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Abstract: The impact of the COVID-19 epidemic on the mental health of elderly individuals is
causing considerable worry. We examined a deep neural network (DNN) model to predict the
depression of the elderly population during the pandemic period based on social factors related
to stress, health status, daily changes, and physical distancing. This study used vast data from the
2020 Community Health Survey of the Republic of Korea, which included 97,230 people over the
age of 60. After cleansing the data, the DNN model was trained using 36,258 participants’ data and
22 variables. We also integrated the DNN model with a LIME-based explainable model to achieve
model prediction explainability. According to the research, the model could reach a prediction
accuracy of 89.92%. Furthermore, the F1-score (0.92), precision (93.55%), and recall (97.32%) findings
showed the effectiveness of the proposed approach. The COVID-19 pandemic considerably impacts
the likelihood of depression in later life in the elderly community. This explainable DNN model can
help identify patients to start treatment on them early.

Keywords: deep learning; deep neural network; LIME; explainable AI; depression; post-COVID-19
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1. Introduction

As the infectious disease caused by the coronavirus (COVID-19) rapidly spread around
the world, in March 2020 the World Health Organization declared a new infectious disease
pandemic [1]. COVID-19 is a respiratory infection syndrome caused by infection with the
SARS-CoV-2 virus. COVID-19 is spread through droplets from coughing or sneezing or by
touching objects contaminated with the virus and then touching the eyes, nose, or mouth.
However, COVID-19 is a high-risk infectious disease that causes severe respiratory illnesses,
such as pneumonia, or death. In particular, it is perilous for people over 65 with underlying
medical conditions, such as high blood pressure [2], diabetes [3], chronic cardiovascular
disease [4], and obstructive pulmonary disease [5]. To protect against COVID-19, limiting
face-to-face contact with others is the best way to reduce the spread of the virus.

However, the elderly are suddenly cut off from the outside environment and social
relationships due to social distancing [6]. As the COVID-19 situation continues, older
adults experience more limitations in going out and in daily activities, and depression
increases as a result [7]. In particular, since the elderly are classified as a high-risk group
for infection, they are undoubtedly more susceptible to exposure to the COVID-19 virus [8].
They are also restricted from daily activities because they are more fearful of COVID-19
than populations such as adolescents and adults. However, while containment of the
physical environment is an effective way to prevent infectious diseases, social distancing
increases psychological problems for which older people need to receive emotional support.
Anxiety, stress, and life activities were all identified as contributing reasons for geriatric
depression during the COVID-19 epidemic [9]. However, there is a lack of research on how
the spread of COVID-19 affects the elderly regarding their subjective health, stress levels,
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daily routines, and social distancing. Therefore, we suggest a deep neural network (DNN)
model to predict the depression of the elderly during the pandemic period based on social
factors related to stress, health status, daily changes, and physical distancing.

Artificial intelligence (AI) algorithms are frequently viewed as mysterious black boxes
that make illogical choices. The idea that a machine-learning model and its output can be
explained in a way that “makes sense” to a human being at an acceptable level is known as
explainability (also called “interpretability”) [10]. While they may be less effective, some
classes of algorithms, such as more conventional machine-learning algorithms, tend to be
easier to understand. While some are more efficient than others, such as deep-learning sys-
tems, they are still challenging to understand. The ability to better understand AI systems
is still a topic of active research. There are numerous approaches for making the output of
a black-box classification model more interpretable [11–14]. One strategy is providing a
global explanation by cataloging traits that are often more significant when generating a
prediction [15]. However, it is preferable to have an instance-specific justification in health-
care. Consequently, patient can receive more tailored treatment as a result of increased
autonomy in decision making.

In order to obtain an explanation for one particular occurrence, any black-box classifi-
cation model may be utilized with a newly created framework known as local interpretable
model-agnostic explanation (LIME) [16]. This method works by providing local justification
for the classification and identifying the fewest characteristics that maximally contribute to
the likelihood of a single-class result for a single observation. Despite the fact that LIME
has previously been used with healthcare classification models, nothing is known about
how well healthcare professionals can understand and accept LIME explanations.

In this paper, we provide a combination model that combines a LIME-based explain-
ability model with a deep-learning model. The integrated model can explain a DNN
classifier’s predictions understandably and accurately. Additionally, our explainability
model may help psychologists and psychiatrists identify depression in seniors following
the COVID-19 epidemic. The construction of this study is as follows: Chapter 2 explains the
sources of data, analyzed variables, and model evaluation and explains the procedure of
the model development. Chapter 3 compares the results of the developed prediction model
with those of ML classifier models, such as logistic regression, gradient-boosting classifier,
extra-gradient-boosting classifier, K-neighbors classifier, and support vector machine with
kernel radial basis function. Lastly, chapter 4 presents directions for future studies.

2. Materials and Methods
2.1. Materials

This study used raw data from the Korea Centers for Disease Control and Prevention’s
2020 Community Health Survey. Since 2008, the local social health survey has been con-
ducted at public health centers across the country with the goal of identifying local health
statistics in order to establish and evaluate local health and medical plans, as well as to ask
health-related questions at the regional level. As of July 2020, the target population resided
in the Republic of Korea. The survey’s target population was adults aged 19 and up who
lived in a chosen sample household at the time of the survey. A detailed description of
sampling in the Community Health Survey is described in Kang et al. [17]. The community
health survey was conducted by a trained researcher visiting the sample households di-
rectly from 16 August to 31 October 2020. The researcher went to 18 different locations to
conduct face-to-face computer-assisted personal interviewing consisting of 142 questions.
In the 2020 Community Health Survey, 229,269 people took part, with 97,230 of them being
over the age of 60. However, 36,258 people with the presence of 22 variables were used for
the final analysis.

2.2. Data Prepocessing

The dataset needed to be preprocessed before being fitted into the model. The dataset
was preprocessed in this study to handle missing values, rebalance variables, and encode
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labels. In order to handle missing values, rows with missing values and columns with 50%
null values were removed from the dataset. The dataset was reduced to 42,788 samples and
22 variables after removing missing values. As the target variable, we chose the feature
called “dep,” which meant “experienced depression” (yes or no).

Only 2501 of the 42,788 samples in the dataset experienced depression, whereas the
total number of individuals without experiences of depression was 40,287 (94% of the target
feature). As a result, we had to rebalance the dataset using both the oversampling and
undersampling methods. The minority samples’ size was increased at random by 30% of
the majority goal, and then the majority samples’ size was lowered until the number of
majority samples was equal to twice the minority in the current dataset. After rebalancing
the dataset, the number of “experienced depression” samples was 12,086, and the number
of “no experience with depression” samples was 24,172. Finally, the dataset had a total of
36,258 samples with 22 variables encoded, as shown in Table 1.

Table 1. Variables and their descriptions.

Variables Description Field Type

covid_car Changes in public transportation
use since COVID-19 Categorical: increase, similar, decrease

life_satis_N COVID-19 life satisfaction Categorical: dissatisfied, satisfied
sex Gender Categorical: male, female
dong_ty_code Urban residence type Categorical: city, rural

edu_N Educational level
Categorical: elementary school graduation or
less, middle school graduation, high school
graduation, college graduations or higher

income_N Household income Categorical: less than 1 million, 1–3 million,
3–5 million, 5 million or more

smoke_N Smoking Categorical: current smoker, past smoker,
non-smoker

exer_N Moderate physical activity per week Categorical: none, yes
Sub_health_N Subjective health Categorical: good, average, bad

anx_dis Concerned about COVID-19
infection Categorical: yes, neutral, no

anx_death Concerned about COVID-19 death Categorical: yes, neutral, no

anx_sham Concerned about criticism
regarding COVID-19 Categorical: yes, neutral, no

anx_exp Concerned about COVID-19
infection for vulnerable people Categorical: yes, neutral, no

anx_econ Concerned about economic damage
from COVID-19 Categorical: yes, neutral, no

covid_phy Change in number of encounters
since COVID-19 Categorical: increase, similar, decrease

covid_sleep Change in sleep-time activity after
COVID-19 Categorical: increase, similar, decrease

quarantine Isolation (hospitalization) due to
COVID-19 Categorical: yes, no

help People who can be asked for help Categorical: none, 1–2 people, 3–5 people,
6 people or more

age_60n Age Categorical: 60–74 years, 75 years and older

stress Subjective stress level Categorical: very much, much, feeling
a little, rarely

indigence Recipient of basic livelihood Categorical: current recipient, past recipient, no
dep Experience of depression Categorical: yes, no

2.3. Development of Deep Neural Network Model

In this study, we used a Keras sequential model wrapped in a SciKeras API to create a
DNN model. In the Python programming language, Keras is a high-level neural network
API [18]. SciKeras is an easy-to-use API for working with Keras deep neural networks
similar to Scikit-Learn API in machine learning (ML). This was accomplished by wrapping
Keras with a Scikit-Learn interface. Then, we could use these wrapped instances as Scikit-
Learn ML model instances and invoke methods such as fit(), predict(), and score(). The
functions of GridSearchCV() and predict_proba() were mainly what we needed to apply
for tuning hyperparameters and the LIME explanation in the following steps.
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The neurons in the human brain serve as the basis for DNN design. It is a deeper-
layered artificial neural network. When an artificial neural network, also known as a
feedforward neural network, has more than one hidden layer, it is referred to as being
“deep” [19]. The phrase can also refer to a graded structure in which the depth designates
the number of layers. The features computed in one hidden layer may be reused in
subsequent hidden layers by deep neural networks. With fewer weights and units, a deep
neural network (DNN) can approximate many natural functions by taking advantage of
the compositional structure in a function [20]. Similar to a lookup table, a shallow neural
network must piece together the function it approximates, whereas a deep neural network
can benefit from its hierarchical structure. By increasing the precision with which a function
can be approximated on a fixed budget of parameters, a more complex architecture can
improve generalization after learning new examples [20].

The architecture of a DNN model and the activation function to be utilized must be
decided before the model can be built. Therefore, a significant portion of deep learning
involves hyperparameter optimization. The reason for this is the complexity and diffi-
culty of configuring neural networks, which require setting a large number of parameters.
Additionally, training time for individual models can be increased.

In this work, we tuned the hyperparameters of the DNN model using the grid search
technique. Grid search is a method for optimizing model hyperparameters. This approach
is available in Scikit-Learn via the GridSearchCV class. We could also use GridSearchCV for
the Keras sequential model wrapped in SciKeras because the SciKeras API was similar to
Scikit-Learn. One model was then built and assessed using the GridSearchCV procedure for
each set of parameters. Each model was assessed using cross-validation, and we employed
5-fold cross-validation. We obtained the best model, which used three hidden layers, a
ReLU activation function for hidden layers, a Sigmoid activation function for the output
layer, a 0.5 dropout rate, an Adam optimizer with 0.001 of learning_rate, and a “binary
crossentropy” loss function, after tuning the DNN model’s hyperparameters, as shown in
Figure 1.
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Figure 1. Flowchart of the DNN model proposed in this study.

A rectified linear unit (ReLU) activation function was employed for hidden layers, as
already indicated. Any real value can be the input for a neuron with the ReLU activation
function, but a neuron can only become active when the input is larger than 0. However, the
Sigmoid function, which ranges from 0 to 1, makes it an excellent choice for output layers
in the context of binary classification. In order to complete the necessary preparations for
the model to learn, the dataset was split into two sets, one for training and one for testing,
with an 80:20 split, respectively.

2.4. Model Evaluation

Evaluating the effectiveness of the proposed DNN model against competing methods
for classification tasks is a crucial step after implementation. We used the loss function and
the accuracy score to assess the model’s effectiveness. In addition to accuracy, the most
well-known terms for a binary classification test include precision, recall, and F1-score, all
of which provide statistical measurement of a classifier model’s efficacy. The calculations
of the accuracy, precision, recall, and F1-scores are shown in Equations (1)–(4), respectively.

Accuracy = (Truepositive + Truenegative)/(Truepositive + Truenegative + Falsepositive + Falsenegative) (1)

Precision = Truepositive/(Truepositive + Falsepositive) (2)

Recall = Truepositive/(Truepositive + Falsenegative) (3)
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F1 score = 2 × (Precision * Recall) × (Precision + Recall) (4)

A loss function, sometimes called a cost function, is a statistical measure that considers
the degree of dissimilarity between a prediction and an actual value. As a result, we
can observe a model’s performance in more detail. Additionally, the test’s accuracy was
determined by its capacity to distinguish between depression and non-depression instances.
Calculating the proportion of true-positive and true-negative results in all the analyzed
cases was necessary to estimate the test’s accuracy. Meantime, precision was determined by
dividing the number of correctly identified positive samples by the total number of positive
samples. Precision gauges how accurately a sample is classified as positive by a model.
On the other hand, the recall was determined by dividing the total number of correctly
categorized positive samples by the overall number of positive samples. Recall gauges a
model’s capacity to identify positive samples. The more positive samples identified, the
larger the recall. Consequently, the F1-score equalized the weights of recall and precision
by being the harmonic mean of the two. It is useful when both recall and precision are
important. In addition to performance evaluation based on the aforementioned measures,
the model’s improvement percentage was also computed. The improvement was calculated
by comparing the accuracy results from the DNN and SVM models.

2.5. Developing Model Explanations Using LIME

Explaining the results of a machine-learning (ML) system constitutes establishing a
connection between the inputs to a system and the results the system produces in a way that
humans can understand. This subject matter has become quite important in recent years [21].
Modern machine-learning systems (such as deep-learning-based prediction models) include
highly parametric designs that make it challenging to understand the reasoning behind a
model’s conclusions. In this study, we used local interpretable model-agnostic explanations
(LIME) to develop explanations for the output of the model, indicating the correlation
between depression and other variables.

Using the LIME technique, any black-box machine-learning model can be approx-
imated with a local, interpretable model to account for each distinct prediction. The
inspiration for the concept came from a 2016 study in which the authors perturbed the
initial datapoints, fed them into a black-box model, and then observed the related results.
The algorithm then weighted the additional datapoints in relation to the original point. In
the end, the dataset was fitted using a surrogate model of linear regression utilizing the
sample weights. Each raw datapoint could then be explained using the trained explanation
model. More precisely, we let Ω(g) be a measure of complexity. In the classification, f(x)
represented the probability (or binary indicator) that x belonged to a certain class. In order
to determine the locality around x, we further used πx(z) as a closeness measure between
an instance of z to x. Let L(f, g, πx) be a measure of how inaccurately g approximated f in
the locale denoted by πx. We needed to keep Ω(g) low enough to be interpretable by people
while minimizing L(f, g, πx) to guarantee local fidelity and interpretability. As a result, a
LIME explanation was obtained: ξ(x) = argming L(f, g, πx) + Ω(g). This formulation
could be used with different explanation families G, fidelity functions L, and complexity
measures Ω [22].

3. Results
3.1. Performance Evaluation of DNN Classifier Model

Fifty epochs of DNN model training were performed. Over the epochs, the classifi-
cation model’s accuracy steadily improved, scoring consistently greater than 89% for the
last five epochs. The loss function, which showed how well the algorithm modeled the
data over 50 iterations, also showed a steady decline, which means it did an excellent job of
classifying.

After the results of the epochs were gathered, a model evaluation was also generated.
This assessment further evaluated the classifier using precision, recall, and F1-score. The
outcomes demonstrated that the DNN classifier’s performance was excellent. When de-
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termining whether or not older people had depression, the classifier had an accuracy rate
of 89.92%. The model also achieved an F1-score of 0.92, a precision value of 93.55%, and
a recall value of 97.32%. This shows that this model had a low true-positive rate when it
came to diagnosing real cases of depression but a better ability to classify real cases of not
being depressed.

The outcomes of the application of the DNN model were compared with several ML
models in order to validate the performance of the suggested classifier. ML classifier models
such as logistic regression (LR), gradient-boosting classifier (GBM), extra-gradient-boosting
classifier (XGB), K-neighbors classifier (KNN), and support vector machine (SVM) with
kernel radial basis function were compared with the performance of the DNN model in
this study (RBF). The accuracy, precision, recall, and F1-scores of the ML models compared
to the DNN model are displayed in Table 2, which shows that the DNN model improved
the accuracy of classifying depression in the elderly in the range from 4% to 13%.

Table 2. Comparison with ML models.

LR GBM XGB KNN SVM DNN

Accuracy 76% 77% 84% 85% 77% 89.92%
Precision 74% 75% 82% 82% 75% 93.55%

Recall 69% 71% 81% 85% 71% 97.32%
F1-score 0.71 0.72 0.81 0.83 0.72 0.92

Logistic regression = LR, gradient-boosting classifier = GBM, extra-gradient-boosting classifier = XGB, K-neighbors
classifier = KNN, support vector machine = SVM.

3.2. Evaluation of LIME-Based DNN Model

We chose a very complex instance to analyze in order to show how the LIME model
worked with the DNN model. A description of an older person’s experience with de-
pression is shown in Figure 2. Figure 2a summarizes the patient’s state and contributing
circumstances. The patient was a male between the ages of 60 and 74 with depression-
related symptoms, such as high stress levels, lack of support from others, low annual
income, and COVID-19 life dissatisfaction. Additionally, he was concerned about the
economic harm caused by COVID-19, as well as COVID-19 infection, COVID-19 death,
COVID-19 criticism, and COVID-19 infection of weaker people. Our DNN model predicted
that the patient would have severe depression. Figure 2b illustrates the LIME approach.
The blue bars show the states and variables that significantly contributed to the prediction’s
support, while the orange bars show the variables that contributed to the prediction’s
negation. According to the explanation, at the time of the prediction, stress, income, age,
COVID-19 life satisfaction, quarantine, moderate physical activity per week, concern about
COVID-19 infection, concern about COVID-19 death, concern about COVID-19 infection of
vulnerable people, concern about economic damage from COVID-19, changes in sleep-time
activity after COVID-19, smoking, concern about criticism regarding COVID-19, and the
amount of people who could be asked for help were the target’s main factors and states
that most contributed to the prediction.

We assessed the relative contributions of variables to the prediction of depression in
the elderly after applying LIME to all the testing data in case a person had depression.
With a weight of 17.7 + 0.01%, stress values contributed the most to model prediction,
while subjective health (Sub_health_N) contributing 6.7 + 0.1%. Gender (sex), changes in
sleep-time activity after COVID-19 (covid_sleep), and age (age_60n) were responsible for
5.2%, 4.8%, and 4.1% of the variance, respectively. As seen in Figure 3, the top five variables
were responsible for almost 40% of the prediction.
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4. Discussion
4.1. Risk of Depression

Depression is a phenomenon that manifests itself noticeably in instances of disaster or
calamity [23]. Because infectious diseases, such as COVID-19, have higher morbidity and
mortality rates than natural catastrophes or acts of terrorism, they have greater negative
effects on the overall populace. Researchers from all over the world are gravely concerned
about the rise in mental health problems in both vulnerable communities and the general
population. Wang et al. (2020) [24] evaluated psychological impact, stress, anxiety, and
depression in a study about the general population’s mental health during the COVID-19
outbreak in China. Regarding anxiety and depression, 8.1% of respondents to the initial poll
reported moderate-to-severe stress. In a different study from China, Liu et al. (2020) [25]
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examined 253 people from one of the areas most impacted by the COVID-19 pandemic and
found that 7% of them had post-traumatic stress symptoms one month after the pandemic’s
breakout. According to Özdin et al. (2020) [26], who examined the elements that contributed
to depression in the Turkish population during the COVID-19 pandemic, 45.1% of the
population and 23.6% of the population, respectively, scored over the depression cut-off
mark and with depression, respectively. In line with this study’s concerns, Hyland at
al. (2020) [27] found that the general Irish population’s 65-year-old and older residents
experienced the highest levels of anxiety specifically related to the COVID-19 pandemic.

Previous studies have shown that the impact of COVID-19 has significantly impacted
the mental health of people in different countries. As pandemics of new infectious diseases
bring intensive infectious disease management policies, such as isolation, quarantining,
social distancing, and cohort blockading, at the national level, the levels of social and
economic anxiety in the local community may be greater than that of natural disasters.
In particular, the elderly are more likely than younger individuals to experience major
mental health problems [23]. These affect physical health, as well as the quality of life,
of these individuals. Thus, it is essential to preserve individuals’ mental health and to
develop psychological interventions that can improve the mental health of vulnerable
groups during the COVID-19 pandemic. However, not much extensive epidemiological
research is available on elderly community residents’ anxiety and mental health during
the COVID-19 epidemic. Longitudinal studies are necessary to determine the traits of
depression focusing on the high-risk COVID-19 depression group reported in this study.

4.2. Proposed Evaluation Framework

The accuracy of the DNN model was 89.92%, higher than that of the LR, GBM, XGB,
KNN, and SVM models, which varied from 4% to 13%. This result supports the idea that
a DNN is a good classifier for large amounts of data. The dataset used for this research
had a very imbalanced initial set of class labels. Additionally, it had a sizable amount of
missing values. Although random oversampling and random undersampling were utilized
to circumvent this, it was apparent that these dataset restrictions could lead to bias. The
fact that 66.67% of the samples were accepted as non-depression was likely why the test
performance of our best model performed better for the larger non-depression group than
for the smaller depression group.

This research offered a methodology for objectively assessing LIME with healthcare-
related black-box machine-learning models. The interdependence of LIME’s performance
with that of a machine-learning model must be considered when assessing LIME or other
model-agnostic interpretability methodologies. This is significant because the end user
can consider LIME and a machine-learning model to be one system. This means that, if
a model performs poorly, LIME may be rated unfairly. The most obvious answer to this
problem is to improve a model’s performance in order to reduce its detrimental impact on
LIME evaluation. We employed the GridSearchCV approach in this study to tune the DNN
model’s hyperparameters. In order to improve the performance of the model, we plan to
test other hyperparameter-tuning techniques in the future, such as Bayesian, hyperband,
and hyperopt.

According to our LIME study, stress, subjective health, sex, changes in sleep-time
activity after COVID-19, and age (in the order listed) made the greatest contributions to the
prediction. In actual life, depression quite likely results from these conditions [28–31]. As a
result, our DNN model could be utilized as a tool to help psychologists or psychiatrists
treat patients, as well as to predict a patient’s status using large-scale surveys.

4.3. Limitations

LIME has many benefits. It is flexible enough to be utilized in various machine-learning
models, simple to deploy, quick to compute, and good at giving concise explanations that
appeal to physicians on the go. However, there are some restrictions that make up the
majority of the current LIME research. First, LIME’s explanations are not always stable or
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consistent; this is because different samples are used, or different boundaries are drawn
around which local datapoints are included for a local model. Furthermore, LIME’s
explanations of a simple, local linear model may not necessarily be consistent with the
model’s global logic for complicated datasets. Additionally, it is unclear how to choose
the kernel width or the number of features for a local model, which forces a compromise
between the complexity and interpretability of a local model.

Moreover, this study used raw data from the Korea Centers for Disease Control and
Prevention’s 2020 Community Health Survey. It is difficult to perform diagnostic tests
for depression in large-scale epidemiological studies. For this reason, our study, which
analyzed secondary data, used depression experience as an outcome variable. In future
studies, we intend to include a medical diagnosis of depression as a variable in the outcome.

In the current study, our DNN model’s hyperparameters were optimized to achieve the
greatest performance. Ensemble learning, however, can combine several individual models
to obtain a generalized performance [32]. As a result, we intend to improve our model
in the future to increase its reliability for mental healthcare by developing an explainable
deep-ensemble-learning model.

5. Conclusions

In conclusion, this study evaluated a LIME-based deep neural network model to
explain depression and non-depression predictions produced by a black-box dee-learning
model. The outcomes provided a reliable DNN model with good assessment scores in
accuracy, precision, recall, and F1-score. The LIME explanation allowed us to observe
that this DNN model made decisions comparable to those of humans based on extremely
logical factors. More research into how to improve LIME, as well as characteristics that may
increase its trust among physicians, are critical for the widespread adoption of black-box
machine-learning-predictive technologies in healthcare.
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