contact condition,
kinterface = g(d)k0,
EXIT

ELSE,
Contact condition,

kinterface = g(d)
(

tN,bulk
He

)εc
k0

EXIT
END
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5. Numerical Examples

In this numerical simulation section, we investigate the performance of the proposed
method by means of representative numerical examples. Here, we aim to: (1) demonstrate
our novel thermal formulation for the thermomechanical contact problem within the
context of the phase field framework; (2) verify the proposed thermomechanical phase field
formulation for frictional contact problems where the fracture surfaces are stationary; and
(3) validate the efficiency of the proposed method for possible crack propagation under
frictional contact modeling. The coupling effect between thermal and mechanical fields
is considered under different thermal contact conductance conditions. Throughout this
section, all simulations are exploited in two dimensions (2D) with linear quadrilateral
elements (Q4). No heat sources or body forces are introduced, and plane strain conditions
are employed for all examples. For time integration, the implicit backward Euler scheme
is used for the transient heat transfer and the quasi-static assumption is applied for the
mechanical equilibrium equation. While the whole framework works for the transient
temperature problems, all numerical examples in this section are simulated at a steady
state with a large enough ∆t value to clearly observe the temperature distribution contours
under different thermal scenarios.

In the following sections, we demonstrate the feasibility of the thermal formulation
through two pure heat conduction problems, then compare our results with the numerical
solutions from the X-FEM method in Section 5.1. Two different boundary conditions
are explored, namely, the isothermal and the adiabatic situations. Then, the fully coupled
thermomechanical frictional contact model is investigated, with an inner crack in Section 5.2
and a prescribed interface in Section 5.3 used to illustrate the accuracy of the proposed
method. Comparisons with the literature for the mechanical phase (Section 5.2) and the
coupled thermomechanical phase (Section 5.3) are presented under four different thermal
contact conductance conditions. Lastly, we study a frictional crack propagation problem
in Section 5.4 to show the ability of the proposed method to capture cracking phenomena
using the thermomechanical coupled setting.

5.1. Square Plate with (a) Central Horizontal and (b) Inclined Cracks

In the first numerical example, we demonstrate the feasibility of the proposed thermo-
mechanical coupled phase field formulation in a pure thermal setting. Two different inner
cracks are utilized, namely, a horizontal crack and a slanting crack. As shown in Figure 3a,b,
we first consider a square domain with a horizontal center crack that is subjected to two
different thermal boundary conditions [53] for the adiabatic (Figure 3a) and isothermal
(Figure 3b) cases. For the adiabatic case, temperatures of T = 1 ◦C and T = −1 ◦C are im-
posed on the top and bottom surfaces, respectively, with no heat flux transferring across the
crack [49]. For the isothermal case, the temperature is maintained at T = 1 ◦C for all edge
surfaces, while the temperature field of the inner crack is different from the boundaries,
with T = −1 ◦C. Figure 4 depicts the results for the model with a slant center crack using
the same thermal boundary settings.

For the horizontal center crack model shown in Figure 3, the block size is 2 m× 2 m,
with the red line depicting the inner crack. The inner crack is located in the middle, with
crack length a of 1.2 m, meaning that a/L = 0.6, where L is the side length of the domain.
The mesh size of this simulation is 50× 50, as shown in Figure 5a, with the length parameter
set to lc = 0.16 m. For the adiabatic case, in order to guarantee that the heat transferring
through the crack is small enough to be ignored, the interface thermal conductance kinterface
is set to 10−7 W/mm ◦C.
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1.6 m

& = 1 ℃

& = −1 ℃

& = 1 ℃

& = 1 ℃

& = 1 ℃

2 m

2 m

1.6 m

& = 1 ℃

* = 0

& = −1 ℃

(a) (b)

Figure 3. Geometry and boundary conditions of a square plate with a horizontal center crack:
(a) adiabatic case; (b) isothermal case.

1 m

1 m
* = 0

& = 1 ℃

& = −1 ℃

1 m

1 m

& = 1 ℃

& = −1 ℃

& = 1 ℃

& = 1 ℃

& = 1 ℃

(a) (b)
Figure 4. Geometry and boundary conditions of a square plate with a slant center crack: (a) adiabatic
case; (b) isothermal case.

(a) (b)
Figure 5. Mesh distribution of the square plate: (a) horizontal crack; (b) inclined crack.

For the slant center crack, as illustrated in Figure 4, the domain size is 1 m× 1 m, with
a stationary crack starting from (0.3 m, 0.33 m) to (0.7 m, 0.68 m). The problem domain is
discretized by unstructured meshes, as shown in Figure 5b, with an approximated mesh
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size of h = 0.05 m and with lc = 0.2 m. Detailed material properties for these two crack
models are summarized in Table 2.

Table 2. Detailed material properties for the square plate with cracks.

Bulk Material

Young’s modulus E 10,000 MPa

Poisson’s ratio ν 0.3

Density ρ 2.7× 10−9 kg/mm3

Thermal expansion coefficient β 2.386× 10−24/◦C

Bulk thermal conductivity kbulk 150 W/mm◦C

Interface thermal conductivity (for adiabatic case) kinterface 10−7 W/mm◦C

The resulting contour plots of the temperature distribution for the models with hori-
zontal and slant center cracks under two different thermal conditions (the adiabatic and
isothermal cases) are exhibited in Figure 6. For the adiabatic case, shown in Figure 6a,c,
the discontinuities in the thermal field are clearly shown near the fracture region, as the
two sides of the crack are supposed to be insulated from each other. The width of the
observed crack is controlled by the length parameter lc, which is the width of the diffusive
damage band. On the other hand, for the isothermal case, shown in Figure 6b,d, the thermal
contours are uniformly distributed. Compared to the analysis in [49,53], where the X-FEM
method is used, we observe that the results match remarkably well with the reference.
This agreement demonstrates that the proposed thermomechanical coupled phase field
formulation is able to correctly identify and reproduce the temperature discontinuity and
continuity profile near the crack regions for both the isothermal and adiabatic cases.

(a) (b)

(c) (d)

−

−

−

−

−

Figure 6. Temperature contour plots: (a) horizontal center crack (adiabatic case); (b) horizontal center
crack (isothermal case); (c) slant center crack (adiabatic case); (d) slant center crack (isothermal case).
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Remark 3. For the adiabatic case, as shown in Table 2, kinterface should be set with a sufficiently
small value rather than 0 in order to avoid any singularity in the matrix calculation.

5.2. Squared Domain with an Internal Slant Frictional Crack

After validating the pure thermal problem, we extend the model with the slant center
crack in Section 5.1 to model a thermomechanical coupled problem with a frictional contact
crack. The purpose of the second example is to investigate the ability of the proposed phase
field method for thermomechanical problems with frictional contact. The problem was
initially proposed by Dolbow et al. [20], and was later elaborated in [48] to verify the phase
field method for frictional contact cracks in purely mechanical problems. As shown in
Figure 7a, the geometry of the domain is a 1 m× 1 m square with an existing crack located
from (0.3 m, 0.33 m) to (0.7 m, 0.68 m) [48]. A uniform displacement loading d = −0.1 m
in total is applied on the top surface in 10 steps. We adopt the same material properties
used in [48], with elastic modulus E = 10, 000 MPa, Poisson’s ratio ν = 0.3, and the
frictional coefficient of the crack surface µ f = 0.1. The two fractional mesh distributions
are shown in Figure 7, in (b) with coarse mesh size h = 0.008 m, lc = 0.032 m and in (c)
with the finest mesh size h = 0.002 m, lc = 0.008 m are investigated in this section. In this
simulation, the crack driving force parameterH is calculated following the same strategy as
in Appendix A of Borden et al. [4], and the critical fracture energy is set to Gc = 50 N/m2.

1 m

1 m

# = 10 ℃

# = 0 ℃

−0.1 m

(a) (b)

(b)(b)

(a) (b) (c)

Figure 7. Description of the inclined crack problem: (a) boundary conditions and geometries;
(b) coarse mesh distribution; (c) fine mesh distribution.

As the main focus of this paper, we investigate the effect of the different thermal
conductance conditions on the mechanical phase. In addition to mechanical loading, we
apply the thermal boundary conditions shown in Figure 7a, with 10 ◦C prescribed to the
top surface and 0 ◦C to the bottom surface, for further exploration.

In Table 1, we display different thermal conductance models with different thermal
conductivity k as provided in Equation (22). The thermal expansion coefficients are pre-
sented in Table 1. The four different thermal conductivity models discussed in Section 4.2,
namely, the pressure-dependent model (PDM), uncoupled model (UCM), fully conductive
model (FCM), and adiabatic contact model (ACM), are employed. First, we compare the
normal contact stress along the crack with [47] using the uncoupled model (Figure 8).
The comparison shows that with mesh refinement, the proposed method approaches the
reference solution with good agreement.

The results of the displacement and temperature contours at the last step using the
fine mesh are shown in Figure 9. It can be noted that for the uncoupled case (UCM),
we set the thermal expansion coefficient to be small enough that the coupling effect can
be ignored. Comparing our results with the purely mechanical simulation presented in
Fei and Choo’s work [48], excellent agreement on the displacement contours is achieved.
For the other three cases with thermal effects, displacements in the x direction are more
significant compared to the UCM case due to coupled thermomechanical effects. Because
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the displacement in the y direction is fixed, there is not much difference shown on contour
plots in Figure 9.

As for the thermal field, the temperature distribution is uniform in the fully conductive
model with the same thermal conductivity for the bulk (kbulk) and the interface (kinterface)
domains. Thus, in the fully conductive case shown in Figure 9 (3), the location of the
inclined crack is not visible. For the other three models, the fracture crack in the temper-
ature contours can be clearly observed. As shown in Table 1, sharing the same kinterface,
which is determined by the contact pressure and damage parameter, the difference in the
temperature distribution for the PDM and UCM case is dominated by the coupling term
between the thermal and mechanical field. As shown in Figure 9 (3), the PDM case with
a stronger coupling effect exhibits a more continuous temperature distribution around
the crack region. In the adiabatic model (ACM), with kinterface set to be a small enough
constant, there is almost no heat transference in that area, and strong discontinuity in the
temperature field is visible.

Figure 8. Normal contact stress along the crack at the final step for the uncoupled model (UCM) in
comparison with Fei and Choo [48].

5.3. The Frictional Sliding Problem under Different Thermomechanical Coupled Conditions

In this section, we use the proposed frictional contact model to solve a frictional
sliding problem. The problem was simulated in our previous paper, where a discrete
VMDG method was used [50]. The detailed geometry is shown in Figure 10, where the
1 m× 1 m domain is subjected to two prescribed displacement loadings on the top surface.
In addition, a heat flux q̄n = 1200 W/m2 is applied on the top surface pointing inward,
with 0 ◦C fixed on the bottom surface. The total displacement is applied in 10 steps, while
the time increment ∆t is set to be ∆t = 2.8× 1016 s to ensure that the thermal phase is in the
quasi-static state. As stated in Section 4.2, four different thermal conductivity conditions are
considered, as provided in Table 1. For the adiabatic contact model (ACM), as mentioned
in [52], it should be noted that the heat flux boundary condition must be replaced by the
temperature boundary condition T = 10 ◦C on the top surface to avoid the singularity
in the equations of the thermal system. The detailed material properties are provided in
Table 3.
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Pressure dependent Uncoupled Fully conductive Adiabatic contact

(1)

(2)

(3)

−

−

−

−
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−

−

−

−

−
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−

Figure 9. Contour plots of (1) Displacement in the X direction; (2) displacement in the Y direction;
(3) temperature contours at the last step for four different thermal conditions.

crack !uVer
right = 0.01m

Figure 6. Thermo-mechanical modeling of a fractured body with frictional contact behavior

89# =1200W/m'
<'

<*

= = 10 ℃ (ACM)

= = 0 ℃

>?+,--./01 = 0.01m
>?23- = 0.05m

>?+,-4,51 = 0.1m

Figure 10. Geometry illustration of the frictional sliding problem.
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Table 3. Detailed material properties of the frictional sliding problem.

Poisson’s ratio ν = 0.3

Young’s modulus E = 1.0× 104 MPa

Thermal conductivity k = 150 W/m ◦C

Thermal conductance coefficient hc0 = 6.5× 10−5 W/m ◦C

Vickers hardness He = 100 MPa

Thermal constant εc = 1

Frictional coefficient µ = 0.1

In Figure 11, the contours of temperature distribution are shown in their deformed
configurations. A comparison is performed in this figure among the different thermal
contact conductivity models, i.e., PDM, UCM, FCM, and ADM. In addition, we compare
the results with our previous work [50], where the VMDG method was used. Very good
agreement is achieved between the proposed phase field method and the previous VMDG
method. It is noted that a slight difference in the temperature contour between the VMDG
and the proposed phase field method can be observed in the adiabatic case, as shown in
Figure 11. Because the discontinuity is controlled by the length parameter lc in the phase
field method, when s smaller length parameter is applied the sharper discontinuity is
captured in the temperature as well as the displacement. The VMDG method is a discrete
method with duplicated nodes at the fracture surface; thus, the sharp discontinuity in
the displacement is captured exactly. In contrast, in the proposed phase field method,
discontinuity is captured in a diffuse fashion influenced by the mesh size and the length
parameter lc.

Pressure dependent Uncoupled Fully conductive Adiabatic contact

(1) PF

(2) VMDG

Figure 11. Temperature contours of four different thermal models for (1) the proposed phase field
method and (2) the VMDG method in the deformed configuration.

To further assess the performance and accuracy of the proposed phase field model for
the frictional sliding problem, we compare the normal contact stress results with Khoei and
Bahmani’s [52] analysis, where the X-FEM method was used. As in [52], we use a uniform
structured FE mesh of 75× 75 quadrilateral elements, and the penalty parameters are used
to constrain the tangential and normal stick conditions. As shown in Figure 12, a strong
agreement is achieved when comparing the proposed phase field method to the X-FEM
method. As stated in the previous sections, the proposed phase field method does not
require a specific treatment or algorithm at the contact surface and is easier to implement
compared to discrete methods.
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−
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Figure 12. Normal contact pressure for four different thermal models in comparison with Kohei and
Bahmani [52].

5.4. Propagation of an Inclined Crack in a Rectangular Plate

To enrich the applications of the proposed method, in this example we simulate the
crack propagation to demonstrate the capacity of the framework following the verification
of the stationary interface problems. As shown in Figure 13a, a rectangular domain
with geometry 2 m× 4 m has a 45◦ inclined crack located between (0.0 m, 0.7 m) and
(1.3 m, 2.0 m). Proportional displacement loading ûy = −2× 10−4 m is prescribed on the
top surface in 100 load steps. For the thermal phase, the temperature on the top surface is
set to 10 ◦C while it is 0 ◦C for the bottom surface. The material parameters used in this
example are E = 10, 000 MPa, ν = 0.3, µ f = 0.01, and Gc = 50 kJ/m2. The mesh size of this
problem is approximately 0.05 m. as shown in Figure 13b, with the length parameter set to
lc = 0.2 m.

,-!

2 m

4 m

& = 10 ℃

& = 0 ℃

(a) (b)
Figure 13. Problem description of the rectangle plate with an inclined crack: (a) geometry and
boundary conditions; (b) unstructured FE mesh.

Following the algorithm proposed by Amor [54], the strain history energyH should be
updated and employed in the calculation at each load step, rather than arbitrarily defined
as for stationary cracks, owing to the dynamic crack propagation. This means that the
evolution of the phase field damage parameter d is dependent on the displacement from
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previous steps. The thermal expansion coefficient β is chosen to be a relatively small
number in this simulation.

The evolution of the phase field parameter d and the temperature contour plots are
shown in Figure 14 at three different load steps and with three different thermal contact
conductance models. The propagation of the crack and the evolution of the temperature
are clearly captured using the proposed phase field method. For the fully conductive case
(FCM), the temperature is uniformly distributed, as the heat is free to transfer between
the upper and lower parts of the domain. For the adiabatic case (ACM), the temperature
field exhibits a sharp discontinuity across the damaged crack. As the crack propagates,
the temperature distribution shows a stronger discontinuity, while the damage region
expands. At the last load step, when the crack is fully developed, and the whole domain
is separated into two parts, and the temperature fields of the upper and lower parts are
completely discontinuous. For the pressure-dependent model (PDM), when compared to
the ACM case, heat transfer is more obvious at the beginning of the crack propagation
process, as it is dependent on the magnitude of the contact stress at the crack region.
During the crack initiation and propagation stage, the temperature discontinuity becomes
less distinguishable as the crack propagates, because kinterface is dominated by increasing
displacement loading rather than the phase field damage variable d. After the crack is fully
developed, the damage variable is dominated by the conductivity, and there is no thermal
interaction between the two subdomains.

Pressure dependent Fully conductive Adiabatic contact Damage contour

(1)

(2)

Pressure dependent Fully conductive Adiabatic contact Damage contour

(1)

(3)

(a) (b) (c) (d)

Figure 14. Temperature evolution in three different thermal models: (a) PDM, (b) FCM, and (c) ADM,
with (d) damage contours at three load steps: (1) ûy = −2× 10−4 m, (2) ûy = −1× 10−2 m, and
(3) ûy = −2× 10−2 m.
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6. Concluding Remarks

In this paper, a thermomechanical coupled phase field method has been developed for
modeling cracks with frictional contact. In the mechanical phase, the proposed method
follows the work of Fei and Choo [48], regularizing the stress tensor at contact regions under
different contact conditions, with a specific focus on frictional contact to accommodate the
no-penetration constraints. For the thermal phase, we propose a novel formulation for
thermal conductivity in a regularized contact region by accommodating different thermal
conductance conditions and the phase field damage parameter. We investigate several
benchmark examples to assess the proposed computational method. First, we verify the
proposed thermal algorithm using different pure thermal models. Then, we simulate a
problem with an internal slant frictional crack and extend the model into thermomechanical
coupled fields. In the third example, we study the thermomechanical coupled frictional
sliding problem and compare the results with the X-FEM and the VMDG methods, finding
good agreement, which demonstrates the capacity of the proposed phase field framework
in simulating coupled thermomechanical problems with frictional sliding. Lastly, we
demonstrate that the proposed method can simulate crack propagation with thermal effects.
Based on the above conclusions, the proposed method has potential applications in various
areas, including modeling of thermomechanical coupled crack propagation of composite
structures, deposition processes in friction stir welding, and metal forming processes.

There are several key features in this paper, including (i) the formulation accommo-
dates no-penetration constraints of the contact behavior in the phase field method and
(ii) the formulation accommodates different thermal conductance conditions without the
need for a sophisticated algorithm to impose thermal contact constraints on crack surfaces.
The proposed phase field method can be implemented easily in comparison to the existing
discrete methods for frictional cracks. The proposed model can be applied in the future for
complex geometry and crack branching, and merging in coupled multi-physics settings.
Although the proposed thermomechanical coupled phase field method is promising, it has
a number of deficiencies. The main limitations are threefold. First, the inertial effect in the
mechanical field is not considered. Second, in terms of accuracy, the phase field method
does not show superior performance for stationary cracks compared to discrete methods.
Third, without duplicating nodes at the cracking interfaces it is difficult to capture the
sharp discontinuity along the cracking surfaces. With all these considerations, our future
work will focus on advancing the model in order to (1) accommodate dynamic effects in the
mechanical field, (2) adopt a discrete method for predefined crack regions to capture the
sharp discontinuities, and (3) track both stationary interface cracks and propagating cracks
simultaneously. Work is underway to adopt the VMDG method [50] to model stationary
interfaces and combine it with the present phase field model for crack propagation.
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Nomenclature

Symbol Description Unit
T Temperature ◦C
E Young’s modulus MPa
k Thermal conductivity W/m◦C
cp Specific heat capacity J/kg◦C
ρ Density kg/m3

hhcont Heat conductivity W/m2◦C
β Thermal expansion coefficient /◦C
hc0 Coefficient of thermal contact conductivity W/m◦C
He Vickers hardness N/m2

qhont Heat flux on the contact surface W/m2

σc Critical stress N/m2

hc Softening stiffness. N/m3

δc Critical separation m
hs Chemical bonding conductance W/m2◦C
hp Surface contact conductance W/m3◦C
hair Gas conductance W/m2◦C
q̄n Applied heat flux W/m2

lc Damage length parameter m
Gc Griffth’s critical energy N/m
H Strain energy history MPa
Ee Stored elastic energy
Ed Fractured surface energy
Ψ Bulk energy density
γ Crack energy density

Abbreviations

Abbreviation Description
PF Phase Field
VMDG Variational Multiscale Discontinuous Galerkin
FCM Fully Coupled Model
ADM Adiabatic Model
PDM Pressure Dependent Model
UCM Uncoupled Model
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