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Abstract: In this paper, we propose a general class of bivariate proportional hazard distributions,
which is based on the family of asymmetric proportional hazard distributions and the bivariate
Pareto copula. Distributional properties of the bivariate proportional hazard distribution are derived.
We specialize the bivariate proportional hazard family of distributions to the normal case, and
so we introduce the bivariate proportional hazard normal distribution. Parameter estimation by
the maximum likelihood method of the bivariate proportional hazard normal distribution is then
discussed. Finally, an application of the new bivariate distribution to real data is considered for
illustrative purposes.
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1. Introduction

The proportional hazard distribution was presented as an extension of the distribution
of the minimum of a random sample replacing n ∈ Z with b > 0 in a random variable Z
with probability density function (PDF) f , and cumulative distribution function (CDF) F.
So, this distribution could be considered as a distribution of fractional order statistics ([1]).
Here, we start defining the proportional hazard (PHF) distribution, which was studied
by [2]; see also [3] where inference under progressively type II right-censored sampling
for the PHF distribution is considered. Let F be a continuous CDF with PDF f = dF, and
hazard function h = f /(1− F). We say that Z has a PHF distribution associated with F
and f , if its PDF is of the form

ϕF(z) = β f (z){1− F(z)}β−1, z ∈ R, (1)

where β > 0 is the shape parameter. We use the notation Z ∼ PHF(β) to refer to this
distribution. The CDF of the PHF distribution is given by

F(z) = 1− {1− F(z)}β, z ∈ R. (2)

The hazard function of this model is hF(z) = β f (z)/{1− F(z)}; that is, the propor-
tional hazard function of the PDF f . From Equation (2), we can use the inversion method for
generating a random variable with PHF distribution; that is, if U ∼ U (0, 1), i.e., a uniform
distribution on the interval (0, 1), then the random variable X = µ + σF−1(1− (1−U)1/β)
is distributed according to the PHF distribution with parameter vector θ = (µ, σ, β)′, where
F−1(·) denotes the inverse of F(·). The distributional properties of the PHF distribution, as
well as inferential procedures and information matrix for the model parameters are studied
by [2].
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The location-scale extension of model (1) is obtained using the linear transformation
X = µ + σZ, where µ ∈ R is a location parameter, σ > 0 is a scale parameter, and
Z ∼ PHF(β). The PDF of the random variable X is given by

ϕ(x) =
β

σ
f
(

x− µ

σ

)(
1− F

(
x− µ

σ

))β−1
, x ∈ R. (3)

If a random variable X follows the model (3), it is denoted by X ∼ PHF(µ, σ, β).
If f = φ and F = Φ, where φ and Φ detone the PDF and CDF of a standard normal
distribution, we write X ∼ PHN(µ, σ, β), and so we obtain the proportional hazard normal
(PHN) distribution. Note that PHN(µ, σ, β = 1) ≡ N (µ, σ), and so the normal distribution
is a special case of the PHN distribution. Hence, it is more flexible than the normal model
in terms of skewness and kurtosis, due to the inclusion of the shape parameter β. We have
that the Kumaraswamy-G (KwG) distribution, proposed by [4], is defined by the PDF

ϕG(z) = abg(z)Ga−1(z){1− Ga(z)}b−1, z ∈ R, (4)

where G is an arbitrary continuous CDF, and g = dG. Also, a > 0 and b > 0 are additional
shape parameters to that of G. If Z is a random variable with PDF (4), we write Z ∼
KwG(a, b). It is worth stressing that when a = 1, we obtain the PHF(b) distribution,
i.e., KwG(a = 1, b) ≡ PHF(b), and so this kind of distribution arises as a possible solution
when we have asymmetric data.

The construction of multivariate distributions from copula theory can be carried
out using the Sklar’s theorem. The way to obtain a multivariate distribution from the
Sklar’s theorem is as follows: Let X1, . . . , Xp be p random variables with continuous CDFs
FX1(x1), . . . , FXp(xp), respectively. Then, according to Sklar’s theorem, FX1,...,Xp(x1, . . . , xp)
has a unique copula representation:

FX1,...,Xp(x1, . . . , xp) = C(FX1(x1), . . . , FXp(xp)).

Moreover, it is well known that many dependence properties of a multivariate distribu-
tion depend only on the corresponding copula. Therefore, many dependence properties of
a multivariate distribution can be obtained by studying the corresponding copula. By using
Clayton copula, Ref [5] proposed a bivariate extension of the power-normal distribution.
Specifically, a bivariate random variable (X1, X2) has a bivariate power-normal distribution,
denoted by BPN(δ, β1, β2), if for β1 > 0 and β2 > 0, (X1, X2) has the following joint CDF

FX1,X2(x1, x2) = ({Φ(x1)}−β1/δ + {Φ(x2)}−β2/δ − 1)−δ, (x1, x2) ∈ R2,

where δ > 0 is the parameter that controls the dependence in the Clayton copula. The
Clayton copula is usually attributed to [6], but it has also been studied by [7]. For (u, v) ∈
[0, 1]× [0, 1], it is defined as

Cδ(u, v) = (u−1/δ + v−1/δ − 1)−δ, δ > 0.

The first systematic study of this model was conducted by [8], who interpreted the
parameter δ as a measure of the dependence between u and v. Therefore, the independence
between the variables is obtained when δ tends to zero. Obviously there are other forms of
constructing multivariate distributions, and so new multitariate distributions have been
proposed in the statistical literature. To mention a few, but not limited to, we refer the
reader to the works by [9–12], among others.

It is worth emphasizing that the univariate PHF family of distributions has received
significant attention over the last years in the statistical literature, mainly due to its flexibility
in considering different models in its construction given by f and F; see expression (1).
On the other hand, multivariate extensions of this univariate family of distributions has
been little explored. This paper fills this gap and provides a bivariate extension of this
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univariate distribution. The bivariate PHF distribution is quite simple and, hence, may
be widely applied in analyzing bivariate real data in practice. Additionally, distributional
properties of the bivariate PHF distribution are investigated in details. An important claim
to introduce the bivariate PHF distribution relies on the fact that the practitioners will have
new bivariate model to use in bivariate settings. Additionally, the formulae related with the
new bivariate model are manageable and with the use of modern computer resources and
its numerical capabilities, the bivariate PHF distribution may prove to be an useful addition
to the arsenal of applied statisticians. We hope that the bivariate distribution introduced
in this paper may serve as an alternative bivariate model to some well-known bivariate
model available in the statistical literature. We also hope that the bivariate PHF distribution
may work better (at least in terms of model fitting) than some bivariate distributions
available in the literature in certain practical situations, although it cannot always be
guaranteed. Here, the bivariate PHF family of distributions we introduce is obtained from
a multivariate distribution which was constructed from Pareto copula (descried in the next
section) coupled with PHF marginals. It is worth stressing that many types of copulas are
available o construct multivariate distributions, namely: Clayton copula, Frank copula,
Joe copula, and Gumbel copula, among others. Perhaps, the most common copula is the
Clayton copula. In this paper, instead, we shall consider the Pareto copula to introduce the
new bivariate model due to its simplicity and interesting properties (descried in the next
section). In addition, the Pareto copula yields a simple form of the likelihood function, so it
makes the estimation of the model parameters easy to deal with. In short, it is evident that
few works about bivariate generalizations of the PHF distribution have been published in
the statistical literature and, hence, a new, simple and tractable bivariate PHF extension of
the univariate PHF distribution through Pareto copula is welcome.

The paper is organized as follows. Section 2 presents the Pareto copula and discusses
with details the structural properties derived from it. The bivariate proportional hazard
distribution is proposed in Section 3. Distributional properties of this bivariate family of
distributions are also derived in this section. In Section 4, we study the bivariate PHN
distribution, where the univariate normal distribution is taken into account. Location-scale
extension, as well as parameter estimation for the bivariate PHN distribution are also
discussed in this section. An empirical appliction of the bivariate PHN distribution that
considers real data is provided in Section 5 for illustrative purposes. Finally, Section 6
concludes the paper.

2. Pareto Copula

The Pareto distribution, or Pareto type I distribution, has been extensively used in
economic literature and in reliability theory. Its CDF is given by

GX(x) = 1−
( x

σ

)−α
, x > 0,

where σ > 0 and α > 0. Another type of Pareto distribution is the Pareto type II distribution,
whose CDF takes the form

FX(x) = 1−
(

1 +
x
σ

)−α
, x > 0.

Its survival function is given by

SX(x) =
(

1 +
x
σ

)−α
, x > 0.
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The bivariate Pareto distribution of the random vector X = (X1, X2) has joint CDF in
the form

FX1,X2(x1, x2) = FX1(x1) + FX2(x2)− 1

+ [{SX1(x1)}−1/α + {SX2(x2)}−1/α − 1]−α,

where (x1, x2) ∈ R2
+. Then, using the Sklar’s theorem for continuous marginal distributions,

the bivariate Pareto copula is given by

C(u1, u2) = FX1,X2(F−1
X1

(u1), F−1
X2

(u2))

= u1 + u2 − 1 + [(1− u1)
−1/α + (1− u2)

−1/α − 1]−α.

Next, we shall consider some properties of the bivariate Pareto copula:

1. The joint PDF of the Pareto copula is

c(u1, u2) =
∂2C(u1, u2)

∂u1∂u2
=

α + 1
α

[(1− u1)(1− u2)]
− α+1

α

[(1− u1)−1/α + (1− u2)−1/α − 1]α+2 .

2. The joint survival function of the Pareto copula is

S(u1, u2) = P(U1 ≥ u1, U2 ≥ u2) = [(1− u1)
−1/α + (1− u2)

−1/α − 1]−α.

3. For all u2 ∈ [0, 1], the bivariate Pareto copula is a concave function on u1 for fixed u2.
This result follows from

∂2C(u1, u2)

∂u2
1

=
α + 1

α

(1− u1)
− 2α+1

α

[(1− u1)−1/α + (1− u2)−1/α − 1]α+2 ≥ 0.

4. The bivariate dependency measures for continuous variables, usually used in copulas,
are Kendall’s tau correlation coefficient (τ), Spearman’s rho (ρs), and the medial corre-
lation coefficient. The first two coefficients are invariant to increasing transformations.
The Kendall’s tau measures the difference between the probability of two concordant
random pairs and the probability of two discordant random pairs. For a continuous
bivariate distribution function F, τ is defined by

τ = 4
∫

FdF− 1.

Spearman’s rho correlation coefficient measures the correlation between the two CDFs,
FX1(x1) and FX2(x2). Then, given that FX1 and FX2 are continuous uniform random
variables on (0, 1) with mean and variance 1/2 and 1/12, respectively, it can be shown
that

ρs = 12
∫ 1

0

∫ 1

0
C(u1, u2)du1du2 − 3.

If MX1 and MX2 denote the medians of X1 and X2, respectively, the medial correlation
coefficient of X1 and X2, say MX1X2 , is given by (see [13])

MX1X2 = 4C
(

1
2

,
1
2

)
.
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For the bivariate Pareto copula, we have that

τ = − 2α

2α + 1
,

ρs = 12
∫ 0

−1

∫ 0

−1

[
u−1/α

1 + u−1/α
2 − 1

]−α
du1du2 − 3,

MX1X2 = 4
(

2(α+1)/α − 1
)−α

.

(5)

5. A non-negative function b is totally positive of order 2 (TP2) if for all x1 < x2 and
y1 < y2, with x, y ∈ R, if is verified that

b(x1, y1)b(x2, y2) ≥ b(x2, y1)b(x1, y2).

This is a condition of positive dependence when it is performed on the PDF, and
means that two pairs with components matching high-low and low-low are more
likely than two pairs with high-low and low-high components. For all u1, u2 ∈ [0, 1],
the bivariate Pareto copula is a non-negative function of order 2 (or TP2).

6. The bivariate tail dependence concept is related to the amount of dependency on the
tail of the bivariate distribution, in the upper or lower quadrant. The λ symbol is
used to determine a tail dependence parameter. If a bivariate copula C, with survival
copula C̄, is such that

λU = lim
u→1

C̄(u, u)
1− u

exists, then C has an upper tail dependence if λU ∈ (0, 1] and has no upper tail
dependence if λU = 0. It can be shown that

λU = lim
v→1

1− 2v + C(v, v)
1− v

,

where v refers to the component u2. Similarly, if a bivariate copula C is such that

λL = lim
u→0

C(u, u)
u

exists, then C has lower tail dependence if λL ∈ (0, 1] and has no lower tail dependence
if λL = 0. The reasoning behind these definitions is that

λU = lim
u→1

Pr[U1 > u | U1 > u], λL = lim
u→0

Pr[U1 ≤ u | U1 ≤ u].

For the bivariate Pareto copula, we have that λu = ∞ and λL = 0. Then, the Pareto
copula has a lower tail dependence. That is, for a value u arbitrarily close to zero,
there is a positive probability that one of the variables u1 or u2 takes values smaller
than u, given that the other is smaller than u.

3. Bivariate Proportional Hazard Distribution

In what follows, the joint CDF of (X1, X2), FX1,X2(x1, x2), is constructed from the
bivariate Pareto copula, with marginal distributions X1 ∼ PHF(α1) and X2 ∼ PHF(α2),
where α1 > 0 and α2 > 0. Then, from the Sklar’s theorem, the joint CDF of (X1, X2) is
given by

FX1,X2(x1, x2) = C(FX1(x1), FX2(x2)).

We have the following definition.
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Definition 1. A bivariate random vector (X1, X2) has a bivariate proportional hazard distribution,
if its joint CDF is given by

FX1,X2(x1, x2) = 1− (1− FX1(x1))
α1 − (1− FX2(x2))

α2

+ [(1− FX1(x1))
− α1

α + (1− FX2(x2))
− α2

α − 1]−α,

where (x1, x2) ∈ R2, α1 > 0, α2 > 0 and α > 0.

Remark 1. We denote the bivariate proportional hazard distribution in Definition 1 by (X1, X2) ∼
BPHF(α1, α2, α).

Remark 2. Let (X1, X2) ∼ BPHF(α1, α2, α). Then, the joint PDF of (X1, X2) has the form

fX1,X2(x1, x2) =
(α + 1)α1α2

α

fX1(x1)[1− FX1(x1)]
− α1

α −1 fX2(x2)[1− FX2(x2)]
− α2

α −1

[(1− FX1(x1))
− α1

α + (1− FX2(x2))
− α2

α − 1]α+2
.

We have the following propositions.

Proposition 1. Let (X1, X2) ∼ BPHF(α1, α2, α). We have that

(i) Xj ∼ PHF(αj), for j = 1, 2.
(ii) The CDF of X1, given X2 = x2, is

FX1|X2
(x1 | X2 = x2) =

[1− FX2(x2)]
−α2(

α+1
α )

[(1− FX1(x1))
− α1

α + (1− FX2(x2))
− α2

α − 1]α+1
.

(iii) The PDF of X1, given X2 = x2, is

fX1|X2
(x1 | X2 = x2) =

(α + 1)α1

α

fX1(x1)[1− FX1(x1)]
− α1

α −1[1− FX2(x2)]
−α2(

α−1
α )

[(1− FX1(x1))
− α1

α + (1− FX2(x2))
− α2

α − 1]α+2
. (6)

(iv) The joint survival function of (X1, X2) is

SX1,X2(x1, x2) = P(X1 ≥ x1, X2 ≥ x2)

= FX1(x1) + FX2(x2)− 1 + C(1− FX1(x1), 1− FX2(x2))

= [(1− FX1(x1))
− α1

α + (1− FX2(x2))
− α2

α − 1]−α.

Proposition 2. Let (X1, X2) ∼ BPHF(α1, α2, α). We have that X1 is stochastically decreasing in
X2, and vice versa, for any value of α1, α2, and α.

Proof. Since Pareto copula is a concave function on u1 for fixed u2, the result holds.

The bivariate hazard rate of X1 and X2 was defined by [14] and it is given by

h(x1, x2) =

(
− ∂

∂x1
,− ∂

∂x2

)
log[Pr(X1 > x1, X2 > x2)] = (h1(x1, x2), h2(x1, x2)).

Proposition 3. Let (X1, X2) ∼ BPHF(α1, α2, α). We have that

(i) For fixed x2, h1(x1, x2) is an increasing function of x1.
(ii) For fixed x1, h2(x1, x2) is an increasing function of x2.
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Proof. This result can be verified as follows. Let u1 = (1− FX1(x1))
− α1

α and k2 = (1−
FX2(x2))

− α2
α − 1. It can be shown that

∂h1(x1, x2)

∂x1
=

∂Q1(x1, x2)

∂u1

∂u1

∂x1
< 0,

where Q1(x1, x2) = −∂ log(u1 + k)−α/∂u1 and, hence, the result follows.

Proposition 4. Let (X1, X2) ∼ BPHF(α1, α2, α). We have that the Kendall’s tau correlation
coefficient, Spearman’s rho and the medial correlation coefficient, are given by the expressions
provided in (5).

Proof. Kendall’s tau and Spearman’s rho correlation coefficients are invariant to increasing
transformations, and so the resut follows. Note that is enough to take the transformation
u1 = 1− (1− FX1(x1))

−α1 , and u2 = 1− (1− FX2(x2))
−α2 , which leads to the PDF Pareto

copula. Since the medial coefficient is defined directly from the Pareto copula, the result is
obtained directly.

Remark 3. The upper and lower limits for ρs are

−4α(α + 1)− 1/2
(2α + 1)2 ≤ ρs ≤

−2α + 1/2
2α + 1

.

Proof. Since the Pareto copula has a lower tail dependence, the result holds.

Proposition 5. The bivariate distribution BPHF(α1, α2, α) has a lower tail dependence.

4. Bivariate Proportional Hazard Normal Distribution

When FX1 = FX2 = Φ, i.e., the standard normal CDF, we obtain the bivariate PHN
distribution, denoted by BPHN(α1, α2, α). The joint PDF of (X1, X2) ∼ BPHN(α1, α2, α) is
given by

fX1,X2(x1, x2) =
(α + 1)α1α2

α

φ(x1)[1−Φ(x1)]
− α1

α −1φ(x2)[1−Φ(x2)]
− α2

α −1

[(1−Φ(x1))
− α1

α + (1−Φ(x2))
− α2

α − 1]α+2
,

where (x1, x2) ∈ R2, α1 > 0, α2 > 0 and α > 0. The joint CDF takes the form

FX1,X2(x1, x2) = 1− (1−Φ(x1))
α1 − (1−Φ(x2))

α2

+ [(1−Φ(x1))
− α1

α + (1−Φ(x2))
− α2

α − 1]−α.

The marginal distributions of (X1, X2) ∼ BPHN(α1, α2, α) are Xj ∼ PHN(αj) for
j = 1, 2. The PDF of X1, given X2 = x2, is given by

f (X1 | X2 = x2) =
(α + 1)α1

α

φ(x1)[1−Φ(x1)]
− α1

α −1[1−Φ(x2)]
−α2(

α−1
α )

[(1−Φ(x1))
− α1

α + (1−Φ(x2))
− α2

α − 1]α+2
,

and the CDF of X1, given X2 = x2, is

F(X1 | X2 = x2) =
[1−Φ(x2)]

−α2(
α+1

α )

[(1−Φ(x1))
− α1

α + (1−Φ(x2))
− α2

α − 1]α+1
.

The joint survival function of (X1, X2) ∼ BPHN(α1, α2, α) has the form

SX1,X2(x1, x2) = [(1−Φ(x1))
− α1

α + (1−Φ(x1))
− α2

α − 1]−α.
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4.1. Location-Scale Extension

The family of BPHN distributions with location-scale parameters is defined as the
joint distribution of X1 = µ1 + σ1Z1 and X2 = µ2 + σ2Z2, where Zj ∼ PHN(αj), µj ∈ R
and σj > 0 for j = 1, 2. The corresponding joint PDF is given by

fX1,X2(x1, x2) =
(α + 1)α1α2

σ1σ2α

φ(z1)[1−Φ(z1)]
− α1

α −1φ(z2)[1−Φ(z2)]
− α2

α −1

[(1−Φ(z1))
− α1

α + (1−Φ(z2))
− α2

α − 1]α+2
,

where µj is the location parameter, σj is the scale parameter, and

zj =
xj − µj

σj
, j = 1, 2.

We use the notation BPHN(µ1, σ1, α1, µ2, σ2, α2, α) to denote this location-scale extension.
Figures 1 and 2 display contour plots of the BPHN distribution for some parameter values.
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Figure 1. Contour plots: (a) BPHN(0,1,1.75,0,1,2.25,2), and (b) BPHN(0,1,0.5,0,1,0.75,0.75).
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Figure 2. Contour plots: (a) BPHN(0,1,1.5,0,1,0.75,3.5), and (b) BPHN(0,1,0.75,0,1,2,0.5).

4.2. Parameter Estimation

In what follows, we consider the issue of estimating the parameters of the BPHN
distribution. Given the dependency structure induced by Pareto copula, we use the max-
imum likelihood (ML) method, and the two-stage method (see [15]) to estimate the pa-
rameter vector θ = (µ1, σ1, α1, µ2, σ2, α2, α)′. Initially, as in [5], we perform the following
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reparameterizations: α1 = αγ1, and α2 = αγ2, so that the interest is focused on the
parameter vector θ1 = (µ1, σ1, γ1, µ2, σ2, γ2, α)′. Thus, for a sample of size n from the
BPHN(µ1, σ1, γ1, µ2, σ2, γ2, α) distribution, say (x11, x12), . . . , (xn1, xn2), the log-likelihood
function is given by

`(θ1) = n

[
log(α + 1) + log(α) +

2

∑
j=1

log(γj)−
2

∑
j=1

log(σj)

]

+
n

∑
i=1

log(φ(zi1)) +
n

∑
i=1

log(φ(zi2))

− γ1

n

∑
i=1

log[1−Φ(zi1)]− γ2

n

∑
i=1

log[1−Φ(zi2)]

− (α + 2)
n

∑
i=1

log[(1−Φ(zi1))
−γ1 + (1−Φ(zi2))

−γ2 − 1],

where
zij =

xij − µj

σj
, j = 1, 2, i = 1, 2, . . . , n.

The ML estimate θ̂1 = (µ̂1, σ̂1, γ̂1, µ̂2, σ̂2, γ̂2, α̂)′ of θ1 = (µ1, σ1, γ1, µ2, σ2, γ2, α)′ can be
obtained from the direct maximization of the log-likelihood function `(θ1) with respect
to the model parameters. Using the R programming language, specifically applying the
optim function, the maximization of the log-likelihood function can be performed. Also,
using the invariance property of the ML estimator, we can easily obtain the ML estimates
α̂1 and α̂2 of α1 and α2, respectively.

The score functions are

∂`(θ1)

∂µj
=

1
σj

n

∑
i=1

zij −
γj

σj

n

∑
i=1

φ(zij)

1−Φ(zij)

+
(α + 2)γj

σj

n

∑
i=1

φ(zij)(1−Φ(zij))
−γj−1

(1−Φ(zi1))−γ1 + (1−Φ(zi2))−γ2 − 1
,

∂`(θ1)

∂σj
= − n

σj
+

1
σj

n

∑
i=1

z2
ij −

γj

σj

n

∑
i=1

zijφ(zij)

1−Φ(zij)

+
(α + 2)γj

σj

n

∑
i=1

zijφ(zij)(1−Φ(zij))
−γj−1

(1−Φ(zi1))−γ1 + (1−Φ(zi2))−γ2 − 1
,

∂`(θ1)

∂γj
=

n
γj
−

n

∑
i=1

log(1−Φ(zij))

+ (α + 2)
n

∑
i=1

(1−Φ(zij))
−γj log(1−Φ(zij))

(1−Φ(zi1))−γ1 + (1−Φ(zi2))−γ2 − 1
,

∂`(θ1)

∂α
=

n
α + 1

+
n
α
−

n

∑
i=1

log[(1−Φ(zi1))
−γ1 + (1−Φ(zi2))

−γ2 − 1],
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where j = 1, 2. The ML estimate θ̂1 = (µ̂1, σ̂1, γ̂1, µ̂2, σ̂2, γ̂2, α̂)′ can also be obtained by
solving simultaneously the nonlinear system of equations

∂`(θ1)

∂µj
= 0,

∂`(θ1)

∂σj
= 0,

∂`(θ1)

∂γj
= 0,

∂`(θ1)

∂α
= 0.

Numerical approaches are required for solving the above nonlinear system of equa-
tions, which requires the specification of initial values. To obtain initial values for the
model parameters to be used in the iterative process, we can use the two-stage estimation
procedure proposed by [15], since this procedure was defined for multivariate copula-based
models. The first stage considers ML estimation from univariate marginals, while the sec-
ond stage considers ML estimation of the dependence parameter with the other parameters
held fixed from the first stage:

First stage. Considering that Xj ∼ PHN(µj, σj, αj) for j = 1, 2. We have that the ML
estimaties of µj, σj and αj are obtained from the solutions of the nonlinear equations

n
αj

+
n

∑
i=1

log(1−Φ(zij)) = 0,

n

∑
i=1

zij + (αj − 1)
n

∑
i=1

Wij = 0,

n

∑
i=1

z2
ij + (α + 1)

n

∑
i=1

zijWij = n,

where

Wij =
φ(zij)

1−Φ(zij)
, j = 1, 2, i = 1, 2, . . . , n.

The solution of the previous system of equations for each j allows us to obtain the ML
estimates µ̃j, σ̃j and α̃j of µj, σj and αj, respectively, for j = 1, 2.
Second stage. In this stage, we estimate the parameter α by replacing the unknown pa-
rameters with the ML estimates from the previous stage and then maximize the resulting
log-likelihood function; that is, we need to maximize the function

L(α) = ∑
i=1

log[Cα((1−Φ(zi1))
−α̂1 , (1−Φ(zi2))

−α̂2 ],

where

log[Cα(u, v)] = log
(

α + 1
α

)
−
(

1 +
1
α

)
log((1− u)(1− v))

− (α + 2) log[(1− u)−
1
α + (1− v)−

1
α − 1],

so that we have the score function

∂L(α)
∂α

= − 1
α(α + 1)

+
1
α2 log[(1− u)(1− v)]

− log[(1− u)−
1
α + (1− v)−

1
α − 1].

The solution of the resulting equation ∂L(α)/∂α = 0 lead us to the estimate α̃ of α.
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We can also consider another alternative to obtain initial values for the model parame-
ters by using the method proposed by [16], where we initially normalize each variable to
obtain a model that depends only on α1, α2 and α; that is, we have the log-likelihood function

`(γ1, γ2, α) = αn log(α(α + 1)γ1γ2)−
n

∑
i=1

2

∑
j=1

γj log(1−Φ(zij))

− (α + 2)
n

∑
i=1

log((1−Φ(zi1))
−γ1 + (1−Φ(zi2))

−γ2 − 1).

After doing
∂`(γ1, γ2, α)

∂α
= 0,

we obtain

α̃(γ1, γ2) =
(2− A) +

√
4 + A2

2A
,

where

A := A(γ1, γ2) =
1
n

n

∑
i=1

log((1−Φ(zi1))
−γ1 + (1−Φ(zi2))

−γ2 − 1).

Thus, the new profiled log-likelihood function `p(α̃(γ1, γ2), γ1, γ2) is reached. After
obtaining the estimates γ̃1 and γ̃2 of γ1 and γ2, respectively, we then obtain an estimate
for α as α̃(γ̃1, γ̃2). We can take as initial values for µ1 and µ2 the sample means, and for
σ1 and σ2 the sample standard deviations, or we can replace γ̃1, γ̃2 and α̃ in the original
log-likelihood to obtain the initial values for µ1, µ2, σ1 and σ2.

When n is large, we have that θ̂1
a∼ N7(θ1, J(θ1)

−1), where “ a∼” means approximately
distributed, J(θ1) = −E(H(θ1)) is the expected Fisher information matrix for θ1, and
H(θ1) = ∂2`(θ1)/∂θ1∂θ′1 is the Hessian matrix, whose elements are provided in the Ap-
pendix A. Using the transformation method, we have that θ̂

a∼ N7(θ, K(θ)−1), where
K(θ) = D′ J(θ1)D with K(θ)−1 denoting its inverse, and

D =



1 0 0 0 0 0 0
0 1 0 0 0 0 0

0 0 α 0 0 0
α1

α
0 0 0 1 0 0 0
0 0 0 0 1 0 0

0 0 0 0 0 α
α2

α
0 0 − α

α1
0 0 − α

α2
1


.

The elements of J(θ1) are obtained in terms of numerical integration. On the other
hand, the observed Fisher information matrix given by −H(θ̂1) can also be used for
computing asymptotic standard errors for the ML estimates of the model parameters
(see Appendix A). After computing −H(θ̂1), we obtain the observed Fisher information
matrix under θ-parametrization as −D̂

′
H(θ̂1)D̂, where D̂ := D(α̂1, α̂2, α̂). It is worth

emphisizing that the observed information matrix can be computed numerically from
standard maximization routines, which now provide the observed information matrix as
part of their output. For example, one can use the R functions optim or nlm to compute the
observed Fisher information matrix numerically.

4.3. Monte Carlo Simulation

In the following, we consider Monte Carlo simulation experiments to evaluate the
performance of the ML estimation procedure discussed in the previous section to estimate
the BPHN distribution parameters. It is worth emphasizing that is rather easy to generate
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random variates from the BPHN distribution. We consider the following steps to generate
(X1, X2) from BPHN(µ1, σ1, α1, µ2, σ2, α2, α) distribution:

Step 1. Generate two independent random variates U1 ∼ U (0, 1) and U2 ∼ U (0, 1), where
U (0, 1) means a uniform distribution on (0, 1).

Step 2. Compute
X2 = µ2 + σ2Φ−1(1− (1−U2)

1/α2),

where Φ−1(·) is the standard normal quantile function.

Step 3. Define B1 = [1 − Φ(X2)]
−α2(α+1)/α and B2 = [1 − Φ(X2)]

−α2/α − 1. Let B3 =

[(B1/U1)
1/(α+1) − B2]

−α/α1 . For each value of X2, compute

X1 = µ1 + σ1Φ−1(1− B3).

Then, (X1, X2) ∼ BPHN(µ1, σ1, α1, µ2, σ2, α2, α).

The Monte Carlo experiments were performed using the R programming language,
and we consider 10,000 Monte Carlo replications. The performance of the ML procedure to
estimate the BPHN distribution parameters was evaluated on the basis of the following
quantities for each sample size: the empirical mean, and the empirical standard deviation,
which are computed from 10,000 replications. The sample sizes we consider are n = 90 and
150. Without loss of generality, we consider µ1 = 1.5, σ1 = σ2 = 1.0, α1 = 0.5, µ2 = −0.5,
α2 = 1.2, and α = 0.2, 0.4, 0.6, 0.8, 1.0, 1.2 and 1.5. The emprical mean is listed in Table 1,
while the empirical standard deviation is listed in Table 2. In general, from Table 1, note
that the ML estimates of µ1, σ1, α1, µ2, σ2 and α2 are close to their respective true values,
while the parameter that controls the dependence in the Pareto copula, α, is overestimated,
mainly as this parameter increases. As expected, the standard deviation of the ML estimates
of all parameters decreases as the sample size increases (see Table 2). In short, the Monte
Carlo simulation experiments reveal that the ML method can be used effectively to estimate
the BPHN parameters.

Table 1. Parameter estimates; empirical mean.

n α µ1 σ1 α1 µ2 σ2 α2 α

90 0.2 1.024 0.876 0.495 −0.378 1.034 1.539 0.321
0.4 1.192 0.903 0.566 −0.403 1.008 1.371 0.632
0.6 1.364 0.950 0.665 −0.483 0.986 1.271 0.941
0.8 1.376 0.948 0.632 −0.555 0.965 1.176 1.256
0.8 1.419 0.959 0.651 −0.576 0.959 1.178 1.553
1.0 1.406 0.953 0.619 −0.591 0.956 1.145 1.821
1.5 1.426 0.962 0.613 −0.612 0.949 1.121 2.303

150 0.2 0.990 0.864 0.471 −0.339 1.053 1.599 0.318
0.4 1.172 0.898 0.540 −0.395 1.016 1.362 0.625
0.6 1.319 0.936 0.608 −0.487 0.991 1.248 0.931
0.8 1.391 0.955 0.635 −0.550 0.974 1.167 1.224
1.0 1.427 0.963 0.643 −0.543 0.978 1.182 1.523
1.2 1.430 0.963 0.628 −0.552 0.976 1.178 1.805
1.5 1.458 0.972 0.627 −0.601 0.960 1.125 2.192
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Table 2. Parameter estimates; empirical standard deviation.

n α µ1 σ1 α1 µ2 σ2 α2 α

90 0.2 0.251 0.117 0.158 0.195 0.081 0.326 0.037
0.4 0.370 0.152 0.259 0.273 0.102 0.416 0.089
0.6 0.460 0.175 0.389 0.314 0.117 0.452 0.153
0.8 0.426 0.169 0.319 0.315 0.117 0.412 0.248
1.0 0.480 0.178 0.372 0.387 0.137 0.533 0.348
1.2 0.470 0.180 0.329 0.368 0.135 0.465 0.387
1.5 0.463 0.181 0.326 0.364 0.124 0.483 0.620

150 0.2 0.236 0.103 0.147 0.193 0.072 0.326 0.028
0.4 0.289 0.120 0.202 0.207 0.075 0.312 0.065
0.6 0.348 0.137 0.255 0.263 0.094 0.359 0.113
0.8 0.384 0.149 0.295 0.283 0.100 0.359 0.165
1.0 0.420 0.156 0.317 0.293 0.101 0.378 0.223
1.2 0.431 0.164 0.311 0.316 0.109 0.411 0.290
1.5 0.432 0.161 0.311 0.352 0.119 0.428 0.368

5. Real Data Application

Next, we consider an application of the BPHN distribution to real data for illustrative
purposes. The data set contains two different measures of stiffness of each of the 30 boards.
The considered stiffness measures are the Shock (X1) and Vibration (X2) of each of the
30 boards. The data were reported by [17]. The first measurement involves sending a shock
wave down the board, and the second measurement is determined while vibrating the
board. All numerical computations provided in this were done by using the R program.

We assume that (X1i, X2i) ∼ BPHN(µ1, σ1, α1, µ2, σ2, α2, α) for i = 1, 2, . . . , 30. To esti-
mate the BPHN model parameters, we initially estimate the marginal PDFs corresponding
to each variable. We thus obtain the following estimates: µ̃1 = 1554.82, σ̃1 = 176.34,
α̃1 = 0.18, µ̃2 = 1393.59, σ̃2 = 173.79, and α̃2 = 0.17. Figure 3a,b display the QQ-plots for
the estimated marginal distributions. Note the goodness-of-fit of each estimated marginal
distribution to the real data, which means that the BPHN distribution may be a good
choice for modeling these data. Now, using the above estimates in the copula function,
we obtain an estimate for the parameter α, that is, α̃ = 0.35. Finally, taking the above
estimates as initial values for the iterative process, we obtain the following ML estimates
(standard errors in parentheses): µ̂1 = 1529.91(184.47), σ̂1 = 277.53(48.13), α̂1 = 0.28(0.17),
µ̂2 = 1428.44(87.82), σ̂2 = 184.49(33.33), α̂2 = 0.16(0.05), and α̂ = 0.27(0.12). Visual inspec-
tion of the contour plot in Figure 3c confirms a satisfactory fit of the BPHN distribution to
the data.
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Figure 3. QQ-plots and contour plot: (a) Shock, (b) Vibration, and (c) contour plot of the BPHN
distribution.
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Next, for the sake of comparison, we also consider the following bivariate distributions
to fit the current real data: the bivariate skew-normal conditional (BVSNC) distribution in-
troduced by [9], denoted by BVSNC(ξ1, η1, ξ2, η2, λ), and the bivariate Birnbaum-Saunders
(BVBS) distribution studied by [10], denoted by BVBS(α1, β1, α2, β2, λ). The ML esti-
mates (standard errors in parentheses) of the BVSNC parameters are ξ̂1 = 1927.51(26.65),
ξ̂2 = 1745.35(30.38), η̂1 = 320.31(41.40), η̂2 = 313.23(40.43) and λ̂ = 10.88(5.01), whereas
the ML estimates (standard errors in parentheses) of the BVBS parameters are
α̂1 = 0.1621(0.0210), α̂2 = 0.1701(0.0219), β̂1 = 1917.22(22.26), β̂2 = 1734.76(29.32) and
λ̂ = 10.29(4.86). To compare the bivariate distributions, we make use of the Akaike infor-
mation criterion (AIC), and Bayesian information criterion (BIC). The smaller the values
of AIC and BIC, the better the fitted distribution to the real data. Table 3 lists the AIC and
BIC values for all bivariate distributions, which leads to the conclusion that the BPHN
distribution is better than the other bivariate distributions to model the current bivariate
real data.

Table 3. AIC and BIC values.

Measure BVSNC BVBS BPHN

AIC 842.99 835.82 828.27
BIC 850.00 842.83 838.08

6. Concluding Remarks

The univariate proportional hazard distribution has found several applications in the
literature and has many attractive properties. However, the extension of the univariate
proportional hazard distribution in a multivariate setting has been so neglected in the
statistical literature. In this paper, based on the Pareto copula, we have introduced a simple
and tractable bivariate proportional hazard family of distributions that may be very useful
to deal with bivariate data in practice. We also derive several distribution properties for
this bivariate family of distributions. In addition, we particularize this general bivariate
distribution to the case where the univariate normal distribution is considered, so that
the bivariate proportional hazard normal distribution is obtained. The estimation of the
bivariate proportional hazard normal model parameters is approached by the maximum
likelihood method, and the observed and expected Fisher information matrixes are derived.
Finally, an application to real data set is presented to illustrate the bivariate proportional
hazard normal distribution in practice.
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Appendix A. Observed Fisher Information Matrix

In the following, we calculate the elements of the Hessian matrix H(θ1) and their
respective expected values. For j = 1, 2 and i = 1, 2, . . . , n, let

fij =
γj

σj
φ(zij)(1−Φ(zij))

−γj−1, Wij =
φ(zij)

1−Φ(zij)
,

DNi = (1−Φ(zi1))
−γ1 + (1−Φ(zi2))

−γ2 − 1,

Hij = (1−Φ(zij))
−γj log((1−Φ(zij))).

We have the following derivatives (j′ = 1, 2):

∂2`(θ1)

∂α2 = − n
(α + 1)2 −

n
α2 ,

∂2`(θ1)

∂α∂γj
=

n

∑
i=1

Hij

DNi
,

∂2`(θ1)

∂α∂µj
=

n

∑
i=1

fij

DNi
,

∂2`(θ1)

∂α∂σj
=

n

∑
i=1

zij fij

DNi
,

∂2`(θ1)

∂γ2
j

= − n
γ2

j
+ (α + 2)

n

∑
i=1

[Hij − log(1−Φ(zij))]
Hij

DNi
,

∂2`(θ1)

∂γ1∂γ2
= (α + 2)

n

∑
i=1

2

∏
j=1

Hij

DN2
i

,

∂2`(θ1)

∂µj∂γj
= − 1

σj

n

∑
i=1

Wij

− (α + 2)
n

∑
i=1

fij

DNi

[
log(1−Φ(zij))−

Hij

DNi
− 1

γj

]
,

∂2`(θ1)

∂σj∂γj
= − 1

σj

n

∑
i=1

zijWij

− (α + 2)
n

∑
i=1

zij fij

DNi

[
log(1−Φ(zij))−

Hij

DNi
− 1

γj

]
,

∂2`(θ1)

∂µj′∂µj
= −(α + 2)

n

∑
i=1

fij fij′

DN2
i

, j 6= j′,

∂2`(θ1)

∂µj′∂γj
= −(α + 2)

n

∑
i=1

Hij fij′

DN2
i

, j 6= j′,

∂2`(θ1)

∂σj′∂γj
= −(α + 2)

n

∑
i=1

zij′Hij fij′

DN2
i

, j 6= j′,

∂2`(θ1)

∂µ2
j

= − n
σ2

j
−

γj

σ2
j

n

∑
i=1

[zijWij + W2
ij]

+
α + 2

σj

n

∑
i=1

fij

DNi

[
zij − (γj + 1)Wij +

σj

γj

fij

DNi

]
,

∂2`(θ1)

∂µj∂σj′
= −(α + 2)

n

∑
i=1

zij′ fij fij′

DN2
i

, j 6= j′,
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∂2`(θ1)

∂µj∂σj
= − 2

σ2
j

n

∑
i=1

zij

+
α + 2

σj

n

∑
i=1

fij

DNi

[
z2

ij − 1− (γj + 1)zijWij +
σjzij fij

DNi

]
−

γj

σj

n

∑
i=1

[(z2
ij − zijWij − 1)Wij],

∂2`(θ1)

∂σj∂σj′
= −(α + 2)

n

∑
i=1

zijzij′ fij fij′

DN2
i

, j 6= j′,

∂2`(θ1)

∂σ2
j

=
n
σj
− 3

σ2
j

n

∑
i=1

z2
ij

+
α + 2

σj

n

∑
i=1

zij fij

DNi

[
z2

ij − 2−
(γj + 1)

γj
fij +

zij fij

DNi

]

−
γj

σj

n

∑
i=1

[(z2
ij + zijWij − 1)zijWij].

Let

akj = E

[
zk
(

φ(z)
1−Φ(z)

)j
]

,

and g(u) = Φ−1(1− u1/γj), where Φ−1(·) is the quantile function of the standard normal
distribution. We have the expected values:

E

(
∂2`(θ1)

∂γ2
j

)
= − n

γ2
j

[
1 +

2(α + 1)
(α + 3)α2

]
,

E

(
∂2`(θ1)

∂α∂γj

)
= −n(α + 1)

αγj
,

E

(
∂2`(θ1)

∂γj∂γj′

)
= −nα(α + 1)(α + 2)

∫ ∞

1

∫ 0

1

uv log(u) log(v)
(u + v− 1)α+4 dudv, j 6= j′,

E
(

∂2`(θ1)

∂α2

)
=

n
α2 +

n
(1 + α)2 ,

E

(
∂2`(θ1)

∂α∂µj

)
= −

nα(α + 1)γj

σj(α + 2)

∫ ∞

1
φ(g(u))u

1
γj
−α−1

du,

E

(
∂2`(θ1)

∂α∂σj

)
= −

nα(α + 1)γj

σj(α + 2)

∫ ∞

1
g(u)φ(g(u))u

1
γj
−α−1

du,

E

(
∂2`(θ1)

∂µj∂γj

)
= −na01

σj
+

nα(α + 1)
σj

∫ ∞

1
φ(g(u)) log(u)u

1
γj
−α−1

du

+
n

σj(α + 3)

∫ ∞

1
φ(g(u)) log(u)u

1
γj
−α−1

du,

E

(
∂2`(θ1)

∂σj∂γj

)
= −na11

σj
+

nα(α + 1)
σj

∫ ∞

1
g(u)φ(g(u)) log(u)u

1
γj
−α−1

du,
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E

(
∂2`(θ1)

∂µj′∂γj

)
= −n(α + 2)(α + 1)

σj

∫ ∞

1

∫ ∞

1

uφ(g(u)) log(u)v
1

γj
+1

(u + v− 1)α+4 dudv,

E

(
∂2`(θ1)

∂σj′∂γj

)
= −nα(α + 1)(α + 2)

σj′
×

∫ ∞

1

∫ ∞

1

ug(u)φ(g(u)) log(u)v
1

γj
+1

(u + v− 1)α+4 dudv, j 6= j′,

E

(
∂2`(θ1)

∂µj∂µj′

)
= −

nα(α + 1)(α + 2)γjγj′√
2πσjσj′

×

∫ ∞

1

∫ ∞

1

φ(g(u) + g(v))u
1

γj
+1

(u + v− 1)α+4 dudv, j 6= j′,

E

(
∂2`(θ1)

∂µj∂σj′

)
= −

nα(α + 1)(α + 2)γjγj′√
2πσjσj′

×

∫ ∞

1

∫ ∞

1

g(v)φ(g(u) + g(v))u
1

γj
+1

v
1

γj
+1

(u + v− 1)α+2 dudv, j 6= j′,

E

(
∂2`(θ1)

∂σj∂σj′

)
= −

nα(α + 1)(α + 2)γjγj′

σjσj′
×

∫ ∞

1

∫ ∞

1

g(u)g(v)φ(g(u) + g(v))u
1

γj
+1

v
1

γj
+1

(u + v− 1)α+4 dudv, j 6= j′,

E

(
∂2`(θ1)

∂µ2
j

)
= − n

σ2
j
−

nγj[a11 + a02]

σ2
j

+
nα(α + 2)(α + 1)

σj
×

∫ ∞

1

∫ ∞

1

φ(g(u))
(u + v− 1)α+3

[
g(u)− (γj + 1)φ(g(u))u

1
γj

+
φ(g(u))u

1+ 1
γj

(u + v− 1)

]
dudv,
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E

(
∂2`(θ1)

∂σ2
j

)
=

n
σ2

j
− 3na20

σ2
j
−

nγj

σ2
j
[a21 − a11 + a22]

−
α(α + 1)(α + 2)γj

σ2
j

∫ ∞

1

∫ ∞

1

g(u)φ(g(u))u
1

γj
+1

(u + v− 1)α+3 dudv

+
nα(α + 1)(α + 2)

σj
×

∫ ∞

1

∫ ∞

1

[√
2πγj

σ2
j

φ(g(u))u
1

γj
+1

(u + v− 1)α+3 [−1 + (g(u))2 + (γj + 1)
√

2πφ(g(u))]

+
γ2

j (g(u))2φ(g(u))u
2

γj
+2

√
2πσ2

j (u + v− 1)2

]
dudv.

References
1. Durrans, S.R. Distributions of fractional order statistics in hydrology. Water Resour. Res. 1992, 28, 1649–1655. [CrossRef]
2. Martínez-Flórez, G.; Moreno-Arenas, G.; Vergara-Cardoso, S. Properties and Inference for Proportional Hazard Models. Colomb.

J. Stat. 2013, 36, 95–114.
3. Wang, B.; Yu, K.; Jones, M. Inference under progressively type II right-censored sampling for certain lifetime distributions.

Technometrics 2010, 52, 453–460. [CrossRef]
4. Cordeiro, G.M.; de Castro, M. A new family of generalized distributions. J. Stat. Comput. Simul. 2011, 81, 883–898. [CrossRef]
5. Kundu, D.; Gupta, R. Power normal distribution. Statistics 2013, 47, 110–125. [CrossRef]
6. Clayton, D.G. A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in

chronic disease incidence. Biometrika 1978, 65, 141–152. [CrossRef]
7. Kimeldorf, G.; Sampson, A.R. Uniform representations of bivariate distributions. Commun. Stat. Theory Methods 1975, 4, 617–627.

[CrossRef]
8. Cook, R.D.; Johnson, M.E. A family of distributions for modelling non-elliptically symmetric multivariate data. J. R. Stat. Soc. B

1981, 43, 210–218. [CrossRef]
9. Arnold, B.C.; Castilho, E.; Sarabia, J.M. Conditionally specified multivariate skewed distributions. Sankhya A 2002, 64, 206–226.
10. Lemonte, A.J.; Martínez-Flórez, G.; Moreno-Arenas, G. Multivariate Birnbaum–Saunders distribution: Properties and associated

inference. J. Stat. Comput. Simul. 2015, 85, 374–392. [CrossRef]
11. Martínez-Flórez, G.; Lemonte, A.J.; Salinas, H.S. Multivariate skew-power-normal distributions: Properties and associated

inference. Symmetry 2019, 11, 1509. [CrossRef]
12. Zhang, L.; Xu, A.; An, L.; Li, M. Bayesian inference of system reliability for multicomponent stress-strength model under

Marshall-Olkin Weibull distribution. Systems 2022, 10, 196. [CrossRef]
13. Nelsen, R.B. An Introduction to Copulas; Springer: New York, NY, USA, 2006.
14. Marshall, A.W. Some comments on the hazard gradient. Stoch. Process. Their Appl. 1975, 3, 293–300. [CrossRef]
15. Joe, H. Asymptotic efficiency of two-stage estimation method for copula-based models. J. Multivar. Anal. 2005, 94, 401–419.

[CrossRef]
16. Gupta, D.; Gupta, R.C. Analyzing skewed data by power normal model. Test 2008, 17, 197–210. [CrossRef]
17. Johnson, R.A.; Wichern, D.W. Applied Multivariate Statistical Analysis; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2007.

http://doi.org/10.1029/92WR00554
http://dx.doi.org/10.1198/TECH.2010.08210
http://dx.doi.org/10.1080/00949650903530745
http://dx.doi.org/10.1080/02331888.2011.568620
http://dx.doi.org/10.1093/biomet/65.1.141
http://dx.doi.org/10.1080/03610917508548422
http://dx.doi.org/10.1111/j.2517-6161.1981.tb01173.x
http://dx.doi.org/10.1080/00949655.2013.823964
http://dx.doi.org/10.3390/sym11121509
http://dx.doi.org/10.3390/systems10060196
http://dx.doi.org/10.1016/0304-4149(75)90028-9
http://dx.doi.org/10.1016/j.jmva.2004.06.003
http://dx.doi.org/10.1007/s11749-006-0030-x

	Introduction
	Pareto Copula
	Bivariate Proportional Hazard Distribution
	Bivariate Proportional Hazard Normal Distribution
	Location-Scale Extension
	Parameter Estimation
	Monte Carlo Simulation

	Real Data Application
	Concluding Remarks
	Observed Fisher Information Matrix
	References

