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Abstract: Irregularity indices are graph-theoretic parameters designed to quantify the irregularity in
a graph. In this paper, we study the practical applicability of irregularity indices in QSPR modeling
of the physicochemical and quantum-theoretic properties of compounds. Our comparative testing
shows that the recently introduced IRA index has significant priority in applicability over other
irregularity indices. In particular, we show that the correlation potential of the IRA index with certain
physicochemical and quantum-theoretic properties such as the enthalpy of formation, boiling point,
and π-electron energies is significant. Our QSPR modeling suggests that the regression models with
the aforementioned characteristics such as strong curve fitting are, in fact, linear. Considering this the
motivation, the IRA index was studied further, and we provide analytically explicit expressions of
the IRA index for certain graph operations and compositions. We conclude the paper by reporting
the conclusions, implications, limitations, and future scope of the current study.

Keywords: irregularity index; enthalpy of formation; boiling point; π-electronic energy; benzenoid
hydrocarbon; QSPR model; transformation graph; derived graph

MSC: 05C92; 05C09; 05C76

1. Introduction
1.1. Background

The retrieval of the biological, quantum-theoretic, and physicochemical characteristics
of a compound from its structure (chemical) is a contemporary technique in reticular chem-
istry. Though the idea seems self-explanatory, understanding this connection, of retrieving
the information of a physicochemical property from its structure, up to its full potential, is
rather challenging [1]. One of the frequent challenges is the unavailability of experimental
data, which are normally required in order to unveil the aforementioned connection. Thus,
in order to elucidate this relationship of the structural dependence of a physicochemical
feature, diverse research has been performed to estimate the missing data (e.g., normal
boiling point, heat of formation); see, for instance, [2–6]. This research direction aiming
at the investigation of predictive potentials frequently employs diverse methods such
as machine learning [7], among others. More modern approaches such as graph signal
processing (GSP) [8] are being formulated to address this old problem.

One of the contemporary tools that is frequently employed in order to predict the
diverse physicochemical features of a chemical compound is provided by molecular de-
scriptors. Their strength lies in developing QSPR/QSAR models, which are regression
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models describing the so-called relationship between a chemical property and its molecular
structure. These molecular descriptors have been proposed at an accelerating rate; see, for
instance, [9–11]. Recently, Vladimirova et al. [12] employed QSPR modeling in correlating
the sensitivity (potentiometric) of sensorial membranes. Topological descriptors are an
important family of descriptors lying in the bigger class of molecular descriptors. They are
numerical quantities transforming a chemical structure into a mathematical real number.
Chemical graph theory, in this aspect, converts a chemical compound into a chemical graph
by constructing a correspondence between non-hydrogen atoms (respectively bonds) and
vertices (respectively edges). Diverse algorithms are then employed to transform such
mathematical point–line objects to graph numerical invariants, also known as topological
descriptors. Much of the available research [13–17] shows that these graph-based invari-
ants, which are easily computable, efficiently encrypt a significantly higher level of the
structural information of chemical compounds. Recently, Azadifar et al. [18] applied the
graph-theoretic relevancy–redundancy gene selection method to cancer diagnosis.

1.2. Related Work

Based on their mathematical definitions, these graph-based topological descriptors/
indices are classified into diverse groups, of which degree-based topological indices (DIs)
have significantly more accuracy; see [19]. For the set of simple connected graphs ∑, an ir-
regularity index IR(Γ) is a map IR : ∑→ R+ ∪ {0} such that IR(Γ) = 0 ⇐⇒ Γ is regular.
The motivation for defining an irregularity index was purely mathematical, and it was
the quantification of the irregularity in a graph. Therefore, most of the studies conducted
on irregularity indices are pure mathematical. For instance, in 2005, Gutman et al. [20]
conducted a comparison between different irregularity indices for chemical trees. In the
same year, Hansen and Mélot [21] found sharp upper and lower bounds on Albertson’s
irregularity index. Zhou and Luo [22], in 2008, further improved the extremal results on
Albertson’s irregularity index, which were previously published by Hansen and Mélot [21].
Luo and Zhou [23] found sharp bounds on Albertson’s irregularity index of trees and uni-
cyclic graphs with the given matching number. Mukwembi, in 2013 [24], studied maximally
irregular graphs with respect to Albertson’s irregularity index. Réti and Dimitrov [25]
studied Albertson’s irregularity index in bidegreed graphs. Dimitrov and Réti [26] studied
graphs whose Albertson’s irregularity indices are the same. Abdo et al. [27] studied the
structural sensitivity of some well-known irregularity indices. Réti [28], in 2019, studied
a relation between irregularity indices such as the σ index and the main eigenvalues of
a graph. Other mathematical results on the irregularity indices can be found in [29–36].
Importantly, all of these results have primarily contributed to graph theory, but are not
applicable to graph theory.

Irregularity indices for different graph operations have been studied since their con-
ception. Abdo and Dimitrov [37] derived sharp bounds on Albertson’s irregularity index
of product graphs such as the strong graph, the Cartesian graph, corona graph, and join
graph, among others. For the same product graphs, Abdo and Dimitrov [38] derived sharp
bounds on the total irregularity index. Abdo and Dimitrov [39] derived exact expressions
of the total irregularity index of certain derived graphs. De et al. [40] conducted the study
of Abdo and Dimitrov [39] for Albertson’s irregularity index. It is worth mentioning that all
of these results on composite and product graphs have been published with no motivation
from the application perspective.

Since the motivation of defining irregularity indices was purely mathematical, re-
searcher have investigated their practical applicability to other scientific disciplines Réti
et al. [41] studied the relation between various degree-based irregularity indices for isomeric
octanes and showed that the correlation between irregularity indices and the physicochem-
ical properties of alkanes is, in general, weak. Recently, in 2022, Emadi Kouchak et al. [42]
presented an application of irregularity indices in computer science by employing graph
irregularity indices in quantifying network structural similarities and dissimilarities. Table
1 presents an overview of current methods employing irregulaity indices.
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It is noteworthy to mention that none of the literature on irregularity indices presents
methods for their calculation on large-sized graphs. In Section 3, we present a two-step
procedure and the MatLab code to calculate the commonly occurring irregularity indices
for large-sized graphs.

Table 1. Some methods studying irregularity indices.

Method Description

Gutman et al. [20] Restricted to the class of chemical trees.

Hansen and Mélot [21] Lacks applicability. Restricted to Albertson’s index.

Zhou and Luo [22] Lacks applicability. Restricted to Albertson’s index.

Mukwembi in 2013 [24] Lacks applicability. Restricted to Albertson’s index.

Réti and Dimitrov [25] Lacks applicability. Restricted to bidegreed graphs.

Dimitrov and Réti [26] Lacks applicability. Restricted to Albertson’s index.

Abdo et al. [27] Lacks applicability.

Réti [28] Lacks applicability

Abdo and Dimitrov [37] Applicable to Albertson’s index only.

Abdo and Dimitrov [39] Applicable to Albertson’s index only.

De et al. [40] Applicable to Albertson’s index only.

Réti et al. [41] Chemical applicability restricted to isomeric octanes.

Emadi Kouchak et al. [42] Applications to computer science.

1.3. Motivation

Based on related work, in this subsection, we outline the limitations of existing meth-
ods, which, in turn, motivated this study:

• Almost all of the results published on irregularity indices are purely mathematical
without discussing their applicability.

• Calculating an irregularity index for graphs on a large number of vertices is rather
difficult. No computational technique has been proposed so far to tackle this issue.

• The correlation ability of irregularity indices for predicting physicochemical properties
of isomeric octanes, i.e., alkanes, is rather poor.

• No criteria have been published to address the proliferation of newly introduced
irregularity indices.

• Mathematical results on composition and product graphs have only been studied for
Albertson’s irregularity and the total irregularity indices, which have no practical
applicability, except the quantification of the irregularity in a graph.

• There has not been any study published that reflects on how to employ mathematical
results on composition and product graphs for practical applications.

1.4. Contributions

Based on the limitations mentioned in the previous subsection, we outline the scientific
contributions made in this work:

• A computational technique is proposed to compute irregularity indices, which effi-
ciently works for large-sized graphs.

• We conduct a comparative testing of commonly occurring irregularity indices for the
predicting physicochemical and quantum-theoretic properties of benzenoid hydrocar-
bons.

• The IRA index outperforms all the irregularity indices by correlating significantly
well with the quantum-theoretic and fairly well with the physicochemical properties.
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• Having potential applications in QSPR modeling, the IRA index is further studied for
various transformation and derived graphs.

• We devise a method of employing mathematical results on transformation and de-
rived graphs in correlating the physicochemical and quantum-theoretic properties of
derivative hydrocarbons.

1.5. Organization of the Paper

This paper is organized as follows: Section 2 presents the definitions and preliminary
results required in later sections. Section 3 conducts a comparative testing of commonly
occurring irregularity indices for predicting the physicochemical and quantum-theoretic
properties of benzenoid hydrocarbons. Sections 4 and 5 present the results on the IRA
index of transformation graphs and derived graphs, respectively. In Section 6, we put
forward a method of employing mathematical results on transformation and derived
graphs in correlating the physicochemical and quantum-theoretic properties of derivative
hydrocarbons. Section 7 concludes the paper by presenting the conclusions, implications,
limitations, and future scope.

2. Mathematical Preliminaries

A simple graph Γ is a mathematical tuple comprising a set of nodes V and a set E ⊆ (V
2)

of links connecting some or all nodes. The multiplicity ε =| E | (respectively υ =| V |)
is known as the size (respectively order). Two vertices y, z ∈ V(Γ) (respectively edges
e, f ∈ E(Γ)) are said to be adjacent if yz ∈ E(Γ) (respectively e and f share a common
end-vertex). In that case, we denote adjacency with y ∼ z or e ∼ f . A vertex y ∈ V(Γ)
and an edge e ∈ E(Γ) are called incident and written as y ∼ e if y is one of the end-
vertices of e. The degree/valency d(y) of y ∈ V is the cardinality of the neighborhood
N(y) := {z ∈ V : y ∼ z} of y. Let µy be the average of the degrees of the neighbors of
vertex y ∈ V(Γ). A graph for which every cycle is of an even length is known as bipartite.
A graph is called bipartite if it contains no cycle of an oddlength. A graph embeddable in
the Euclidean space R2 is called planar; otherwise, it is called non-planar.

A topological invariant IR(Γ) of graph Γ is said to be an irregularity index if IR(Γ) ≥ 0
and IR(Γ) = 0 if and only if Γ is regular. Based on its defined structure, an irregularity
index could either be eigenvalue-based or degree-based.

The first-ever proposed irregularity index is eigenvalue-based and known as the
Collatz–Sinogowitz irregularity index [43], which determines the irregularity of a graph.
For a υ-vertex ε-edge graph Γ(υ, ε), it is defined as follows:

CS(Γ) = λ(Γ)− 2ε

υ
,

where λ is the spectral radius of the adjacency matrix of Γ. Because of the lesser com-
putational complexity, irregularity indices are mostly degree-based. In 1992, Bell [44]
introduced a degree-based irregularity index known as the variance of degree Var(Γ),
which has significant application in chemistry. For a (υ, ε) graph Γ, it is defined as

Var(Γ) =
1
υ ∑

y∈V(Γ)
(d(y))2 − 1

υ2

(
∑

y∈V(Γ)
d(y)

)2

=
1
υ ∑

y∈V(Γ)
(d(y))2 −

(
2ε

υ

)2

.

Using the variance, Réti [28] introduced the IRV irregularity index defined as IRV(Γ) =
υ2Var(Γ). In 1997, Albertson introduced another degree-based irregularity index known as
Albertson’s irregularity index. It is defined as

AL(Γ) = ∑
yz∈E(Γ)

| d(y)− d(z) | .

By extending Albertson’s irregularity index, Gutman et al. [34] introduced the sigma index.

σ(Γ) = ∑
yz∈E(Γ)

(d(y)− d(z))2.
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A topological index T is simply a map T : ∑→ R. Topological indices have important
applications in chemistry. The Randić connectivity index belongs to the oldest class of
descriptors. Randić [45] introduced this topological descriptor in 1975. For a graph Γ, it is
defined as

R(Γ) = ∑
yz∈E(Γ)

1√
d(y)d(z)

.

Another Randić-type invariant [46] is the reciprocal Randić index, defined as:

RR(Γ) = ∑
yz∈E(Γ)

√
d(y)d(z).

Besides the Randić index, some of the other degree-based topological indices include
the first and second Zagreb indices [47,48] and the forgotten topological index [49]. For a
graph Γ, they are defined as follows:

M1(Γ) = ∑
yz∈E(Γ)

(d(y) + d(z)) = ∑
y∈V(Γ)

(d(y))2, M1(Γ) = ∑
yz∈E(Γ)

(d(y)d(z)),

F(Γ) = ∑
yz∈E(Γ)

[
(d(y))2 + (d(z))2

]
= ∑

y∈V(Γ)
(d(y))3.

Using the Randić index of a graph Γ i.e., R(Γ), Li and Gutman in their book [46]
introduced a novel irregularity index called the IRA index. For an υ-vertex graph Γ, it is
defined as

IRA(Γ) = υ− 2 ∑
yz∈E(Γ)

1√
d(y)d(z)

= υ− 2R(Γ).

Note that the definition of the IRA index suggests that any result on the Randić connectivity
index gives a directed result on IRA. The Randić index has been studied so extensively
that there is a whole book written on this graphical parameter. We refer the reader to the
book [46] and the survey [50] on the Randić index. Estrada [51] reintroduced the IRA
index from the Randić index and presented their applications to complex biomolecular
networks. Later on, Estrada [52] also presented applications of the IRA index in quantifying
network heterogeneity. Gutman [53] showed that, just like the transformation of the Randić
index into the IRA index, other degree-based indices can also be transformed into their
corresponding irregularities. Some computational results on the IRA index of chemical
and neural networks are reported by Kang et al. [54] and Chu et al. [55].

Other irregularity indices for a (υ, ε)-graph, which we use in the comparative testing,
are listed below:

IR1(Γ) = F(Γ)− 2ε

υ
M1(Γ), IR2(Γ) =

√
M2(Γ)

ε
− 2ε

υ
,

IRF(Γ) = F(Γ)− 2M2(Γ), IRFW(Γ) =
IRF(Γ)
M2(Γ)

,

IRB(Γ) = M1(Γ)− 2RR(Γ), IRC(Γ) =
RR(Γ)

ε
− 2ε

υ
,

IRDIF(Γ) = ∑
yz∈E(Γ)

∣∣∣∣d(y)d(z)
− d(z)

d(y)

∣∣∣∣, IRG(Γ) = ∑
yz∈E(Γ)

|ln d(y)− ln d(z)|,

IRLU(Γ) = ∑
yz∈E(Γ)

|d(y)− d(z)|
min(d(y), d(z))

, IRLF(Γ) = ∑
yz∈E(Γ)

|d(y)− d(z)|√
d(y), d(z)

,
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IRLA(Γ) = ∑
yz∈E(Γ)

2
|d(y)− d(z)|
d(y) + d(z)

, IRD(Γ) = ∑
yz∈E(Γ)

ln[1 + |d(y)− d(z)|],

IRGA(Γ) = ∑
yz∈E(Γ)

ln

(
d(y) + d(z)
2
√

d(y)d(z)

)
, IRM1(Γ) =

1
υ ∑

y∈V(Γ)
µy −

2ε

υ
,

IRM2(Γ) = ∑
y∈V(Γ)

∣∣d(y)− µy
∣∣.

For details on these irregularity indices, we refer to the work by Réti et al. [41].
This paper focuses on this new irregularity index, i.e., the IRA index, and presents its

potential applicability in modeling the physicochemical and quantum-theoretic properties
of benzenoid hydrocarbons. Then, further mathematical properties of the IRA index are
investigated.

Now, we introduce some derived graphs based on different graph operations. The
total graph T (Γ) of a graph Γ was introduced by Behzad [56] in 1967, and it has the vertex
set V

(
T (Γ)

)
= V(Γ) ∪ E(Γ) such that yz, ye, e f ∈ E

(
T (Γ)

)
if and only if y ∼ z, z ∼ e, or

e ∼ f is adjacent/incident in Γ.
Sampathkumar and Chikkodimath [57] extended the concept of the total graph and

put forward two semi-total point and line graphs. The semi-total point graph T1(Γ) has the
vertex set V

(
T1(Γ)

)
= V(Γ) ∪ E(Γ), and any two vertices y, z ∈ V

(
T1(Γ)

)
are adjacent if

and only if:

(i) y, z ∈ V(Γ) such that y ∼ z in Γ or;
(ii) y ∈ V(Γ), z ∈ E(Γ), or vice versa, such that y ∼ z in Γ.

Similarly, the semi-total line graph T2(Γ) has the vertex set V
(
T2(Γ)

)
= V(Γ) ∪ E(Γ),

and any two vertices y, z ∈ V
(
T2(Γ)

)
are adjacent if and only if:

(i) y, z ∈ E(Γ) such that y ∼ z in Γ or;
(ii) y ∈ V(Γ), z ∈ E(Γ), or vice versa, such that y ∼ z in Γ.

Independently, similar concepts were studied by Akiyama et al. [58], where they called
these operations “middle graphs”.

The subdivision S(Γ) of a graph Γ has the vertex set V
(
S(Γ)

)
= V(Γ)∪ E(Γ) such that

xy ∈ E
(
S(Γ)

)
if and only if y ∈ V(Γ) and z ∈ E(Γ), and vice versa. Informally, S(Γ) is built

by adding a degree-two vertex on each edge of Γ.
The line graph L(Γ) has V

(
L(Γ)

)
= E(Γ) such that g, h ∈ V

(
L(Γ)

)
are adjacent in

L(Γ) iff g ∼ h in Γ.
The double-graph D(Γ) of Γ, having two copies Γ1 and Γ2, has its vertex set V

(
D(Γ)

)
=

V(Γ1) ∪V(Γ1) preserving E(Γi) (1 ≤ i ≤ 2) and for any yz ∈ E(Γ); we add two additional
edges y1z2 and z1y2 in D(Γ). Similarly, the strong double-SD(Γ) of Γ is obtained from D(Γ)
by additionally adding yizi for every yz ∈ E(Γ).

The extended double-cover Γ∗ of Γ was introduced by Alon [59]. If V(Γ) = {x1, . . . , xυ},
then Γ∗ is a bipartite graph with partition (Y, Z), where Y = {y1 . . . , yυ} and
Z = {z1, . . . , zυ} in which yi ∼ zj iff either i = j or yizi ∈ E(Γ).

The definitions of some of the aforementioned derived graphs suggest the following
lemma.

Lemma 1. Let Γ be an (υ, ε)-graph. Let x ∈ V(Γ) and f = yz ∈ E(Γ). Then, the following
relations hold:

(i) dS(Γ)(x) = dΓ(x) and dS(Γ)( f ) = 2.
(ii) dL(Γ)( f ) = dΓ(y) + dΓ(z)− 2.
(iii) dT1(Γ)(x) = 2dΓ(x) and dT1(Γ)( f ) = 2.
(iv) dT2(Γ)(x) = dΓ(x) and dT2(Γ)( f ) = dL(Γ)( f ) + 2 = dΓ(y) + dΓ(z) + 2.
(v) dT (Γ)(x) = 2dΓ(x) and dT (Γ)( f ) = dL(Γ)( f ) + 2 = dΓ(y) + dΓ(z) + 2.
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Here, we define some auxiliary terminologies required later in this section. For an
(υ, ε)-graph Γ, we define

ERR(Γ) = ∑
y∈V(Γ)

√
y, RA(Γ) = ∑

xy,yz∈E(Γ)

1√
(d(x) + d(y)− 2)× (d(y) + d(z)− 2)

.

LR(Γ) = ∑
xy,yz∈E(Γ)

1√
(d(x) + d(y))× (d(y) + d(z))

, MR(Γ) = ∑
yz∈E(Γ)

1√
d(y)× (d(y) + d(z))

.

AR(Γ) = ∑
yz∈E(Γ)

1√
(2d(y) + 1)× (2d(z) + 1)

, BR(Γ) = ∑
yz∈E(Γ)

1√
(d(y) + 1)× (d(z) + 1)

.

ERa(Γ) = ∑
yz∈E(Γ)

1√
(ε + υ− 1− 2d(y))× (ε + υ− 1− 2d(z))

.

ERRa(Γ) = ∑
x∈V(Γ),y∈E(Γ),x�y

1√
(ε + υ− 1− 2d(x))× (υ− 2)

.

Next, we introduce some transformation operations on graphs put forward by Wu
and Meng [60] in 2002. For a graph Γ and variables a, b ∈ {+,−}, the transformation graph
Γab has the vertex set V(Γab) partitioned into Va and Vb, i.e., V(Γab) = Va ∪Vb, where

Va = {y | y ∈ V(Γ)} and Vb = {y | y ∈ E(Γ)}. (1)

Moreover, the edge set of Γab can be partitioned in Ea, Eb, and Ec, i.e., E(Γab) = Ea ∪ Eb ∪ Ec,
where

Ea = {yz | y, z ∈ V(Γ)}, Eb = {e f | e, f ∈ E(Γ)}, and Ec = {ye | y ∈ V(Γ), e ∈ E(Γ)}. (2)

Alternatively, the vertex set of Γab is V(Γab) = V(Γ) ∪ E(Γ), and for any y, z ∈ V(Γab), we
have y ∼ z in Γab iff:

(i) y, z ∈ V(Γ), yz ∈ E(Γ) if a = + and yz /∈ E(Γ) if a = −.
(ii) x ∈ V(Γ), y ∈ E(Γ), x ∼ y in Γ if b = + and x � y in Γ if b = −.

Figure 1 presents a graph T and its four transformation graphs.

Figure 1. A graph T and its four transformation graphs.
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Based on the definitions of the transformation graphs, the following properties can be
deduced.

Lemma 2. Let Γ be an (υ, ε)-graph. Let x ∈ V(Γ) and f = yz ∈ E(Γ). Then, the following
relations hold:

(i) dΓ++(x) = 2dΓ(x) and dΓ++( f ) = 2.
(ii) dΓ+−(x) = ε and dΓ+−( f ) = υ− 2.
(iii) dΓ−+(x) = υ− 1 and dΓ−+( f ) = 2.
(iv) dΓ−−(x) = υ + ε− 1− 2dΓ(x) and dΓ−−( f ) = υ− 2.

Further mathematical properties of transformation graphs were studied by Xu and
Wu [61] and Yi and Wu [62].

3. Application of the IRA Index in QSPR Modeling

In order to investigate the potential applicability of irregularity indices in QSPR
modeling, we would require computing them for the lower benzenoid hydrocarbons,
as they represent both cyclic and acyclic chemical structures. The next subsection explains
the computational details that will be carried out in subsequent subsections.

3.1. Computational Details

Although the defining structure of any degree-based irregularity index is simple
enough to compute it on paper, using a computer saves much time.

Here, we devised a simple way of calculating any irregularity index for an arbitrary
graph. Note that, although we used this method only for computing the IRA index of
the lower benzenoid hydrocarbons, the method can be employed for any degree-based
irregularity index and for any arbitrary graph.

Our simple two-step process employs newGraph [63] and MatLab [64] to compute a
degree-based irregularity index IR of a graph Γ:

Step 1: Draw Γ in newGraph, and compute its adjacency matrix A.
Step 2: Input A into our program in MatLab to compute IR.

Although our MatLab program only computes the IRA index, it is easily modifiable
for any arbitrary degree-based irregularity index.

Our MatLab program with a README file is publicly available on GitHub. Access the
web page https://github.com/Sakander/Irregulaity-Indices.git (accessed on 18 November
2022) in order to access the code.

3.2. QSPR Modeling of Physicochemical Properties

In order to address the proliferation of molecular descriptors, Gutman et al. [65] laid
down the foundation to investigate the quality of degree-based topological indices for
the prediction of the physicochemical characteristics of compounds. They selected the
enthalpy of formation ∆Ho

f (respectively the boiling point ∆Tbp) to be the monitors of
thermal characteristics (respectively van der Waals-type relations) for their comparative
testings. On the other hand, Gutman and Trinajstić [66] studied the dependence of degree-
based descriptors on the energy of the π-electron Eπ = Eπ(β) (i.e., measured in β units)
for benzenoid hydrocarbons. Lučić et al. [67] and Chen [68] studied the prediction strength
of the sum-connectivity and product-connectivity indices for the π-electronic energy of
benzenoid hydrocarbons. Following the work in [67], we also determined the predictive
potential of the IRA index for determining the Eπ of benzenoid hydrocarbons. The criterion
to determine the performance of an irregularity index is simply the determination of
the statistical correlation coefficient. The higher the value (i.e., the closer to one) of the
correlation coefficient is, the better the efficiency of an irregularity index.

Following the standard choice of chemical compounds, we consider the lower ben-
zenoid hydrocarbons, as they are supposed to represent both cyclic and acyclic chemical

https://github.com/Sakander/Irregulaity-Indices.git
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structures. For the sake of the authenticity and reliability of the statistical inference, we
took 22 lower benzenoid hydrocarbons, claiming the number to be large enough. The
public availability of experimental data is another considerable reason for choosing the
lower benzenoid hydrocarbons. Note that the lower benzenoid hydrocarbons are actually
polycyclic aromatic hydrocarbons (PAHs). Figures 2 and 3 depict the 22 PAHs considered
with their aromaticity. For Eπ , we considered 29 lower benzenoid hydrocarbons as their
experimental data are easily accessible.

Figure 2. The 22 lower benzenoid hydrocarbons. Contd.

Figure 3. The 22 lower benzenoid hydrocarbons.

The experimental data of ∆Tbp for the lower PAHs considered here were provided
by the standard NIST databases [69]. On the other hand, the experimental data for ∆Ho

f
were retrieved from Allison and Burgess [2]. To tally the data, we confirmed them with
Nikolić et al. [70]. The experimental data for Eπ for the 29 lower benzenoid hydrocarbons
was taken from Lučić et al. [67].

For the molecules in Figures 2 and 3, a degree-based irregularity index was calcu-
lated conveniently. However, to save time, one may employ the computational method
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in Section 3.1 to compute all the irregularity indices in Section 2 simultaneously. After
calculating the irregularity indices, we calculated the Pearson correlation coefficient ρ
with Eπ , ∆Tbp, and ∆Ho

f for the 29 lower benzenoid hydrocarbons. Table 2 presents the
irregularity indices defined in Section 2 and their correlation coefficients with Eπ , ∆Tbp and
∆Ho

f for the lower benzenoid hydrocarbons.

Table 2. The Pearson correlation coefficient ρ between irregularity indices and Eπ , ∆Tbp, and ∆Ho
f .

Irregularity Index Eπ ∆Tbp ∆Ho
f

IRA 0.9997 0.9976 0.9343

AL 0.7393 0.8091 0.7803

σ 0.7393 0.8091 0.7803

Var 0.7835 0.9021 0.7793

IR1 0.9951 0.9964 0.9055

IR2 0.2924 0.6989 0.6053

IRF 0.7393 0.8091 0.7803

IRFW −0.0862 −0.3355 −0.2005

IRB 0.7393 0.8091 0.7803

IRC 0.4557 0.7955 0.6886

IRDIF 0.7393 0.8091 0.7803

IRG 0.7393 0.8091 0.7803

IRLU 0.7393 0.8091 0.7803

IRLF 0.7393 0.8091 0.7803

IRLA 0.7393 0.8091 0.7803
IRD 0.7393 0.8091 0.7803

IRGA 0.7393 0.8092 0.7803

IRM1 0.2186 0.1072 0.1526

IRM2 0.7393 0.8091 0.7803

By calculating the average of all three correlation coefficients, we can easily see in
Table 2 that only the IRA index warrants further usage in the QSPR modeling of the
physicochemical and quantum-theoretic properties of benzenoid hydrocarbons. Based on
this motivation, next, we focus on the IRA index only.

We conducted a detailed statistical analysis of the IRA index with the experimental
data of ∆Tbp and ∆Ho

f for the benzenoid hydrocarbons in Figures 2 and 3. The correspond-
ing statistical parameters such as the correlation coefficient, the regression model with
the confidence interval, the standard error of the fit, the determination coefficient, the
scatter plot, etc., were computed to assess how closely the IRA index correlated with the
experimental data. A similar treatment was given for the π-electronic energy Eπ and the
IRA index for the lower 29 benzenoid hydrocarbons. Table 3 (respectively Table 4) exhibits
the values of ∆Tbp and ∆Ho

f (respectively Eπ) and the IRA index of the 22 (respectively 29)
lower benzenoid hydrocarbons.

For Eπ , the linear regression model with the 95% confidence intervals for the slope and
intercepts of the model and the corresponding statistical parameters are given as follows:

Eπ = 1.2808±0.0820 IRA + 3.5939±1.6409, ρ = 0.999, r2 = 0.9734, s = 0.3128.

Between Eπ and the IRA index, Figure 4 depicts the scatter plot.
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Table 3. The experimental data of ∆Tbp and ∆Ho
f and the IRA index of the 22 lower PAHs.

Molecule ∆Tbp in ◦C ∆Ho
f in kJ/mol IRA

Naphthalene 218 141 9.3333

Phenanthrene 338 202.7 13.3333

Anthracene 340 222.6 13.3333

Chrysene 431 271.1 17.3333

Benzo[a]anthracene 425 277.1 17.3333

Triphenylene 429 275.1 17.3333

Tetracene 440 310.5 17.3333

Benzo[a]pyrene 496 296 19.3333

Benzo[e]pyrene 493 289.9 19.3333

Perylene 497 319.2 19.3333

Anthanthrene 547 323 21.3333

Benzo[ghi]perylene 542 301.2 21.3333

Dibenzo[a,c]anthracene 535 348 21.3333

Dibenzo[a,h]anthracene 535 335 21.3333

Dibenzo[a,j]anthracene 531 336.3 21.3333

Picene 519 336.9 21.3333

Coronene 590 296.7 23.3333

Dibenzo(a,h)pyrene 596 375.6 23.3333

Dibenzo(a,i)pyrene 594 366 23.3333

Dibenzo(a,l)pyrene 595 393.3 23.3333

Pyrene 393 221.3 15.3333

Table 4. The experimental data of Eπ and the IRA index of the 29 lower PAHs.

Molecule Eπ (in β Units) IRA

Naphthalene 13.6832 9.3333

Anthracene 19.3137 13.3333

Phenanthrene 19.4483 13.3333

Tetracene 24.9308 17.3333

Benzo[c]phenanthrene 25.1875 17.3333

Benzo[a]anthracene 25.1012 17.3333

Chrysene 25.1922 17.3333

Triphenylene 25.2745 17.3333

Pyrene 22.5055 15.3333

Pentacene 30.544 21.3333

Benzo[a]tetracene 30.7255 21.3333

Dibenzo[a,h]anthracene 30.8805 21.3333

Dibenzo[a,j]anthracene 30.8795 21.3333
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Table 4. Cont.

Molecule Eπ (in β Units) IRA

Pentaphene 30.7627 21.3333

Benzo[g]chrysene 30.999 21.3333

Pentahelicene 30.9362 21.3333

Benzo[c]chrysene 30.9386 21.3333

Picene 30.9432 21.3333

Benzo[b]chrysene 30.839 21.3333

Dibenzo[a,c]anthracene 30.9418 21.3333

Dibenzo[b,g]phenanthrene 30.8336 21.3333

Perylene 28.2453 19.3333

Benzo[e]pyrene 28.3361 19.3333

Benzo[a]pyrene 28.222 19.3333

Hexahelicene 36.6814 25.3333

Benzo[ghi]perylene 31.4251 21.3333

Hexacene 36.1557 25.3333

Coronene 34.5718 23.3333

Ovalene 46.4974 31.3333

Figure 4. Scatter plot between the IRA index and the π-electronic energy.

Let ρ be the correlation coefficient. Then, ρ(∆Ho
f ) and ρ(∆Tbp) are presented in the

following expression.

ρ(∆Tbp) = 0.9967, ρ(∆Ho
f ) = 0.9343.

The corresponding linear regression models with the 95% confidence intervals for the
slope and intercepts of the models, the determination coefficients, and the standard error
of the estimates are given as follows:

∆Tbp = 25.937±19.8399 IRA− 13.847±1.0223, r2 = 0.9933, s = 8.3218.

∆Ho
f = 15.003±53.3614 IRA + 11.309±2.7496, r2 = 0.8728, s = 22.3824.

Moreover, Table 5 gives the scatter plots between the IRA index and the two selected
properties, i.e., ∆Tbp and ∆Ho

f .
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Table 5. Scatter plots between the IRA index and the two selected properties, i.e., ∆Tbp and ∆Ho
f .

Between IRA and ∆Tbp Between IRA and ∆Ho
f

The statistical analysis shows that the IRA index correlates very well with Eπ , well
with ∆Tbp, and fairly well with ∆Ho

f for the lower PAHs. Thus, based on the analysis in this
section, further applications of the IRA index in the quantitative structure activity/property
relationship models are warranted. This also suggests a window for exploring further
mathematical properties of the IRA index.

Next, we derived some mathematical properties of the IRA index. First, we computed
the IRA index of various transformation graphs introduced by Wu and Meng [60].

4. The IRA Index of Transformation Graphs

Next, we calculated the IRA index of different transformation and total transformation
graphs. The next theorem calculates the IRA index of Γab, where a = b = +.

Theorem 1. Let Γ be an (υ, ε)-graph. Then, the IRA index of Γ++ of Γ is

IRA(Γ++) = (υ + ε)− R(Γ)− ERR(Γ).

Proof. By the definition of the IRA index, we have

IRA(Γ) = υ− 2 ∑
yz∈E(Γ)

1√
d(y)× d(z)

.

Employing the definition of Γ++, we have

IRA(Γ++) = (υ + ε)− 2 ∑
yz∈E(Γ++)

1√
d(y)× d(z)

,

= (υ + ε)− 2 ∑
yz∈Ea(Γ++)

1√
d(y)× d(z)

− 2 ∑
yz∈Ec(Γ++)

1√
d(y)× d(z)

,

= (υ + ε)− 2 ∑
yz∈E(Γ)

1√
2d(y)× 2d(z)

− 2 ∑
y∈V(Γ), f∈E(Γ), f∼y

1√
2d(y)× 2

,

= (υ + ε)− ∑
yz∈E(Γ)

1√
d(y)× d(z)

− 2 ∑
y∈V(Γ), f∈E(Γ), f∼y

1√
4d(y)

,

= (υ + ε)− R(Γ)− ∑
y∈V(Γ)

d(y)
1√
d(y)

,

= (υ + ε)− R(Γ)− ∑
y∈V(Γ)

√
d(y),

= (υ + ε)− R(Γ)− ERR(Γ).

This completes the proof.
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The next theorem computes the IRA index of Γab, where a = +, b = −.

Theorem 2. Let Γ be an (υ, ε)-graph. Then, the IRA index of Γ+− of Γ is

IRA(Γ+−) = (υ + ε)− 2− 2√
ε(υ− 2)

[ υ!
(υ− 2)!

− 2ε
]
.

Proof. By the definition of the IRA index, we have

IRA(Γ) = υ− 2 ∑
yz∈E(Γ)

1√
d(y)× d(z)

Employing the definition of Γ+−, we have

IRA(Γ+−) = (υ + ε)− 2 ∑
yz∈E(Γ+−)

1√
d(y)× d(z)

,

= (υ + ε)− 2 ∑
yz∈Ea(Γ+−)

1√
d(y)× d(z)

− 2 ∑
yz∈Ec(Γ+−)

1√
d(y)× d(z)

,

= (υ + ε)− 2 ∑
yz∈E(Γ)

1√
ε× ε

− 2 ∑
y∈V(Γ), f∈E(Γ), f�y

1√
ε× (υ− 2)

,

= (υ + ε)− 2 ∑
yz∈E(Γ)

1√
ε2
− 2 ∑

y∈V(Γ), f∈E(Γ), f�y

1√
ε(υ− 2)

,

= (υ + ε)− 2 ∑
yz∈E(Γ)

1
ε
− 2 ∑

y∈V(Γ)

d(y)
1√

ε(υ− 2)
,

= (υ + ε)− 2− 2√
ε(υ− 2)

[ υ!
(υ− 2)!

− 2ε
]
,

= (υ + ε)− 2− 2√
ε(υ− 2)

[ υ!
(υ− 2)!

− 2ε
]
.

This completes the proof.

The next result calculates the IRA index of Γab, where a = −, b = +.

Theorem 3. Let Γ be an (υ, ε)-graph. Then, the IRA index of Γ−+ of Γ is

IRA(Γ−+) = (υ + ε)− 2
υ− 1

[ υ!
2!(υ− 2)!

− ε
]
− 4ε√

2(υ− 1)
.

Proof. By the definition of the IRA index, we have

IRA(Γ) = υ− 2 ∑
yz∈E(Γ)

1√
d(y)× d(z)

Employing the definition of Γ−+, we have

IRA(Γ−+) = (υ + ε)− 2 ∑
yz∈E(Γ−+)

1√
d(y)× d(z)

,

= (υ + ε)− 2 ∑
yz∈Ea(Γ−+)

1√
d(y)× d(z)

− 2 ∑
yz∈Ec(Γ−+)

1√
d(y)× d(z)

,

= (υ + ε)− 2 ∑
yz∈E(Γ)

1√
(υ− 1)× (υ− 1)

− 2 ∑
y∈V(Γ), f∈E(Γ), f∼y

1√
(υ− 1)× 2

,
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= (υ + ε)− 2 ∑
yz∈E(Γ)

1√
(υ− 1)2

− 2 ∑
y∈V(Γ), f∈E(Γ), f∼y

1√
2(υ− 1)

,

= (υ + ε)− 2 ∑
yz∈E(Γ)

1
υ− 1

− 2 ∑
y∈V(Γ)

d(y)
1√

2(υ− 1)
,

= (υ + ε)− 2
υ− 1

[ υ!
2!(υ− 2)!

− ε
]
− 2

2ε√
2(υ− 1)

,

= (υ + ε)− 2
υ− 1

[ υ!
2!(υ− 2)!

− ε
]
− 4ε√

2(υ− 1)
.

This completes the proof.

Next, we calculated the IRA index of Γab, where a = b = −.

Theorem 4. Let Γ be an (υ, ε)-graph. Then, the IRA index of Γ−− of Γ is

IRA(Γ−−) = (υ + ε)− 2ERa(Γ)− 2ERRa(Γ).

Proof. By the definition of the IRA index, we have

IRA(Γ) = υ− 2 ∑
yz∈E(Γ)

1√
d(y)× d(z)

Employing the definition of Γ−−, we have

IRA(Γ−−) = (υ + ε)− 2 ∑
yz∈E(Γ−−)

1√
d(y)× d(z)

,

= (υ + ε)− 2 ∑
yz∈Ea(Γ−−)

1√
d(y)× d(z)

− 2 ∑
yz∈Ec(Γ−−)

1√
d(y)× d(z)

,

= (υ + ε)− 2 ∑
yz∈E(Γ)

1√
(ε + υ− 1− 2d(y))× (ε + υ− 1− 2d(z))

−2 ∑
y∈V(Γ), f∈E(Γ), f�y

1√
(ε + υ− 1− 2d(y))× (υ− 2)

,

= (υ + ε)− 2ERa(Γ)− 2ERRa(Γ).

This completes the proof.

The next section calculates the analytically closed formulas of the IRA for various
derived graphs introduced in Section 2.

5. The IRA Index of Derived Graphs

This section calculates the IRA index of various derived graphs including the subdivi-
sion graph, the line graph, the semi-total point graph, the semi-total line graph, the total
graph, the double-graph, the double-graph, the strong double-graph, and the extended
double-cover graph.

Next, we calculated the IRA index of the subdivision graph.

Theorem 5. Let Γ be an (υ, ε)-graph. Then, the IRA index of the subdivision graph S(Γ) of Γ is

IRA(S(Γ)) = (υ + ε)−
√

2ERR(Γ).
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Proof. By the definition of the IRA index, we have

IRA(Γ) = υ− 2 ∑
yz∈E(Γ)

1√
d(y)× d(z)

By using the structure of the subdivision graph, we have

IRA(S(Γ)) = (υ + ε)− 2 ∑
yz∈E

(
S(Γ)
) 1√

d(y)× d(z)
,

= (υ + ε)− 2 ∑
yz∈Ec

(
S(Γ)
) 1√

d(y)× d(z)
,

= (υ + ε)− 2 ∑
y∈V(Γ), f∈E(Γ),y∼ f

1√
d(y)× d( f )

,

= (υ + ε)− 2 ∑
y∈V(Γ), f∈E(Γ),y∼ f

1√
d(y)× 2

,

= (υ + ε)−
√

2 ∑
y∈V(Γ)

d(y)
1√
d(y)

,

= (υ + ε)−
√

2 ∑
y∈V(Γ)

√
d(y),

= (υ + ε)−
√

2ERR(Γ).

This completes the proof.

The following theorem computes the IRA index of the line graph.

Theorem 6. Let Γ be an (υ, ε)-graph. Then, the IRA index of the line graph L(Γ) of Γ is

IRA(L(Γ)) = ε− 2RA(Γ).

Proof. By the definition of the IRA index, we have

IRA(Γ) = υ− 2 ∑
yz∈E(Γ)

1√
d(y)× d(z)

By using the structure of the line graph, we have

IRA(L(Γ)) = ε− 2 ∑
yz∈E(Γ)

1√
d(y)× d(z)

,

= ε− 2 ∑
yz∈Eb(Γ)

1√
d(y)× d(z)

,

= ε− 2 ∑
xy,yz∈E(Γ)

1√
(d(x) + d(y)− 2)× (d(y) + d(z)− 2)

,

= ε− 2RA(Γ).

This completes the proof.

Next, we calculated the exact expression of the IRA index of the semi-total point
graph.

Theorem 7. Let Γ be an (υ, ε)-graph. Then, the IRA index of the semi-total point graph T1(Γ) of
Γ is
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IRA
(
T1(Γ)

)
= (ε + υ)− Ra(Γ)− ERR(Γ).

Proof. By the definition of the IRA index, we have

IRA(Γ) = υ− 2 ∑
yz∈E(Γ)

1√
d(y)× d(z)

By using the structure of the semi-total point graph, we have:

IRA
(
T1(Γ)

)
= (ε + υ)− 2 ∑

yz∈E
(
T1(Γ)

) 1√
d(y)× d(z)

,

= (ε + υ)− 2 ∑
yz∈Ea

(
T1(Γ)

) 1√
d(y)× d(z)

− 2 ∑
yz∈Ec

(
T1(Γ)

) 1√
d(y)× d(z)

= (ε + υ)− 2 ∑
yz∈E(Γ)

1√
2d(y)× 2d(z)

− 2 ∑
y∈V(Γ), f∈E(Γ),y∼ f

1√
2d(y)× 2

,

= (ε + υ)− ∑
yz∈E(Γ)

1√
d(y)× d(z)

− ∑
y∈V(Γ)

d(y)
1√
d(y)

,

= (ε + υ)− Ra(Γ)− ∑
y∈V(Γ)

√
d(y),

= (ε + υ)− Ra(Γ)− ERR(Γ).

This completes the proof.

The next theorem calculates the IRA index of the semi-total line graph.

Theorem 8. Let Γ be an (υ, ε)-graph. Then, the IRA index of the semi-total line graph T2(Γ) of Γ
is

IRA
(
T2(Γ)

)
= (ε + υ)− 2LRa(Γ)− 2MRa(Γ).

Proof. By the definition of the IRA index, we have

IRA(Γ) = υ− 2 ∑
yz∈E(Γ)

1√
d(y)× d(z)

By using the structure of the semi-total line graph, we have

IRA
(
T2(Γ)

)
= (ε + υ)− 2 ∑

yz∈E
(
T2(Γ)

) 1√
d(y)× d(z)

= (ε + υ)− 2 ∑
yz∈Eb

(
T2(Γ)

) 1√
d(y)× d(z)

− 2 ∑
yz∈Ec

(
T2(Γ)

) 1√
d(y)× d(z)

,

= (ε + υ)− 2 ∑
xy,yz∈E(Γ)

1√
(d(x) + d(y))× (d(y) + d(z))

− 2 ∑
y∈V(Γ), f∈E(Γ),y∼ f

1√
d(y)× d( f )

,

= (ε + υ)− 2LRa(Γ)− 2 ∑
yz∈E(Γ)

1√
d(y)× (d(y) + d(z))

,

= (ε + υ)− 2LRa(Γ)− 2MRa(Γ).

This completes the proof.

The following theorem calculates the IRA index of the total graph.
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Theorem 9. Let Γ be an (υ, ε)-graph. Then, the IRA index of the total graph T (Γ) of Γ is

IRA
(
T (Γ)

)
= (ε + υ)− Ra(Γ)− 2LRa(Γ)− 2MRa(Γ).

Proof. By the definition of the IRA index, we have

IRA(Γ) = υ− 2 ∑
yz∈E(Γ)

1√
d(y)× d(z)

By using the structure of the total graph, we have

IRA
(
T (Γ)

)
= (ε + υ)− 2 ∑

yz∈E
(
T (Γ)

) 1√
d(y)× d(z)

= (ε + υ)− 2 ∑
yz∈Ea

(
T (Γ)

) 1√
d(y)× d(z)

− 2 ∑
yz∈Eb

(
T (Γ)

) 1√
d(y)× d(z)

−2 ∑
yz∈Ec

(
T (Γ)

) 1√
d(y)× d(z)

,

= (ε + υ)− 2 ∑
yz∈E(Γ)

1√
2d(y)× 2d(z)

− 2 ∑
xy,yz∈E(Γ)

1√
(d(x) + d(y))× (d(y) + d(z))

−2 ∑
y∈V(Γ), f∈E(Γ),y∼ f

1√
2d(y)× d( f )

,

= (ε + υ)− Ra(Γ)− 2LRa(Γ)− 2 ∑
yz∈E(Γ)

1√
d(y)× (d(y) + d(z))

,

= (ε + υ)− Ra(Γ)− 2LRa(Γ)− 2MRa(Γ).

This completes the proof.

Next, we calculated the exact expression of the IRA index of the double-graph.

Theorem 10. Let Γ be an (υ, ε)-graph. Then, the IRA index of the double-graph D(Γ) of Γ is

IRA
(

D(Γ)
)
= (ε + υ)− 4Ra(Γ).

Proof. By the definition of the IRA index, we have

IRA(Γ) = υ− 2 ∑
yz∈E(Γ)

1√
d(y)× d(z)

By using the structure of the double-graph, we have

IRA
(

D(Γ)
)

= (ε + υ)− 2 ∑
yz∈E

(
D(Γ)

) 1√
d(y)× d(z)

= (ε + υ)− 2× 2 ∑
yz∈E

(
D(Γ)

) 1√
2d(y)× 2d(z)

− 2× 2 ∑
yz∈E

(
D(Γ)

) 1√
2d(y)× 2d(z)

,

= (ε + υ)− 2Ra(Γ)− 2Ra(Γ),

= (ε + υ)− 4Ra(Γ).

This completes the proof.

For the strong double-graph, the following theorem computes the IRA index.
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Theorem 11. Let Γ be an (υ, ε)-graph. Then, the IRA index of the strong double-graph SD(Γ) of
Γ is

IRA
(
SD(Γ)

)
= (ε + υ)− 8ARa(Γ).

Proof. By the definition of the IRA index, we have

IRA(Γ) = υ− 2 ∑
yz∈E(Γ)

1√
d(y)× d(z)

By using the structure of the strong double-graph, we have

IRA(SD(Γ)) = (ε + υ)− 2 ∑
yz∈E

(
SD(Γ)

) 1√
d(y)× d(z)

= (ε + υ)− 2× 2 ∑
yz∈E

(
D(Γ)

) 1√
(2d(y) + 1)× (2d(z) + 1)

−2× 2 ∑
yz∈E

(
D(Γ)

) 1√
(2d(y) + 1)× (2d(z) + 1)

,

= (ε + υ)− 8 ∑
yz∈E

(
D(Γ)

) 1√
(2d(y) + 1)× (2d(z) + 1)

,

= (ε + υ)− 8ARa(Γ).

This completes the proof.

The next theorem calculates the IRA index of the extended double-cover graph.

Theorem 12. Let Γ be an (υ, ε)-graph. Then, the IRA index of the extended double-cover graph Γ∗

of Γ is
IRA(Γ∗) = (ε + υ)− 6BRa(Γ).

Proof. By the definition of the IRA index, we have

IRA(Γ) = υ− 2 ∑
yz∈E(Γ)

1√
d(y)× d(z)

By using the structure of the extended double-cover graph, we have

IRA(Γ∗) = (ε + υ)− 2 ∑
yz∈E(Γ)

1√
d(y)× d(z)

= (ε + υ)− 2× 3 ∑
yz∈E

(
D(Γ)

) 1√
(d(y) + 1)× (d(z) + 1)

= (ε + υ)− 6 ∑
yz∈E

(
D(Γ)

) 1√
(d(y) + 1)× (d(z) + 1)

,

= (ε + υ)− 6BRa(Γ).

This completes the proof.

6. Applications of Mathematical Results

In this section, we describe how to use the mathematical results in this paper to find
the IRA index derivative organic compounds.
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Note that all the graph operations employed in the derived and transformation graphs
are applicable in both planar and non-planar graphs. However, from the application
perspective, all chemical structures are planar, either embeddable in R2 or R3. Thus, first,
we redefine some related operations for planar graphs and devise a way to use the results.

Let Ω = (V, E, F) be a planar graph with the set of vertices (respectively edges) V
(respectively E) and the set of faces F. Let υ := |V|, ε := |E|, and ξ := |F| be the number
of vertices, edges, and faces of Ω, respectively. The stellation/capping/triangulation St(Ω) of
Ω is obtained by assigning a new node to each face and adjoining it to all the vertices of
the respective face. The Poincaré dual Du(Ω) of a graph Ω is obtained by locating a point
in the center of each face and joining two such points if their corresponding faces share a
common edge. The medial Me(Ω) of Ω is constructed by putting the new vertices as the
midpoints of the original edges. Join two such vertices if and only if the original edges
span an angle. The leapfrog Le(Γ) is a composite operation defined as Le(Γ) = Du(St(Ω)).

Table 6 presents some carbon nanotubes on a finite number of vertices, edges, and
faces. Note that

Me(TUC4[8, 4]) = TUHRC4[8, 4] (3)

Le(TUHRC4[8, 4]) = TUVSC4C8[8, 12] (4)

Le(TUZ[8, 4]) = TUA[8, 9]. (5)

Equations (3)–(5) imply that, if we know the IRA index of TUC4[8, 4] and TUZ[8, 4], we
could calculate the IRA index of all the other nanotubes. The results in this paper could
also be applied to different inorganic structures in a similar fashion.

Table 6. Some finite-dimensional carbon nanotubes.

TUC4[8, 4] TURC4C8[8, 4] TUHRC4[8, 4]

TUVSC4C8[8, 12] TUZ[8, 4] TUA[8, 9]

7. Concluding Remarks
7.1. Conclusions

In this paper, we conducted a quality testing for irregularity indices to correlate with the
physicochemical and quantum-theoretic properties of benzenoid hydrocarbons. The normal
boiling point ∆Tbp and the enthalpy of formation ∆Ho

f were chosen as representatives of the
physicochemical properties, and the π-electronic energy Eπ was chosen as a representative of
the quantum-theoretic properties. A computer-based computational technique was proposed
to calculate commonly occurring irregularity indices of any given graph. The computational
method was used to calculate irregularity indices for lower benzenoid hydrocarbons. A de-
tailed statistical analysis of the irregularity indices and the experimental values of ∆Tbp,
∆Ho

f , and Eπ of the lower benzenoid hydrocarbons revealed that the IRA index has the best
performance among all commonly occurring irregularity indices.

The IRA index was further studied in context with the derived and transformation
graphs. In particular, the IRA index was calculated for the four transformation graphs
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and various derived graphs such as the semi-total point/line, total, and subdivision graph,
among others. Finally, planar versions of those operations for Γ were introduced to propose
a way of using those mathematical results to calculate the IRA index of those operated
graphs from IRA(Γ).

7.2. Implications

The implications of the research conducted in this paper include:

• The strong predictive potential of the IRA index warrants its further usage in the
quantitative structure activity/property relationship models.

• The IRA index of all the derived and transformation graphs of a graph Γ can be
calculated simply from the information of Γ and IRA(Γ).

• The planar version of those operations can be employed to study the physicochemical
and quantum-theoretic properties of the derivatives of organic compounds.

7.3. Limitations

The construction of a chemical graph does not distinguish between the nature of
atoms and bonds in a chemical structure and the corresponding vertices and edges of the
graph. This leads to the degeneracy of a topological descriptor. For instance, the IRA
indices of chlorobenzene and bromobenzene would be the same, as they lead to the same
chemical graph. Similarly, the IRA indices of ethane, ethylene, and acetylene would be the
same as they also correspond to the same chemical graph. See Figure 5 for a depiction of
this phenomenon.

Figure 5. Cases where the degeneracy of the IRA index would occur.

Thus, the current study has a limitation where the degeneracy of topological descrip-
tors occurs.

7.4. Future Scope

The degeneracy of a topological descriptor mentioned in the Limitations Section
motivates us to focus on the following problem:

Problem 1. Employ graph signal processing (GSP) in addressing the degeneracy of irregularity
indices or, in general, topological descriptors.

Further mathematical investigation of this IRA index is proposed herewith. Some
particular problems that can be studied are as follows:

Problem 2. Find sharp upper and lower bounds on the IRA index of υ-vertex graphs with a given
number of cut-vertices. Moreover, characterize the corresponding extremal cases.
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Problem 3. Find sharp upper/lower bounds on the IRA index of υ-vertex bipartite graphs with a
given diameter. Furthermore, characterize the corresponding extremal cases.

Problem 4. Find sharp upper/lower bounds on the IRA index of υ-vertex trees with a given
domination number. Moreover, characterize the corresponding extremal cases.

Problem 5. Find sharp upper/lower bounds on the IRA index of υ-vertex graphs with a given
vertex/edge connectivity.
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51. Estrada, E. Randić index, irregularity and complex biomolecular networks. Acta Chim. Slov. 2010, 57, 597–603.
52. Estrada, E. Quantifying network heterogeneity. Phys. Rev. E 2010, 82, 066102. [CrossRef]
53. Gutman, I. Topological indices and irregularity measures. Bull. Int. Math. Virtual Inst. 2018, 8, 469–475.
54. Kang, S.; Chu, Y.-M.; Virk, A.R.; Nazeer, W.; Jia, J. Computing irregularity indices for probabilistic neural network. Front. Phys.

2020, 8, 359. [CrossRef]
55. Chu, Y.-M.; Abid, M.; Qureshi, M.I.; Fahad, A.; Aslam, A. Irregular topological indices of certain metal organic frameworks. Main

Group Met. Chem. 2021, 44, 73–81. [CrossRef]
56. Behzad, M. A criterion for the planarity of a total graph. Proc. Camb. Philos. Soc. 1967, 63, 679–681. [CrossRef]
57. Sampathkumar, E.; Chikkodimath, S.B. The semi-total graphs of a graph-I. J. Karnatak Univ. Sci. 1973, 18, 274–280.

http://dx.doi.org/10.1002/mma.7161
http://dx.doi.org/10.1016/j.compbiomed.2022.105766
http://www.ncbi.nlm.nih.gov/pubmed/35779479
http://dx.doi.org/10.5562/cca2294
http://dx.doi.org/10.1021/ci0342775
http://dx.doi.org/10.1016/j.amc.2019.04.013
http://dx.doi.org/10.1016/j.amc.2018.10.010
http://dx.doi.org/10.1016/j.disc.2006.09.038
http://dx.doi.org/10.46298/dmtcs.1263
http://dx.doi.org/10.1007/s00373-013-1304-1
http://dx.doi.org/10.2298/FIL1407315A
http://dx.doi.org/10.1016/j.dam.2018.05.013
http://dx.doi.org/10.1016/j.amc.2017.09.038
http://dx.doi.org/10.7151/dmgt.1733
http://dx.doi.org/10.18514/MMN.2014.593
http://dx.doi.org/10.5120/21846-5170
http://dx.doi.org/10.1007/s40819-015-0069-z
http://dx.doi.org/10.1007/BF02941924
http://dx.doi.org/10.1016/0024-3795(92)90004-T
http://dx.doi.org/10.1021/ja00856a001
http://dx.doi.org/10.1063/1.430994
http://dx.doi.org/10.1007/s10910-015-0480-z
http://dx.doi.org/10.1103/PhysRevE.82.066102
http://dx.doi.org/10.3389/fphy.2020.00359
http://dx.doi.org/10.1515/mgmc-2021-0009
http://dx.doi.org/10.1017/S0305004100041657


Mathematics 2022, 10, 4377 24 of 24

58. Akiyama, J.; Hamada, T.; Yoshimura, I. Miscellaneous properties of middle graphs. TRU Math. 1974, 10, 41–53.
59. Alon, N. Eigenvalues and expanders. Combinatorica 1986, 6, 83–89. [CrossRef]
60. Wu, B.; Meng, J. Basic properties of total transformation graphs. J. Math. Study 2001, 34, 109–116.
61. Xu, L.; Wu, B. Transformation graph G−+−. Discret. Math. 2008, 308, 5144–5148. [CrossRef]
62. Yi, L.; Wu, B. The transformation graph G++−. Aust. J. Comb. 2009, 44, 37–42.
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