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Abstract: Transfer learning (TL) hopes to train a model for target domain tasks by using knowledge
from different but related source domains. Most TL methods focus more on improving the predictive
performance of the single model across domains. Since domain differences cannot be avoided, the
knowledge from the source domain to obtain the target domain is limited. Therefore, the transfer
model has to predict out-of-distribution (OOD) data in the target domain. However, the prediction
of the single model is unstable when dealing with the OOD data, which can easily cause negative
transfer. To solve this problem, we propose a parallel ensemble strategy based on Determinantal
Point Processes (DPP) for transfer learning. In this strategy, we first proposed an improved DPP
sampling to generate training subsets with higher transferability and diversity. Second, we use the
subsets to train the base models. Finally, the base models are fused using the adaptability of subsets.
To validate the effectiveness of the ensemble strategy, we couple the ensemble strategy into traditional
TL models and deep TL models and evaluate the transfer performance models on text and image data
sets. The experiment results show that our proposed ensemble strategy can significantly improve the
performance of the transfer model.

Keywords: transfer learning; ensemble strategy; determinantal point processes; domain adaptation

MSC: 68T01

1. Introduction

Although traditional machine learning has a performance advantage in applications
with rich annotation data and has been successfully applied in many applications [1,2],
its performance is limited in applications with little annotation data. In addition, tradi-
tional machine learning is limited by the assumption that the training and test data obey
independent identical distributions. This assumption does not hold in many real-world
applications [3,4], such as medical image analysis, autonomous driving, etc.

A better solution to the above problem is transfer learning (TL), which aims to borrow
knowledge from different but related source domains to train a transfer model for the target
task [3,5]. It tries to achieve models with the ability to learn by analogy, e.g., the skill of
learning to ride a bicycle can be used to learn to ride a motorcycle, and the ability to learn to
play the piano can be used to learn to play the guitar. Existing TL methods can be divided
into four types, namely instance-based [6,7], feature-based [8,9], model-based [10,11], and
deep learning-based [12,13].

Most TL approaches focus on reducing inter-domain differences to extract more useful
shared knowledge for target domain task and thus increase the transferability of the
model. However, they ignore the limitations of using single transfer model. Because the
differences between the source and target domains cannot be completely avoided, the
shared knowledge extracted from the source domain is limited. The single transfer model
trained based on the knowledge is often unstable when dealing with out-of-distribution
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(OOD) data. This may lead to negative transfer. In addition, ensemble learning has been
successfully applied to traditional machine learning models to improve the robustness of
the models, but has received less attention in transfer learning.

For transfer learning tasks, in addition to considering the diversity of instances, the
transferability of the instance is more important due to the distribution difference between
source and target domains. The existing submodular function methods [14,15] do not
guarantee that the selected subsets are suitable for the target domain, which can lead to
negative transfer of the trained model.

To solve these problems, we propose a novel parallel ensemble strategy based on
improved Determinantal Point Processes (DPP). The DPP provides a class of precise prob-
abilistic models for sample selection problems [16,17]. In the strategy, we first measure
the transferability of instances in source domain based on evidence theory and use the
transferability to rewrite the correlation matrix of DPP. It makes the training subset obtained
by DPP sampling highly adaptable with respect to the target domain. Second, the base
transfer models are trained based on the subsets. Finally, we calculate weights using the
adaptability of subsets to ensemble the base models. In addition, the proposed ensemble
strategy is independent of the transfer algorithm, and it can be used as a general ensemble
strategy. The contributions are summarized as follows.

• Designing an ensemble strategy with Determinantal Point Processes, which enhance
transfer performance and stability of models in cross domain.

• Extending the DPP with transferability and diversity to make it suitable for transfer
learning.

• The ensemble strategy can be seen as a generic technique, which can be applied to
different transfer algorithms.

The paper is organized as follows. Section 2 introduces related work. Section 3 intro-
duces the ensemble strategy based on DPP. Section 4 presents the experimental results to
validate that the proposed ensemble strategy is effective to improve the performances of
multiple kinds of transfer learning methods. The conclusion is given in Section 5.

2. Related Work

According to a literature survey [2,3,18], most previous transfer learning (TL) methods
can be organized into instance-based methods, feature-based methods, classifier-based
methods, and deep learning-based methods.

In instance-based methods, most methods aim to estimate the instance weight by
feature distribution matching across different domains. Jiang and Zhai [19] proposed an
intuitive instance weighted method, which calculates the distribution difference between
source and target instances by four parameters. Dai et al. [6] proposed a TrAdaBoost to tune
instance weights based on a Boosting algorithm. In [20,21], the authors utilize the kernel
mean matching (KMM) to calculate the weight for reducing the difference between source
domain and target domain. Long et al. [22] proposed the Transfer Joint Matching (TJM)
method by minimizing the maximum mean discrepancy (MMD). Yan et al. [23] proposed a
weighted maximum mean discrepancy (WMMD) for transfer learning.

In feature-based methods, a feature transformation strategy is often adopted in transfer
learning. It transforms each original feature into a new feature representation for transfer
learning. The objective is to learn a new feature representation with some distribution
matching metrics between source and target domains. Pan and Yang [18] firstly intro-
duced MMD (maximum mean discrepancy) to design a transfer method called the transfer
component analysis (TCA). Further improving the MMD, Long et al. [24] designed joint
distribution adaptation (JDA), which measures the difference of joint distribution between
domains. Gong et al. [25] proposed a geodesic flow kernel (GFK) based on manifold
learning. Sun et al. [26] proposed a correlation alignment (CORAL) for transfer learning.

The classifier-based methods focus on classifier adaptation. Yang et al. [27] modi-
fied the support vector machine so that it can be adapted to the transfer learning task.
Duan et al. [28] proposed a multiple kernel learning (MKL) for transfer learning. Based on
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MKL, Duan et al. proposed the DTSVM [29] and DTMKL [10]. Long et al. and Cao et al.
designed ARTL [30] and DMM [31] by manifold regularization in model training.

In deep learning-based method, the fine-tuning pre-trained strategy has become a
common strategy in transfer learning [12,32]. It utilizes the well-trained models (CNN,
transform model and Bert model) on a large dataset (e.g., ImageNet) as the base and uses
target domain to fine-tune weights. In addition, there are also some deep migration models
designed based on adding constraints on domain differences in the loss function, such
as coupled approximation neural network [33], joint adaptation network [34], manifold
embedded distribution alignment [35], normalized squares maximization [36], and multi-
representation adaptation network [37].

3. Ensemble Strategy Based on DPP Sampling

In this section, we first improve the DPP sampling and apply sampling with DPP to
generate subsets from source domain. Second, we train the base model for the target domain
based on the selecting of the subsets. Finally, we combine the models using weight, in which
the weight of the base model is computed by the adaptability of subsets. For clarity, the
notations are summarized in Table 1.

Table 1. Notations used in this paper.

Notation Description

Ds, Dt source domain, target domain
xs, xt instance of source/target domain

Φt evidence set
Φt

k evidence subset
Ω label spcae⊕

Dempster’s combinational rule
K kernel function

φ(·) feature mapping function
m(·) mass function
d(·) distance function

L correlation matrix

3.1. Subset Generation Based on DPP Sampling

As shown in Figure 1, the key step of the ensemble strategy is to generate the subsets
with high transferability and diversity from the source domain using DPP sampling. DPP
provides a class of precise probabilistic models for sample selection problems. In DPP,
the probabilities of sampling are computed by correlation the matrix of items. In transfer
learning, the performance of the ensemble model is determined by high transferability
and diversity of subsets. To ensure that DPP sampling can increase the transferability and
diversity of subsets, we reformulate the correlation matrix with the measure of samples
transferability and diversity based on evidence theory.

Figure 1. Ensemble strategybBased on DPP sampling for transfer learning.
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To achieve this, we first revisit the selection of the subset as a stochastic sampling
process according to DPP and reformulate the selection of the source domain subset with
DPP sampling based on the transferability and diversity.

Give a source domain Ds, we randomly select a subset Cs ∈ Ds from source domain
by probability. The probability P(Cs) of subset Cs selection is determined by transferability
and diversity of source domain instance xs in Cs.

P(CS) ∼ P(trans f erability(CS), diversity(CS)), (1)

Definition 1. DPP Sampling. Given the source domain Ds = {xs
1, xs

2, · · · , xs
N}, a sampling

possibility of each instance in source domain Ds can be defined as a point process P . The probability
of a subset CS being selected is

P(CS) = det(KCS), (2)

where K is referred as the marginal kernel. KCS =
[
Kij
]

xs
i ,xs

j∈CS denotes the sub-matrix indexed

by the source domain instances in CS and det(KCS) is the determinant of the sub-matrix. For the
empty set, det(KCS) = 1.

In fact, the marginal kernel K is difficult to construct. Referring to [38], L-ensemble
can be used to construct DPP for the sampling of source domain samples.

Definition 2. DPP Sampling with L-ensemble. A sampling possibility of each instance in source
domain Ds can be calculated by a point process P with L-ensemble. The probability of a subset CS

being selected is

P(CS) =
det(LCS)

det(L + I)
, (3)

where L is a N × N positive semidefinite matrix indexed by instances of Ds, I is the N × N
identity matrix and det(L + I) = ∑

C′⊆Ds
det(LC′) is used to normalize the matrix determinants

to probabilities.

Definition 3. k-DPP Sampling with L-ensemble. Suppose the sampled subset CS consists of k
source domain instances, the sampling probability of subset CS can be written as,

Pk(CS) =
det(LCS)

∑
C′⊆Ds∧|C′ |=k

det(LC′)
(4)

where
∣∣CS
∣∣ = k and LCS is the k× k submatrix of L indexed by CS.

Suppose correlation matrix L =
N
∑

i=1
λivivT

i , λi refers to the eigenvalue corresponding

to the eigenvector vi, the probability of selecting a k-size subset CS is

Pk(CS) =
det(LCS)

∑
C′⊆C∧|C′ |=k

det(LC′)
=

∏ci∈CS λi

∑
C′⊆C∧|C′ |=k

{ ∏
cj∈C′

λj}
. (5)

In summary, the k-DPP sampling probability is determined by the correlation matrix
L. The different correlation matrices have different sampling properties. To ensure that the
subset of source domain is highly transferability and diversity, we redefine the matrix L in
Section 3.2.
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3.2. Correlation Matrix L Construction

In this section, we define the transferability m(Ω|xs
i ; Φ) and diversity s(xs

i , xs
j ) of

source domain instances and use them to rewrite the L-correlation matrix. Decomposing
the matrix L as a Gram matrix L = BT B, the probability of k-DPP sampling can be calculate
with the transferability m(Ω|xs

i ; Φ) and diversity s(xs
i , xs

j ) [38]. Suppose each vector Bi in
B has the form of Bi = m(Ω|xs

i ; Φ) · φi , in which φi is the normalized feature vector. the
matrix L can be defined as

L =
[
Lij
]

1≤i,j≤N (6)

where Lij = m(Ω|xs
i ; Φ)φT

i · φjm(Ω|xs
j ; Φ), and the inner product φT

i · φj ∈ [−1,+1] indi-
cates the similarity between source domain instance xs

i and xs
j , we rewrite

L =
{

Lij = m(Ω|xs
i ; Φ)s(xs

i , xs
j )m(Ω|xs

j ; Φ)|1 ≤ i ≤ N, 1 ≤ j ≤ N
}

. (7)

where s(xs
i , xs

j ) = φT
i · φj.

3.2.1. Transferability Measure of Instance with Evidence Theory

The evidence theory is a generalization of Bayesian theory to subjective probabili-
ties [39–41]. In the evidence theory, a mass function m(·) is constructed to assign masses to
the elements of the power set of a frame of discernment Ω. For classification tasks, Ω is the
class label space and the mass function is used to assign masses to the subsets of class labels.
For the mass assigned on the whole label space m(Ω), it means that all the class labels have
the same possibility and implies the probability of knowing nothing (ignorance) [42].

In the transferred classification with domain adaptation, when data comes from source
domain and the label space comes from target domain, the mass assigned on the whole label
space represents the transferability of source domain data with respect to the classification
on target domain. Based on this, we define the transferability measure for transfer learning
as follows.

Suppose that Ω is the label space of the target domain, a data instance xs comes from
source domain, Φt is an evidence set from the target domain for xs, the transferability of
the source domain data instance xs about the classification on target domain is

trans f erability = m(Ω|xs; Φt). (8)

m(Ω|xs; Φt) denotes the ignorance probability of xs about the classes of target domain
under a given evidence set Φt.

Next, we introduce how to formulate m(Ω|xs; Φt). First, we construct the evidence set
Φt according to the target domain Dt. Given a source-domain instance xs, its evidence set
Φt can be written as a neighborhood surrounding xs.

Φt = {xt
1, xt

2, · · · , xt
n}, (9)

where xt
i comes from the target domain.

To achieve this, we design the objective function of obtaining an evidence set as follows:

Φt = arg min
Φ

∥∥∥∥∥φ(xs)− 1
|Φ| ∑

xt∈Φ
φ(x)

∥∥∥∥∥
2

H
, (10)

where φ is the feature mapping. The optimal evidence set Φt can be solved by the greedy
algorithm on the labeled target domain.
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Second, we further decompose Φt and refine the mass function to implement the un-
certainty measure. Given k classes, the evidence set Φt can be divided into different classes,

Φt =
{

Φt
1, Φt

2, . . . , Φt
k
}

, (11)

where Φt
k = {xt

k1, . . . xt
kl} is the evidence subset in which all the target domain instances

have the class label yk, and xt
kl is the lth element in the evidence subset.

Through decomposing the evidence set, we can adopt Dempster’s rule to refine the
ignorance mass m(Ω|x; Φt) with multilevel evidence as

m(Ω|xs; Φt) =
⊕

Φt
k⊆Φt

m(Ω | xs; Φt
k) =

⊕
Φt

k⊆Φt

⊕
xt⊆Φt

k

m
(
Ω | xs; xt), (12)

in which the orthogonal sum
⊕

denotes the combination operator of Dempster’s rule [43].
The ignorance mass m(Ω|xs; xt) is calculated by

m
(
Ω|xs; xt

i
)
= 1− exp

(
−d
(
xs, xt

i
))

, (13)

where d(·) is defined as

d
(
xs, xt

i
)
= K(xs, xs)− 2K

(
xs, xt

i
)
+ K

(
xt, xt

i
)
, (14)

where K(·) is the radial basis function kernel.

3.2.2. Diversity Measure of Instance

According to the characteristics of k-DPP sampling, if s(xs
i , xs

j ) measures the similarity
of two instances, this can make it less probable that similar source domain instances are
selected at the same time, thus ensuring the diversity of the selected subset. To achieve this,
we adopt Normalized Mutual Information (NMI) to measure the similarity between two
instances xs

i and xs
j .

s = NMI(xs
i , xs

j ). (15)

3.3. Model Ensemble

Algorithm 1 lists the main steps of the ensemble strategy. According to the improved
DPP sampling, we can obtain m subsets T = {T1, T2, · · · , Tm} from source domain Ds. For
each subset Ti, we train a base model fi for the target domain. By repeating the process, we
can get a set of base models F = { f1, f2, · · · , fm}. We combine the base model by

f (x) =
|T|

∑
i=1

wi fi(x), (16)

where wi is the weighting and represents the transferability of the base model with respect
to the target domain. To achieve this, we calculate the weight wi using the adaptability of
the subset with respect to the target domain. It can be defined as

wi =
Ent(Ti)

∑
|T|
i=1 Ent(Ti)

, (17)

where Ent(Ti) is the adaptability of the subset about the target domain task. The adaptabil-
ity is defined as

Ent(Ti) = −
1
|Ti| ∑

x∈Ti

(m(Ω|x)). (18)

In addition, the proposed ensemble strategy is a general technology and the existing
transfer learning (TL) methods can be embedded into it.
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Algorithm 1 Ensemble strategy based on DPP sampling for transfer learning.

Input: Source domain Ds, target domain Dt;
Output: f (x) = ∑

|T|
i=1 wi fi(x);

1: for each xs in Ds do
2: Construct an evidence set Φ for xs with labeled data instances in target domain Dt;
3: Decompose the evidence set Φ and formulate the mass function m(·|xs; Φ) with

multilevel evidences;
4: Hierarchically compute m(Ω|xs; Φ) to measure the transferability of xs for transfer

learning according to formula (12);
5: end for
6: Construct the similarity matrix of source domain instances using formula (15);
7: Construct correlation matrix L of DPP based on transferability and diversity;
8: for each i in |T| do
9: Decompose L matrix into eigenvalues and eigenvectors;

10: Calculate the probability P(Ti) of selecting a subset Ti;
11: Generate the subset Ti according to DPP sampling probability P(Ti);
12: Calculate the transferability of subset Ti as weights wi according to formula (17);
13: Train the transfer model fi based on Ti;
14: end for
15: return f (x) = ∑

|T|
i=1 wi fi(x).

4. Experiments

To verify the effectiveness of the ensemble strategy, we couple the ensemble strategy
into traditional TL methods and deep transfer methods, and test the transfer performance of
the TL model on various kinds of data, including Amazon product reviews, Office+Caltech
data sets and Office-Home data sets. The descriptions of the data sets are listed below.

4.1. Data Sets

Amazon product reviews is a cross-domain text data set for transfer learning evalua-
tion [44]. The dataset includes four domains: books (denote B), dvds (denote D), electronics
(denote E) and kitchen appliances (denote K). In each domain, there are 1000 positive re-
views and 1000 negative ones. In this data set, we can construct 12 cross-domain sentiment
classification tasks: B− D, B− E, B− K, D− B, D− E, D− K, E− B, E− D, E− K, K− B,
K − D, B− E, where the word before ‘−’ corresponds with the source domain and the
word after ‘−’ corresponds with the target domain.

The Office+Caltech data set is generated from Office and Caltech-256, which are
introduced by Gong et al. [25], which are two benchmark data sets widely adopted for visual
domain adaptation evaluation. It consists of 4563 images with 31 categories. Caltech-256 is
a standard database for object recognition. It consists of 30,607 images with 256 categories.
In experiments, we use the smaller Office+Caltech data sets. It includes four domains:
Amazon (denotes A), Webcam (denotes W), DSLR (denotes D), and Caltech-256 (denotes
C). The dataset includes 10 classes. There are 8 to 151 samples per category per domain,
and 2533 images in total. In this dataset, we can construct 9 cross-domain classification
tasks: A− C, A−W, C− A, C−W, D− A, D− C, D−W, W − A, W − C.

The Office-Home data set has been created to evaluate domain adaptation algorithms
for object recognition using deep learning [13]. It consists of images from four different
domains: Artistic images (denotes A, paintings, sketches andor artistic depictions), Clip
Art (denotes C, clipart images), Product images (denotes P, images without background)
and Real-World images (denotes R, regular images captured with a camera). The data set
has a total of 15,500 images, and for each domain, the data set contains images of 65 object
categories found typically in Office and Home settings. In this data set, we construct 12
cross-domain classification tasks: A− C, A− P, A− R, C− A, C− P, C− R, P− A, P− C,
P− R, R− A, R− C and R− P.
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4.2. Experimental Study on Traditional Transfer Learning Methods

In the experiment, to verify the effectiveness of our proposed ensemble strategy, we
couple it with 9 traditional Transfer Learning (TL) methods and compare the classification
results with and without the ensemble strategy. In addition, we compare different ensemble
strategies where the base models are trained by subsets of the source domain, which are
separately generated by improved DDP sampling, information gain, and random sampling.
The traditional TL methods include: transfer component analysis (TCA) [18], correlation
alignment (CORAL) [26], geodesic flow kernel (GFK) [25], joint distribution adaptation
(JDA) [24], kernel mean matching (KMM) [20], scatter component analysis (SCA) [45],
Balanced Distribution Adaptation (BDA) [46], Manifold Embedded Distribution Alignment
(MEDA) [35], and practically easy transfer learning (EasyTL) [47]. For any transfer learning
(TL) method ’∗’, we briefly denote the ensemble strategy based on improved DPP sampling
as ’E− ∗’, based on information gain (IG) as “I − ∗" and based on random sampling as
’R− ∗’. The abbreviations are summarized in Table 2.

Table 2. Abbreviations and descriptions used in the experiments.

Abbreviation Description

E− ∗ The ensemble strategy with improved DPP sampling
I − ∗ The ensemble strategy with information gain
R− ∗ The ensemble strategy with random sampling

4.2.1. Experimental Setting

In each cross-domain text sentiment classification task, we apply the Bert model to
extract the feature of the review texts [48]. In each cross-domain image classification task,
we utilize deep convolutional activation features (DeCAF6 features) to represent all the
images, in which the outputs from the 6th layer in the deep convolutional neural network are
transformed to 4096 dimensional features [35]. In DPP sampling and random sampling, the
number of subsets is set to 10. The size of the subset is 70% of the size of the source domain.

4.2.2. Test on Text Data

In this testing, we construct 12 cross-domain sentiment classification tasks from Ama-
zon product reviews, i.e, B− D, B− E, B− K, D− B, D− E, D− K, E− B, E− D, E− K,
K− B, K− D, B− E.

As shown in Table 3, we perform the TL methods with and without ensemble strategy
to generate the sentiment classification results, respectively. It is clear to observe that
TL methods with our proposed ensemble strategy achieve the best performance on all
cross-domain text classification tasks. Specifically, for the TL methods, using the ensemble
strategy improves the accuracies of cross sentiment classifications by 4.45%, 4.39%, 3.42%,
4.07%, 6.46%, 4.47%, 2.65%, 3.18%, respectively. In addition, we can find that the KMM
method achieves the largest performance improvement 6.46% by embedding the ensemble
strategy. The reason is that KMM is sensitive to domain differences and is unstable for
predicting out of distribution (OOD) data. Using the ensemble strategy can enhance the
performance of KMM when predicting OOD data. These results clearly demonstrate that
our ensemble strategy can improve the performance of the single model on the text data set.

To further validate the effectiveness of our proposed method on text data set, we
compare different ensemble strategies where the base models are trained by subsets of
source domain, which are separately generated by improved DDP sampling, information
gain, and random sampling. The classification accuracies are listed in Table 4. In random
sampling, we randomly select 10 subsets to train the base models. The size of the subset is
70% of the size of the source domain.
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Table 3. Cross-domain sentiment classification accuracies of text dataset generated by the traditional
TL methods with and without ensemble strategy.

Methods B − D B − E B − K D − B D − E D − K E − B E − D E − K K − B K − D K − E Ave acc

TCA 77.76 75.54 78.74 76.05 76.38 79.34 73.35 73.66 79.74 73.05 77.26 78.74 76.63
E-TCA 81.21 83.31 84.79 81.95 82.41 82.13 76.60 79.89 82.57 78.10 79.28 80.80 81.09

CORAL 70.76 66.21 70.00 73.05 68.70 71.96 69.90 65.71 72.35 67.45 68.61 75.68 70.03
E-CORAL 75.79 73.48 74.77 76.57 73.51 74.25 76.90 71.15 75.36 73.52 71.35 76.44 74.42

GFK 75.76 72.00 73.50 71.85 68.96 75.70 72.60 71.11 76.20 73.75 74.21 76.58 73.52
E-GFK 78.00 77.39 76.42 79.13 74.98 79.02 77.23 73.41 78.05 75.69 75.08 78.91 76.94

JDA 77.26 75.93 78.09 77.65 76.03 78.29 72.65 72.16 80.14 75.05 77.56 80.32 76.76
E-JDA 80.09 82.14 84.23 80.31 81.71 81.99 77.38 77.71 82.88 80.05 79.81 81.39 80.81

KMM 83.76 79.02 75.90 80.50 68.51 76.45 73.70 77.86 80.39 74.25 75.96 85.00 77.61
E-KMM 85.98 81.44 85.47 85.22 82.79 85.82 79.00 84.08 84.52 82.59 84.16 87.78 84.07

BDA 75.01 73.04 75.75 74.55 71.80 75.30 71.40 71.61 78.49 71.15 71.66 76.93 73.89
E-BDA 79.22 77.51 82.41 80.01 78.06 78.26 75.70 74.93 81.76 77.11 74.88 80.44 78.36

SCA 79.41 78.82 78.14 74.95 77.53 76.00 73.15 71.86 79.79 73.70 75.71 82.41 76.79
E-SCA 83.52 79.88 79.80 82.01 78.30 78.15 76.45 74.80 82.22 74.89 79.00 84.33 79.45

EasyTL 76.76 76.08 82.14 83.90 80.91 85.22 76.40 72.61 86.37 73.25 70.86 75.93 78.37
E-EasyTL 79.44 83.06 83.21 85.09 85.66 85.00 78.13 77.77 86.93 77.49 77.81 79.03 81.55

Table 4. Cross-domain sentiment classification accuracies of the text dataset generated by ensemble
strategy with improved DPP sampling (“E− ∗”), information gain (“I − ∗”) and random sampling
(“R− ∗”).

Methods B − D B − E B − K D − B D − E D − K E − B E − D E − K K − B K − D K − E Ave acc

R-TCA 75.29 79.14 78.06 75.10 74.89 77.61 71.25 74.19 77.20 74.33 77.00 79.204 76.11
I-TCA 77.12 80.45 81.11 77.09 76.54 77.00 73.62 75.04 77.68 75.76 78.4 78.93 77.40

E-TCA 81.21 83.31 84.79 81.95 82.41 82.13 76.60 79.89 82.57 78.10 79.28 80.80 81.09

R-CORAL 69.12 63.44 71.93 76.25 70.98 70.67 71.18 65.45 73.14 65.71 65.47 76.84 70.01
I-CORAL 69.89 64.38 72.05 77.22 71.14 72.53 71.97 68.39 74.26 66.83 67.92 76.42 71.08
E-CORAL 75.79 73.48 74.77 76.57 73.51 74.25 76.90 71.15 75.36 73.52 71.35 76.44 74.42

R-GFK 75.92 73.17 71.29 70.22 68.91 73.49 71.89 72.94 75.82 72.97 75.04 76.40 73.17
I-GFK 77.04 73.9 73.81 74.62 70.46 75.18 73.55 72.87 76.34 74.11 74.23 75.99 74.34
E-GFK 78.00 77.39 76.42 79.13 74.98 79.02 77.23 73.41 78.05 75.69 75.08 78.91 76.94

R-JDA 77.80 76.47 79.14 75.03 76.45 77.36 71.08 71.78 79.94 76.17 77.14 80.02 76.53
I-JDA 77.95 78.76 81.89 77.64 76.09 79.09 73.4 73.03 80.16 77.38 77.69 79.79 77.74
E-JDA 80.09 82.14 84.23 80.31 81.71 81.99 77.38 77.71 82.88 80.05 79.81 81.39 80.81

R-KMM 80.74 78.77 74.12 80.06 69.21 75.82 72.69 77.37 81.02 75.48 75.11 82.45 76.90
I-KMM 82 79.82 79.67 82.61 74.76 79.37 72.7 79.63 81.97 79.58 78.18 82.77 79.42
E-KMM 85.98 81.44 85.47 85.22 82.79 85.82 79.00 84.08 84.52 82.59 84.16 87.78 84.07

R-BDA 73.52 72.13 74.21 72.78 70.71 73.48 72.05 70.40 78.25 70.74 72.09 75.00 72.95
I-BDA 74.97 74.44 76.51 74.39 74.16 75.44 74.19 72.41 78.97 73.96 72.95 76.13 74.88
E-BDA 79.22 77.51 82.41 80.01 78.06 78.26 75.70 74.93 81.76 77.11 74.88 80.44 78.36

R-SCA 80.20 76.24 75.33 71.27 78.14 75.91 72.41 72.19 78.80 73.55 75.39 80.83 75.86
I-SCA 79.88 77.41 76.03 75.19 77.23 76.07 74.08 71.98 80.8 73.26 75.9 81.51 76.61
E-SCA 83.52 79.88 79.80 82.01 78.30 78.15 76.45 74.80 82.22 74.89 79.00 84.33 79.45

R-EasyTL 76.80 76.11 81.74 83.47 81.20 84.31 75.24 73.37 86.57 72.50 72.11 76.54 78.33
I-EasyTL 75.91 79.38 80.15 84.11 82.35 83.79 76.04 72.54 85.15 74.28 74.05 76.87 78.72
E-EasyTL 79.44 83.06 83.21 85.09 85.66 85.00 78.13 77.77 86.93 77.49 77.81 79.03 81.55

As shown in Table 4, the average classification accuracies of TL methods with the
proposed ensemble strategy on 12 tasks are 81.09%, 74.42%, 76.94%, 80.81%, 84.07%, 78.36%,
79.45%, 81.55%, respectively. Comparing with the ensemble strategy based on random
sampling, the improved DPP sampling improves the accuracies of different cross-domain
sentiment classification tasks by 4.98%, 4.41%, 3.77%, 4.28%, 7.17%, 5.41%, 3.59%, and
3.22%. Comparing with the ensemble strategy based on information gain, the improved
DPP sampling improves the accuracies of different cross-domain sentiment classification
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tasks by 3.69%, 3.34%, 2.60%, 3.07%, 4.65%, 3.48%, 2.84%, and 2.83%, especially TCA, JDA,
and BDA, in which the maximum mean discrepancy metric is adopted to minimize the
differences between the source domain and target domain achieve greater classification
improvements. Based on the reported experimental results, our proposed ensemble strategy
with DPP sampling is effective and can significantly enhance the transfer performance of
TL methods on text data.

4.2.3. Test on Image Data

In the test, we further validate that the proposed ensemble strategy on image data.
The image cross-domain classification tasks are constructed from the Office+Caltech data
set, including A− C, A−W, C− A, C−W, D− A, D− C, D−W, W − A, W − C.

We perform TL methods with and without the ensemble strategy to generate the image
classification results, respectively. The results are shown in Table 5, in all the cross-domain
image classification tasks, our proposed ensemble strategy achieves better performance
than the single TL methods. The TL methods with the ensemble strategy gain a significant
performance improvement of 4.96%, 2.34%, 4.79%, 5.16%, 3.52%, 2.28%, 2.06%, and 3.65%
compared to the single TL methods.

Table 5. Cross-domain classification accuracies of Office+Caltech image data sets generated by the
traditional TL methods with and without ensemble strategy.

Methods A − C A − W C − A C − W D − A D − C D − W W − A W − C Ave acc

TCA 75.69 75.59 89.77 74.92 89.24 73.46 98.30 80.38 73.64 81.22
E-TCA 83.41 81.17 90.14 89.78 90.28 79.55 98.41 84.51 78.37 86.18

CORAL 83.7 74.58 89.98 78.64 85.70 79.16 99.66 77.14 74.98 82.62
E-CORAL 84.75 81.79 91.25 81.43 87.88 81.52 97.10 82.33 76.57 84.96

GFK 76.85 68.47 88.41 80.68 85.80 74.09 98.64 75.26 74.8 80.33
E-GFK 81.76 80.25 90.02 86.66 88.78 80.04 98.87 82.37 77.35 85.12

JDA 75.07 70.85 89.67 80.00 88.31 73.91 98.31 80.27 72.93 81.04
E-JDA 82.72 81.17 92.45 87.33 89.91 78.51 98.39 86.85 78.43 86.20

KMM 83.08 74.24 91.23 80.34 84.34 71.86 98.98 71.81 67.14 80.34
E-KMM 84.81 78.88 92.35 83.47 85.52 78.16 98.00 80.70 72.77 83.85

BDA 83.79 74.92 89.46 82.03 88.83 81.30 99.31 80.85 76.49 84.11
E-BDA 86.51 76.68 91.94 86.59 88.78 83.22 97.02 86.70 80.08 86.39

MEDA 87.71 85.76 91.07 84.07 92.90 87.89 98.98 93.21 86.73 89.81
E-MEDA 87.73 89.63 92.61 92.71 93.81 89.97 98.80 93.67 87.93 91.87

EasyTL 81.30 72.88 90.50 74.91 83.00 73.64 93.22 74.53 67.31 79.03
E-EasyTL 83.09 80.54 90.58 81.25 85.79 79.11 91.66 79.58 72.54 82.68

To further validate the effectiveness of our proposed ensemble strategy on the image
data set, we compare different ensemble strategies where the base models are trained by
subsets of source domain, which are separately generated by improved DDP sampling,
information gain, and random sampling. As shown in Table 6, using the ensemble with
DPP sampling, the TL methods achieve the average classification accuracies of 86.18%,
84.96%, 85.12%, 86.20%, 83.85%, 86.39%, 91.87%, and 82.68% on the cross-domain image
data sets, respectively. In contrast to the ensemble strategy based on random sampling, the
ensemble strategy with DPP sampling gains the significant performance improvements of
6.24%, 2.94%, 5.27%, 5.78%, 4.10%, 2.97%, 2.99%, and 4.19%. Comparing with the ensemble
strategy based on information gain, the improved DPP sampling improves the accuracies
of different cross-domain image classification tasks by 4.78%, 2.13%, 3.23%, 4.01%, 2.83%,
2.03%, 2.47%, and 3.53%. The experimental results reveal that our proposed ensemble
strategy with DPP sampling can improve the transfer performance of TL methods on image
data sets.
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Table 6. Cross-domain classification accuracies of Office+Caltech image data sets generated by
ensemble strategy with improved DPP sampling (“E− ∗”), information gain (“I − ∗”) and random
sampling (“R− ∗”).

Methods A − C A − W C − A C − W D − A D − C D − W W − A W − C Ave acc

R-TCA 72.87 74.82 86.38 75.10 88.17 70.05 97.28 81.19 73.61 79.94
I-TCA 75.94 76.33 86.91 76.71 88.53 73.42 97.11 82.4 75.27 81.40
E-TCA 83.41 81.17 90.14 89.78 90.28 79.55 98.41 84.51 78.37 86.18

R-CORAL 83.80 74.22 87.29 78.37 84.96 80.01 97.21 78.00 74.31 82.02
I-CORAL 83.86 76.14 87.94 79.15 85.29 79.88 97.72 80.34 75.1 82.82
E-CORAL 84.75 81.79 91.25 81.43 87.88 81.52 97.10 82.33 76.57 84.96

R-GFK 77.02 70.21 86.39 80.22 84.07 74.34 97.21 75.52 73.69 79.85
I-GFK 78.34 75.75 87.56 82.44 86.59 76.64 97.19 77.78 74.7 81.89
E-GFK 81.76 80.25 90.02 86.66 88.78 80.04 98.87 82.37 77.35 85.12

R-JDA 75.43 71.43 88.53 79.29 87.19 72.46 96.17 80.04 73.15 80.41
I-JDA 77.95 73 89.39 81.48 87.47 74.86 97.09 82.66 75.81 82.19
E-JDA 82.72 81.17 92.45 87.33 89.91 78.51 98.39 86.85 78.43 86.20

R-KMM 83.22 74.63 90.17 78.78 83.79 71.11 96.74 70.04 69.26 79.75
I-KMM 83.46 75 89.61 80.35 83.91 73.71 97.56 75.52 70.06 81.02
E-KMM 84.81 78.88 92.35 83.47 85.52 78.16 98.00 80.70 72.77 83.85

R-BDA 83.33 73.81 87.35 81.97 88.91 80.05 96.95 81.04 77.38 83.42
I-BDA 84.08 74.87 88.23 84.66 87.52 81.45 96.07 83.52 78.81 84.36
E-BDA 86.51 76.68 91.94 86.59 88.78 83.22 97.02 86.70 80.08 86.39

R-MEDA 87.77 85.21 90.55 84.83 91.10 86.64 95.80 92.68 85.36 88.88
I-MEDA 87.14 84.24 91.32 87.49 91.93 87.26 96.9 92 86.37 89.41
E-MEDA 87.73 89.63 92.61 92.71 93.81 89.97 98.80 93.67 87.93 91.87

R-EasyTL 80.74 71.44 89.77 73.82 83.79 71.55 92.56 74.18 68.56 78.49
I-EasyTL 81.49 73.57 89.91 74.01 83.17 74.37 90.09 75.52 70.23 79.15
E-EasyTL 83.09 80.54 90.58 81.25 85.79 79.11 91.66 79.58 72.54 82.68

4.3. Experimental Study on Deep Transfer Model

Besides the traditional transfer learning methods, we also verify that our proposed
ensemble strategy is effective to improve the deep transfer models. In the experiment, we in-
tegrate the ensemble strategy to 5 deep transfer models, including deep adaptation network
(DAN) [49], deep version of manifold embedded distribution alignment (DANN) [50], joint
adaptation network (JAN) [34], multi-representation adaptation network (MRAN) [37],
and deep subdomain adaptation network (DSAN) [51]. We construct 12 cross-domain
classification tasks from Office-Home data set.

The experiment consists of two parts: (1) Comparing the performance of the deep
transfer model with and without the ensemble strategy. (2) We compared different ensemble
strategies, in which the base model is trained using improved DPP sampling, information
gain and random sampling to generate subsets of source domain, respectively. The results
are listed in Tables 7 and 8. For any transfer learning (TL) method ‘∗’, we briefly denote
the ensemble strategy based on improved DPP sampling as ‘E− ∗’, based on information
gain (IG) as “I − ∗” and based on random sampling as ‘R − ∗’. The abbreviations are
summarized in Table 2.

4.3.1. Experimental Setting

We implement the experiments using PyTorch of version higher than 1.3 over a cluster
of NVIDIA A100 GPUs. For the model training, we use the stochastic gradient descent
(SGD) methods to optimize the network. In DPP sampling and random sampling, the
number of subsets is set to 10. The size of the subset is 70% of the size of source domain.

4.3.2. Experimental Results

As shown in Table 7, using the ensemble strategy improves the classification accuracies
of deep transfer model by 2.01%, 1.75%, 2.35%, 1.69%, 1.74%, respectively, compared with
the single model. The performance of our proposed ensemble strategy is better than the
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compared methods on most of the cross domain classification task, which indicates that
our proposed ensemble strategy can be integrated into deep transfer models and further
improve their performance.

Table 7. Cross-domain classification accuracies of Office-Home image data sets generated by deep
transfer methods with and without ensemble strategy.

Methods A − C A − P A − R C − A C − P C − R P − A P − C P − R R − A R − C R − P Ave acc

DAN 43.60 57.00 67.90 45.80 56.50 60.40 44.00 43.60 67.70 63.10 51.50 74.30 56.28
E-DAN 45.96 60.05 69.72 48.51 58.91 62.04 46.33 44.86 68.19 64.51 53.60 76.77 58.29

DANN 45.60 59.30 70.10 47.00 58.50 60.90 46.10 43.70 68.50 63.20 51.80 76.80 57.63
E-DANN 45.6 61.13 72.15 47.9 60.51 61.84 48.88 46.09 70.19 66.65 52.09 79.41 59.37

JAN 45.90 61.20 68.90 50.40 59.70 61.00 45.80 43.40 70.30 63.90 52.40 76.80 58.31
E-JAN 46.61 64.08 70.53 52.94 62.66 61.99 48.85 47.39 73.64 65.55 54.10 79.56 60.66

MRAN 53.80 68.60 75.00 57.30 68.50 68.30 58.50 54.60 77.50 70.40 60.00 82.20 66.23
E-MRAN 56.66 70.14 77.63 59.46 69.78 70.04 59.14 55.07 77.93 73.58 62.21 83.31 67.91

DSAN 54.40 70.80 75.40 60.40 67.80 68.00 62.60 55.90 78.50 73.80 60.60 83.10 67.61
E-DSAN 56.17 72.68 75.96 62.26 69.77 69.89 64.44 58.83 79.84 74.09 62.34 85.92 69.35

To further validate the effectiveness of our ensemble strategy on the deep transfer
model, we compare different ensemble strategies where the base models are trained by
subsets of source domain, which are separately generated by improved DDP sampling,
information gain, and random sampling. Table 8 list the results. We can observe that our
proposed ensemble strategy adopting DPP sampling achieves superior performance than
the random sampling. The average accuracies of ensemble strategy with DPP sampling
are higher by 2.17%, 2.58%, 2.98%, 3.22%, and 2.40% than the ensemble strategy with
random sampling on each task, respectively. Comparing with ensemble strategy based on
information gain, the improved DPP sampling improves the accuracies of different cross-
domain image classification tasks by 1.81%, 2.19%, 2.11%, 2.12%, and 1.74%. These results
further validate the effectiveness of our proposed strategy in improving the performance
of deep transfer models.

Table 8. Cross-domain image classification accuracies of Office-Home image data sets generated by
ensemble strategy with improved DPP sampling (“E− ∗”), information gain (“I − ∗”) and random
sampling (“R− ∗”).

Methods A − C A − P A − R C − A C − P C − R P − A P − C P − R R − A R − C R − P Ave acc

R-DAN 43.67 55.20 66.38 47.78 56.31 61.85 43.48 43.84 65.50 61.49 52.71 75.19 56.12
I-DAN 43.74 56.22 67.42 46.94 56.79 61.7 44.51 43.26 66.62 62.36 52.42 75.8 56.48
E-DAN 45.96 60.05 69.72 48.51 58.91 62.04 46.33 44.86 68.19 64.51 53.60 76.77 58.29

R-DANN 45.69 57.11 67.44 45.83 58.61 58.37 46.73 42.19 69.46 62.74 52.69 74.57 56.79
I-DANN 45.38 57.78 68.74 46.22 58.89 59.61 46.96 44.46 69.07 62.85 51.14 75.1 57.18
E-DANN 45.60 61.13 72.15 47.90 60.51 61.84 48.88 46.09 70.19 66.65 52.09 79.41 59.37

R-JAN 43.89 60.01 66.31 49.4 59.35 61.88 44.67 45.19 70.45 61.19 51.40 78.37 57.68
I-JAN 44.1 62.36 67.58 50.29 60.79 61.46 45.58 46.42 70.86 62.28 52.25 78.66 58.55
E-JAN 46.61 64.08 70.53 52.94 62.66 61.99 48.85 47.39 73.64 65.55 54.10 79.56 60.66

R-MRAN 53.33 68.10 73.96 55.37 66.43 67.17 56.39 52.25 75.41 68.88 58.04 81 64.69
I-MRAN 54.92 68.8 74.52 56.38 67.92 68.36 57.47 53.39 76.18 70.08 59.53 81.97 65.79
E-MRAN 56.66 70.14 77.63 59.46 69.78 70.04 59.14 55.07 77.93 73.58 62.21 83.31 67.91

R-DSAN 54.51 70.17 74.78 61.28 66.2 66.68 62.90 54.35 78.77 72.35 59.91 81.55 66.95
I-DSAN 55.28 70.64 74.82 61.68 68.22 67.19 63.82 55.46 79.04 73.14 60.01 82.05 67.61
E-DSAN 56.17 72.68 75.96 62.26 69.77 69.89 64.44 58.83 79.84 74.09 62.34 85.92 69.35

5. Conclusions

In this article, we proposed a novel ensemble strategy based on improved DPP sampling.
Specifically, we first rewritten the correlation matrix of DPP with transferability and diversity.
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Second, we use the improved DPP sampling to select k subsets from the source domain.
Finally, we train the base models with the selected subsets and using the transferability
of subsets to ensemble the base models. The proposed strategy is a general preprocessing
technique. Through coupling the ensemble strategy into the transfer learning model, we can
improve the robustness and generalization of the transfer model. Experiments on text and
image data sets validate that our proposed ensemble strategy improves the performances of
various kinds of transfer learning methods. In our work, the ensemble strategy based on
improved DPP is limited by instance transferability, which can affect the performance of
the ensemble strategy if there are huge differences between the source domain and target
domain. Moving forward, we plan to extend the ensemble strategy to handle the transfer
learning with multiple source domains and the domain adaptation on open sets.
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