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Abstract: The aim of this paper is to approximate the fixed points of generalized α-nonexpansive
mappings using AA-iterative algorithm. We establish some weak and strong convergence results for
generalized α-nonexpansive mappings in uniformly convex Banach spaces. A numerical example is
also given to show that the AA-iterative algorithm converges faster than some others algorithms for
generalized α-nonexpansive mappings. Lastly, using the AA-iterative algorithm, we approximate the
weak solution of delay composite functional differential equation of the Volterra–Stieltjes type.
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1. Introduction

Throughout this paper, Z+ denotes the set of all positive integers, B a Banach space, G
a closed convex subset of B, ϕ : G→ G a mapping and Fix(ϕ) the set of all fixed points of ϕ.

A mapping ϕ : G → G is said to be

(1) A contraction if, for all a, b ∈ G, there exists α ∈ (0, 1) such that

‖ϕ(a)− ϕ(b)‖ ≤ α‖a− b‖.

(2) A nonexpansive mapping if

‖ϕ(a)− ϕ(b)‖ ≤ ‖a− b‖,

holds for all a, b ∈ G.
(3) Quasi-non-expansive if, for all a ∈ G and a∗ ∈ Fix(ϕ), we have

‖ϕ(a)− a∗‖ ≤ ‖a− a∗‖.

Browder [1] showed that, if B is a uniformly convex Banach space and G is a nonempty
closed convex subset of B, then a nonexpansive mapping on G has a fixed point.

In 2008, Suzuki [2] introduced a new type of mapping satisfying Condition (C). A self
mapping ϕ on G satisfies Condition (C) if for a, b ∈ G with

1
2
‖a− ϕ(a)‖ ≤ ‖a− b‖,

we have
‖ϕ(a)− ϕ(b)‖ ≤ ‖a− b‖, (1)

The mappings satisfying Condition (C) do not need to be continuous; hence, Condition
(C) is weaker than the one depicting nonexpansive mappings. However, mappings satis-
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fying Condition (C) were stronger than the one defining quasi-non-expansive mappings.
Suzuki [2] studied the existence and convergence results for such mappings.

In 2011, Aoyama and Kohshaka [3] defined a new class of mappings known as α-
nonexpansive mappings on normed spaces and studied its fixed points.

A mapping ϕ : G → G is α-nonexpansive if, for a, b ∈ G and α < 1, the following
holds:

‖ϕ(a)− ϕ(b)‖2 ≤ α‖b− ϕ(a)‖2 + α‖a− ϕ(b)‖2 + (1− 2α)‖a− b‖2.

Clearly, for α = 0, we have a class of nonexpansive mappings. An example of a
discontinuous α-nonexpansive mapping (with α > 0) was given in [3], which shows that
the class of α-nonexpansive mappings was larger than the nonexpansive mappings (see
also [4]).

Pant and Shukla [5] introduced a class of mapping (called the generalized α-nonexpansive
mapping) as follows:

For all a, b ∈ G, there exists α ∈ (0, 1), such that

1
2
‖a− ϕ(a)‖ ≤ ‖a− b‖

implies that

‖ϕ(a)− ϕ(b)‖ ≤ α‖b− ϕ(a)‖+ α‖a− ϕ(b)‖+ (1− 2α)‖a− b‖,

Many researchers studied the approximation of fixed points of such mappings in
Banach spaces. For instance, we refer to [5–8].

The following example in [4] shows that the generalized α-nonexpansive mapping
needs not satisfy Condition (C).

Example 1. Let set G = [0, ∞) be equipped with usual norm |.|. Define ϕ : G → G by:

ϕ(a) =

{
a
2 , if a > 2
0, if a ∈ [0, 2].

ϕ satisfies Condition (Cα), but ϕ is not a nonexpansive mapping.

Banach [9] proved that fixed points of contraction mappings can be approximated
with the Picard iterative algorithm [10]. The Picard sequence {an} is defined as follows:{

a1 ∈ G,
an+1 = ϕ(an) n ∈ Z+.

(2)

The above sequence generated by the Picard algorithm does not converge to a fixed
point of nonexpansive mappings. For more details, we refer to [11].

In 1953, Mann [12] introduced a new iterative algorithm to approximate a fixed point
for nonexpansive mappings. The sequence obtained by this algorithm is defined as follows:{

a1 ∈ G,
an+1 = (1− ηn)an + ηn ϕ(an) n ∈ Z+,

(3)

where {ηn} is an appropriate sequence in (0, 1).
The Mann iteration failed to approximate the fixed point in the case of pseudocontrac-

tive mapping. To overcome this problem, Ishikawa [13] introduced a two-step iterative
algorithm to approximate the fixed point of pseudocontractive mapping.
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Sequence {an}, obtained by Ishikawa algorithm, is given as follows:
a1 ∈ G
an+1 = (1− ηn)an + ηn ϕ(bn)

bn = (1− ρn)an + ρn ϕ(an) n ∈ Z+,

(4)

where {ηn} and {ρn} are sequences in (0, 1).
Noor [14] in 2000, Agarwal et al. [15] in 2007, Abbas and Nazir [16] in 2014,

Thakur et al. [17] in 2017, and Ullah and Arshad [18] in 2018 proposed different iterative
algorithms (see Table 1): let a1 ∈ G be an initial guess.

Table 1. Different Iterative Algorithms.

Name Algorithms

an+1 = (1− ηn)an + ηn ϕ(bn)
Noor bn = (1− ρn)an + ρn ϕ(cn)

cn = (1− σn)an + σn ϕ(an)

Agarwal et al. an+1 = (1− ηn)ϕ(an) + ηn ϕ(bn)
bn = (1− ρn)an + ρn ϕ(an)

an+1 = (1− ηn)ϕ(bn) + ηn ϕ(cn)
Abbas et al. bn = (1− ρn)ϕ(an) + ρn ϕ(cn)

cn = (1− σn)an + σn ϕ(an)

an+1 = (1− ηn)ϕ(cn) + ηn ϕ(bn)
Thakur et al. bn = (1− ρn)cn + ρn ϕ(cn)

cn = (1− σn)an + σn ϕ(an)

an+1 = ϕ(bn)
Ullah et al. bn = ϕ(cn)

cn = (1− ηn)an + ηn ϕ(an)

Where {ηn}, {ρn} and {σn} are the sequences of parameters in (0, 1).
Recently, Abbas et al. [19] introduced a new iterative algorithm known as the AA-

iterative algorithm, which converges faster than the iterative algorithms mentioned above
for the class of enriched contraction and contraction mapping. The sequence defined by
this algorithm is given as follows:

a1 ∈ G
an+1 = ϕ(bn)

bn = ϕ((1− ηn)ϕ(dn) + ηn ϕ(cn))

cn = ϕ((1− ρn)dn + ρn ϕ(dn)) n ∈ Z+

dn = (1− σn)an + σn ϕ(an),

(5)

where {ηn}, {ρn} and {σn} are sequence in (0, 1).
Using the Ishikawa algorithm, Phuengratta [20] in 2011 proved te convergence results

for Suzuki-type generalized nonexpansive mappings. In 2019, Ali et al. [21] employed an
iterative algorithm in [17] to prove the convergence results for Suzuki-type generalized
nonexpansive mapping in uniformly convex Banach spaces. The fixed-point theorems for
Suzuki-type generalized nonexpansive mapping and some other nonlinear mappings were
studied by many researchers [22–24]. Hence, the approximation of the fixed point of a
more general class of mappings in fewer steps has been a matter of great interest for many
authors due to its theoretical and practical applications. This is the main motivation of
this paper.

Motivated by the work in [20,21], we prove some strong and weak convergence results
by using the AA-iterative algorithm (5) for the generalized α-nonexpansive mappings in
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uniformly convex Banach spaces. Our work is more general and unifies the comparable
results in the existing literature, for instance, the results given in [17,21].

2. Preliminaries

Definition 1 ([21]). Let G be a nonempty closed convex subset of a Banach space B. A mapping
ϕ : G → G is called demiclosed with respect to b ∈ B if, for each sequence {an} in G and a ∈ G,
{an} converges weakly to a, and {ϕ(an)} converges strongly to b, implying that ϕ(a) = b.

Definition 2 ([25]). A Banach space B satisfies Opial’s condition if, for each sequence {an}
converging weakly to a ∈ B, the following holds:

lim inf
n→∞

‖an − a‖ < lim inf
n→∞

‖an − b‖,

for for all b ∈ B with a 6= b.

Sentor and Dotson [26] introduced the concept of mapping satisfying Condition (I),
which is defined as follows:

Definition 3. A mapping ϕ : G → G satisfies Condition (I) if there exists an increasing function
r : [0, ∞)→ [0, ∞) with r(0) = 0 and r(t) > 0, for all t > 0, such that

d(a, ϕ(a)) ≥ r(d(a, Fix(ϕ))), for all a ∈ G,

where d(a, Fix(ϕ)) = inf{d(a, a∗) : a∗ ∈ Fix(ϕ)}.

Definition 4. Let {an} be a bounded sequence in a Banach space B. Define a mapping r(·, {an}) :
B→ R+ by

r(a, {an}) = lim sup
n→∞

‖an − a‖.

For each a ∈ B, value r(a, {an}) is called the asymptotic radius of {an} at a.
The asymptotic radius of {an} relative to G ⊂ B is defined as follows:

r(G, {an}) = inf{r(a, {an}) : a ∈ G}.

The asymptotic center of {an} relative to G is the set

A(G, {an}) = {a ∈ G : r(G, {an}) = r(a, {an})}.

The asymptotic center of {an} with respect to G is nonempty and convex whenever
G is weakly compact [27,28]. Moreover, set A(G, {an}) is a singleton, provided that B is a
uniformly convex Banach space [29].

Proposition 1 ([5]). Every mapping satisfying Condition (C) is generalized α-nonexpansive
mapping, but the converse does not hold in general.

Proposition 2 ([5]). Let G be a nonempty subset of a Banach space B and ϕ : G → G a generalized
α-nonexpansive mapping . Then, for all a, b ∈ G, we have

‖a− ϕ(a)‖ ≤ (3 + α)

(1− α)
‖a− ϕ(a)‖+ ‖a− b‖.

Theorem 1 ([2]). Let G be a weakly compact convex subset of a uniformly Banach space B and a
mapping ϕ on G satisfies Condition (C). Then, ϕ has a fixed point.
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Lemma 1 ([30]). Let B be a uniformly convex Banach space and 0 < ρn < 1 for all n ∈ Z+. Let
{an} and {bn} be the two sequences such that lim supn→∞ ‖an‖ ≤ d, lim supn→∞ ‖bn‖ ≤ d and
lim supn→∞ ‖(1− ρn)an + ρnbn‖ = d holds for some d ≥ 0 then limn→∞ ‖an − bn‖ = 0.

Lemma 2 ([5]). Let ϕ : G → G be a generalized α− nonexpansive mapping that satisfies Opial’s
property. If {an} converges weakly to c and limn→∞ ‖an − ϕ(an)‖ = 0, then ϕ(c) = c, that is
I − ϕ is demiclosed at zero, where I is an identity mapping on B.

Proposition 3 ([31]). Let ϕ : G → G be a generalized α-nonexpansive mapping; then, the
following holds.

(i) If ϕ satisfies Condition (C), then ϕ satisfies Condition (Cα).
(ii) If ϕ satisfies Condition (Cα) and Fix(ϕ) 6= ∅, then ϕ is quasi-non-expansive.

3. Convergence Analysis

In this section, we prove some strong and weak convergence results using AA-iterative
scheme (5) for generalized α-nonexpansive mappings in a uniformly convex Banach space
B, and all the results in this section generalize the corresponding results of Thakur et al. [17]
and Ali et al. [21].

Lemma 3. Let G be a nonempty closed convex subset of a uniformly convex Banach space B and
ϕ : G → G a generalized α-nonexpansive mapping with Fix(ϕ) 6= ∅. If {an} is a sequence defined
by AA-iterative algorithm (5), then limn→∞ ‖an − a∗‖ exists for all a∗ ∈ Fix(ϕ).

Proof. Let a∗ ∈ Fix(ϕ). Since ϕ satisfies Condition (Cα), with Proposition 3, ϕ is quasi-
nonexpansive mapping, that is,

‖ϕ(a)− a∗‖ ≤ ‖a− a∗‖.

Using Iterative Algorithm (5), we have

‖dn − a∗‖ = ‖(1− σn)an + σn ϕ(an)− a∗‖
≤ (1− σn)‖an − a∗‖+ σn‖ϕ(an)− a∗‖. (6)

As ϕ is generalized α nonexpansive mapping with ϕ(a∗) = a∗, we have

‖ϕ(an)− a∗‖ ≤α‖a∗ − ϕ(an)‖+ α‖an − ϕ(a∗)‖+ (1− 2α)‖an − a∗‖
≤α{‖a∗ − ϕ(a∗)‖+ ‖ϕ(an)− ϕ(a∗)‖}+ α‖an − ϕ(a∗)‖
+ (1− 2α)‖an − a∗‖
≤‖an − a∗‖. (7)

Using (7) in (6), we obtain that

‖dn − a∗‖ ≤(1− σn)‖an − a∗‖+ σn‖an − a∗‖
=‖an − a∗‖. (8)

If tn = (1− ρn)dn + ρn ϕ(dn), then

‖cn − a∗‖ = ‖ϕ(tn)− a∗‖. (9)

Now,

‖ϕ(tn)− ϕ(a∗)‖ ≤α‖a∗ − ϕ(tn)‖+ α‖tn − ϕ(a∗)‖+ (1− 2α)‖tn − a∗‖
≤‖tn − a∗‖. (10)
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In addition,

‖tn − a∗‖ ≤‖(1− ρn)dn + ρn ϕ(dn)− a∗‖
≤(1− ρn)‖dn − a∗‖ − ρn‖ϕ(dn)− a∗‖, (11)

and

‖ϕ(dn)− a∗‖ ≤α‖a∗ − dn‖+ α‖dn − ϕ(a∗)‖+ (1− 2α)‖dn − a∗‖
≤‖dn − a∗‖. (12)

Putting (8) and (12) in (11), we obtain

‖tn − a∗‖ ≤ ‖an − a∗‖. (13)

From (10) and (13), we have

‖ϕ(tn)− a∗‖ ≤ ‖an − a∗‖. (14)

It follows from (9) and (14) that

‖cn − a∗‖ ≤ ‖an − a∗‖. (15)

Now, take un = (1− ηn)ϕdn + ηϕ(cn),

‖bn − a∗‖ ≤‖ϕ(un)− a∗‖ ≤ ‖un − a∗‖
≤α‖a∗ − ϕ(un)‖+ α‖un − ϕ(a∗)‖+ (1− 2α)‖un − a∗‖
≤α‖ϕ(un)− (a∗)‖+ (1− α)‖un − a∗‖
≤‖un − a∗‖. (16)

‖un − a∗‖ ≤‖(1− ηn)ϕ(dn) + ηϕ(cn)− a∗‖
≤(1− ηn)‖ϕ(dn)− a∗‖+ ηn‖ϕ(cn)− a∗‖ (17)

≤(1− ηn)‖ϕ(dn)− a∗‖+ ηn‖ϕ(cn)− a∗‖,

and

‖ϕ(cn)− a∗‖ ≤α‖a∗ − ϕ(cn) + ‖(cn)− ϕ(a∗)‖+ (1− 2α)‖cn − a∗‖
≤α‖ϕ(cn)− (a∗)‖+ (1− α)‖cn − a∗‖
≤‖cn − a∗‖. (18)

Using (12) and (18) in (17), we obtain

‖un − a∗‖ ≤ ‖an − a∗‖. (19)

Putting (19) in (16), we obtain

‖bn − a∗‖ ≤ ‖an − a∗‖. (20)

Now,
‖an+1 − a∗‖ ≤ ‖ϕ(bn)− a∗‖, (21)
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and

‖ϕ(bn)− a∗‖ ≤α‖a∗ − ϕ(bn)‖+ α‖bn − ϕ(a∗‖+ (1− 2α)‖bn − a∗‖ (22)

≤α‖ϕ(bn)− ϕ(a∗)‖+ (1− α)‖bn − a∗‖
≤‖bn − a∗‖.

Putting (22) in (21), we have

‖an+1 − a∗‖ ≤ ‖bn − a∗‖. (23)

From (20) and (23), we obtain that

‖an+1 − a∗‖ ≤ ‖an − a∗‖. (24)

This shows that {‖an − a∗‖} is decreasing and bounded from the below sequence for
each a∗ ∈ Fix(ϕ).

Hence, limn→∞ ‖an − a∗‖ exists.

Lemma 4. Let G be a nonempty closed convex subset of a uniformly convex Banach space B and
ϕ : G → G a generalized α-nonexpansive mapping. If {an} is a sequence defined by AA-iterative
algorithm (5), then Fix(ϕ) 6= ∅ if and only if {an} is bounded and limn→∞ ‖an − ϕ(an)‖ = 0.

Proof. With Lemma 3 above, limn→∞ ‖an − a∗‖ exists, and {an} is bounded. Put

lim
n→∞

‖an − a∗‖ = k. (25)

From (15), (18), (20) and (25), we have

lim sup
n→∞

‖dn − a∗‖ ≤ lim sup
n→∞

‖an − a∗‖ ≤ k, (26)

lim sup
n→∞

‖cn − a∗‖ ≤ lim sup
n→∞

‖an − a∗‖ ≤ k, (27)

lim sup
n→∞

‖bn − a∗‖ ≤ lim sup
n→∞

‖an − a∗‖ ≤ k. (28)

It follows from (7) that

‖ϕ(an)− a∗‖ =‖ϕ(an)− ϕ(a∗)‖ ≤ ‖an − a∗‖.
lim sup

n→∞
‖ϕ(an)− a∗‖ ≤ k. (29)

Thus,
‖an+1 − a∗‖ = ‖ϕ(bn)− ϕ(a∗)‖ ≤ ‖bn − a∗‖. (30)

By taking lim inf as n→ ∞, we obtain

k ≤ lim inf
n→∞

‖bn − a∗‖. (31)

From (28) and (31), we have

lim
n→∞

‖bn − a∗‖ = k. (32)

Now, from (30), we obtain that

‖an+1 − a∗‖ ≤ ‖bn − a∗‖ ≤ ‖ϕ(cn)− a∗‖ ≤ ‖cn − a∗‖, (33)
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which, on taking lim inf as n→ ∞, gives that

k ≤ lim inf
n→∞

‖cn − a∗‖. (34)

With (27) and (34), we obtain

lim
n→∞

‖cn − a∗‖ = k.

From (33), we have

‖an+1 − a∗‖ ≤ ‖cn − a∗‖ ≤ ‖ϕ(cn)− a∗‖ ≤ ‖dn − a∗‖. (35)

On taking lim inf as n→ ∞, we obtain that

k ≤ lim inf
n→∞

‖dn − a∗‖. (36)

Thus, from (25) and (36), we obtain

lim
n→∞

‖dn − a∗‖ = k.

In addition,

k ≤ lim
n→∞

‖dn − a∗‖

= lim
n→∞

‖(1− σn)an + σn ϕ(an))− a∗‖

≤ lim
n→∞

(1− σn)‖an − a∗‖+ σn‖ϕ(an)− a∗‖

≤ lim
n→∞

(1− σn)‖an − a∗‖+ σn‖an − a∗‖

≤ lim
n→∞

‖an − a∗‖

≤ k.

Hence,
lim

n→∞
‖(1− σn)(an − a∗) + σn(ϕ(an)− a∗)‖ = k. (37)

From (25), (29), (37) and Lemma 1, we obtain

lim
n→∞

‖an − ϕ(an)‖ = 0.

Conversely, suppose {an} is bounded and limn→∞ ‖an − ϕ(an)‖ = 0.
Let a∗ ∈ A(G, {an}). Through Proposition 2, we have

r(ϕ, {an}) = lim sup
n→∞

‖an − ϕ(a∗)‖

≤ lim sup
n→∞

(
(3 + α)

(1− α)
‖an − ϕ(an) + ‖an − a∗‖)

≤ lim sup
n→∞

‖an − a∗‖

=r(a∗, {an}) = r(G, {an}),

which implies that ϕ(a∗) ∈ A(G, {an}).
Since B is uniformly convex, A(G, {an}) is a singleton.
Hence, we have ϕ(a∗) = a∗.

Theorem 2. Let G be a nonempty closed convex subset of a uniformly convex Banach space B
and ϕ : G → G a generalized α-nonexpansive mapping. If {an} is a sequence defined by the
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AA-iterative algorithm (5), then {an} converges weakly to a point of Fix(ϕ), provided that B
satisfies Opial’s condition.

Proof. Let a∗ ∈ Fix(ϕ). Through Lemma 3, limn→∞ ‖an − a∗‖ exists. Now, we show that
{an} has a unique weak subsequential limit in Fix(ϕ).

Suppose a and b are weak limits of subsequences {ani} and {anj} of {an}, respectively.
From Lemma 4, we have limn→∞ ‖an − ϕ(an)‖ = 0. Moreover, from Lemma 2, I − ϕ is
demiclosed at zero.

This implies that (I − ϕ)a = 0, that is, a = ϕ(a). Similarly, b = ϕ(b).
Now, we show the uniqueness. If a 6= b,, then by using Opial’s condition, we have

lim
n→∞

‖an − a‖ = lim
ni→∞

‖ani − a‖

< lim
ni→∞

‖ani − b‖

= lim
n→∞

‖an − b‖

= lim
nj→∞

‖anj − b‖

< lim
nj→∞

‖anj − a‖

= lim
n→∞

‖an − a‖,

a contradiction; so, a = b. Consequently, {an} converges weakly to a point of Fix(ϕ).

Theorem 3. Let G be a nonempty closed convex subset of a uniformly convex Banach space B and
ϕ : G → G a generalized α-nonexpansive mapping. If {an} is a sequence defined by AA-iterative
algorithm (5), then {an} converges to a point of Fix(ϕ) if and only if lim infn→∞ d(an, Fix(ϕ)) = 0
or lim supn→∞ d(an, Fix(ϕ)) = 0, where d(an, Fix(ϕ)) = inf{‖an − a∗‖ : a∗ ∈ Fix(ϕ)}.

Proof. If {an} converges to a fixed point a∗ ∈ Fix(ϕ), then obviously, we have lim infn→∞ d(an,
Fix(ϕ)) = 0 and lim supn→∞ d(an, Fix(ϕ)) = 0.

Conversely, suppose that lim infn→∞ d(an, Fix(ϕ)) = 0. From Lemma 3,
limn→∞ ‖an − a∗‖ exists for all a∗ ∈ Fix(ϕ). Thus, by assumption,

lim
n→∞

d(an, Fix(ϕ)) = 0.

We now show that {an} is a Cauchy sequence in G. As limn→∞ d(an, Fix(ϕ)) = 0, for
given ε > 0, there exists m0 ∈ Z+, such that, for all n ≥ m0,

d(an, Fix(ϕ)) <
ε

2
,

that is

inf{‖an − a∗‖ : a∗ ∈ Fix(ϕ)} < ε

2
.

In particular, inf{‖an − a∗‖ : a∗ ∈ Fix(ϕ)} < ε
2 . Therefore, there exists a∗ ∈ Fix(ϕ)

such that
‖am0 − a∗‖ < ε

2
.
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Now, for m, n ≥ m0,

‖an+m − an‖ ≤‖am+n − a∗‖+ ‖an − a∗‖
≤‖am0 − a∗‖+ ‖am0 − a∗‖
=2‖am0 − a∗‖
<ε.

This shows that {an} is a Cauchy sequence in G. As G is a closed subset of a Banach
space B, there is a point r ∈ G, such that limn→∞ an = r. Now, limn→∞ d(an, Fix(ϕ)) = 0
gives that limn→∞ d(an, Fix(ϕ)) = 0. Hence, r ∈ Fix(ϕ).

Theorem 4. Let G be a nonempty compact convex subset of a uniformly convex Banach space B
and ϕ : G → G be a generalized α-nonexpansive mapping. If {an} is a sequence defined with the
AA-iterative algorithm (5), then {an} converges strongly to a fixed point of ϕ.

Proof. From Theorem 1, Fix(ϕ) 6= ∅; so, via Lemma 4, we have

lim
n→∞

‖an − ϕ(an)‖ = 0.

Since G is compact, there is a subsequence {ank} of {an}, such that ank → a∗ for some
a∗ ∈ G. Through Proposition 2, we have

‖ank − ϕ(a∗)‖ ≤ (3 + α)

(1− α)
‖ank − ϕ(ank )‖+ ‖ank − a∗‖ ∀ k ≥ 1.

On taking the limit to be k→ ∞, we obtain ank → ϕ(a∗). This implies that ϕ(a∗) = a∗,
that is, a∗ ∈ Fix(ϕ).

In addition, limn→∞ ‖an − a∗‖ exists by Lemma (3). Thus, a∗ is the limit of a
sequence {an}.

Now, we prove a strong convergence result using Condition (I).

Theorem 5. Let G be a nonempty closed and convex subset of a uniformly convex Banach space B
and φ : G → G be generalized α-nonexpansive mapping satisfying Condition (I). Then, sequence
{an}, defined with AA-iterative Algorithm (5), converges strongly to a fixed point of ϕ.

Proof. As proven in Lemma 4,

lim
n→∞

‖an − ϕ(an)‖ = 0. (38)

From Condition (I) and (31), we obtain

0 ≤ lim
n→∞

r(d(an, Fix(ϕ))) ≤ lim
n→∞

‖an − ϕ(an)‖,

which implies
lim

n→∞
r(d(an, Fix(ϕ))) = 0.

Since r : [0, ∞)→ [0, ∞) is an increasing function satisfying r(0) = 0, r(t) > 0 ∀ t > 0.
Hence, we have

lim
n→∞

d(an, Fix(ϕ)) = 0.

Now, all the conditions of Theorem 3 are satisfied; therefore, {an} converges strongly
to a fixed point of ϕ.
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In Banach spaces with an Opial condition, we had a weak convergence of our iterative
algorithm. However, if the mapping satisfied Condition (I), then we obtained a strong
convergence result.

4. Numerical Example

Example 2. Let G = [0, ∞) be endowed with usual norm |.|. Let ϕ : [0, ∞)→ [0, ∞) be defined by

ϕ(a) =

{
a+1

2 if a ≥ 3
0 if a ∈ [0, 3).

ϕ does not satisfy Condition (C). Moreover, ϕ is generalized α-nonexpansive mapping.
Let a = 5

2 and b = 7
4 since we have ϕ(a) = 7

2 , so,

1
2
|a− ϕ(a)| = 1

2
|5
2
− 7

2
| = 1

2
|3
4
| = 3

8
.

In addition, |a− b| = | 52 −
7
4 | = 1.

So,
1
2
|a− ϕ(a)| < |a− b|,

but |ϕ(a)− ϕ(b)| > |a− b|. Hence, ϕ does not satisfy Condition (C).
Now, taking α = 1

3 , consider the following cases.
Case 1: If a > 3 and b ∈ [0, 3], then

|ϕ(a)− ϕ(b)| = | a + 1
2
− 0| = 1

2
|a + 1|.

In addition,

α|b− ϕ(a)|+ α|a− ϕ(b)|+ (1− 2α)|a− b| =1
3
|b− a + 1

2
|+ 1

3
|a|+ 1

3
|a− b|

≥ 1
2
|a + 1| = |ϕ(a)− ϕ(b)|.

Case 2: For a > 3 and b > 3, we have

|ϕ(a)− ϕ(b)| = | a + 1
2
− a + 1

2
| = 1

2
|a− b|

and

α|b− ϕ(a)|+ α|a− ϕ(b)|+ (1− 2α)|a− b| =1
3
|b− a + 1

2
|+ 1

3
|a− b + 1

2
|+ 1

3
|a− b|

≥ 1
2
|a− b| = |ϕ(a)− ϕ(b)|.

Case 3: Let a ∈ [0, 3] and b > 3. Then,

1
3
|b− ϕ(a)|+ 1

3
|a− ϕ(b)|+ 1

3
|a− b| ≥ |ϕ(a)− ϕ(b)|.

Hence, ϕ is generalized α−nonexpansive mapping.

We now present an experiment to compare the convergence behavior of iteration (5).
Take initial values a1 = 8 ∈ G and ηn = n

n2+4n+2 , ρn = n+1
n2+n+1 and σn = 2n+1

n2+n+7 . Iterative
Algorithm (5) converged faster than the other schemes for generalized α-nonexpansive
mapping (Figure 1).
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Figure 1. Convergence behavior of iterative algorithms.

5. Application

In 2022, El-sayed and Omar [32] established the existence and uniqueness of the weak
solution of a delay composite functional differential equation of the Volterra–Stieljes type.
Many authors solved the delay composite functional differential equation of the Volterra–
Stieljes type. For more details, we refer to [33,34]. In this section, we estimate the weak
solution of a delay composite functional differential equation.

Let B be a reflexive Banach space with norm ‖.‖B, B∗ denotes the dual of B and
C[J, B], J = [0, M] denotes the class of continuous functions equipped with the follow-
ing norm:

‖a‖C = supt∈J‖a(t)‖B, a ∈ C[J, B].

Consider the following delay composite functional differential equation of the Volterra–
Stieltjes type:

d
dt

a(t) = f1

(
t,
∫ h(t)

0
f2(t, s, a(s))dsg(t, s)

)
, t ∈ J (39)

with initial condition
a(0) = a0, (40)

Assume that

(i). h : J → J is continuous increasing with h(t) ≤ t .
(ii). f1 : J × B→ B is weakly continuous and satisfies the weak Lipschitz condition with

Lipschitz constant L1, such that∣∣T( f1(t, a))− f1(t, b)
∣∣ ≤ L1

∣∣T(a− b)
∣∣, L1 > 0, ∀(t, a), (t, b) ∈ J × B, T ∈ B∗.

(iii). f2 : J × J × B→ B is weakly continuous and weakly satisfies the Lipschitz condition
with Lipschitz constant L2 such that∣∣T( f2(t, s, a))− f2(t, s, b)

∣∣ ≤ L2
∣∣T(a− b)

∣∣,
(iv). Function g : J ×R→ R is continuous with

w = max
{

sup
∣∣g(t, h(t))

∣∣+ sup
∣∣g(t, 0)

∣∣} on J.

(v). L1L2wt < 1
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Finding the solution of (39) and (40) is equivalent to finding the solution of the follow-
ing integral equation [32]:

a(t) = a0 +
∫ t

0
f1

(
s,
∫ h(t)

0
f2(s, θ, a(θ))

)
dθ g(s, θ)ds.

In the following theorem, we obtain an approximation of the solution of (39) and (40)
using AA-iterative Algorithm (5).

Theorem 6. Suppose that Assumptions (i)–(v) hold. Then, Problems (39) and (40) have a unique
solution a∗ ∈ C[J, B], and the sequence {an} defined in (5) converges to a∗.

Proof. Let {an} be a sequence defined in (5). Define an operator ϕ on C[J, B] by

ϕ(a(t)) = a0 +
∫ t

0
f1

(
s,
∫ h(t)

0
f2(s, θ, a(θ))

)
dθ g(s, θ)ds.

Note that,

‖dn − a∗‖C =‖(1− σn)an + σn ϕ(an)− a∗‖C

≤(1− σn‖an − a∗‖+ ‖ϕ(an)− a∗‖C (41)

and

‖ϕ(an)− a∗‖C =‖ϕ(an)− ϕ(a∗)‖

≤
∥∥∥∥a0 +

∫ t

0
f1

(
s,
∫ h(s)

0
f2
(
s, θ, an(θ)

))
dθ g(s, θ)ds−

a0 −
∫ t

0
f1

(
s,
∫ h(s)

0
f2
(
s, θ, a∗(θ)

))
dθ g(s, θ)ds

∥∥∥∥
C

=

∣∣∣∣ϕ( ∫ t

0
f1

(
s,
∫ h(s)

0
f2
(
s, θ, an(θ)

))
dθ g(s, θ)ds−

−
∫ t

0
f1

(
s,
∫ h(s)

0
f2
(
s, θ, a∗(θ)

))
dθ g(s, θ)

)
ds
∣∣∣∣

≤
∫ t

0
L1

∣∣∣∣ϕ( ∫ h(s)

0
f2
(
s, θ, an(θ)

))
dθ g(s, θ)−

∫ h(s)

0
f2
(
s, θ, a∗(θ)

)
dθ g(s, θ)

)∣∣∣∣ds

≤L1

∫ t

0

∫ h(s)

0

∣∣∣∣ϕ( f2
(
s, θ, an(θ)

))
−

f2
(
s, θ, a∗(θ)

))
dθ g(s, θ)

∣∣∣∣ds

≤L1

∫ t

0

∫ h(s)

0
L2

∣∣∣∣ϕ(an(θ)− a∗(θ)dθ g(s, θ)

)∣∣∣∣ds

=L1L2‖an − a∗‖C

∫ t

0

∫ h(s)

0
dθ g(s, θ)ds

=L1L2‖an − a∗‖C

∫ t

0

(
g(s, h(s))− g(s, 0)

)
ds

≤L1L2‖an − a∗‖C

∫ t

0
ds

=L1L2wt‖an − a∗‖C

≤‖an − a∗‖C (42)
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So,

‖dn − a∗‖C ≤(1− σn)‖an − a∗‖C + σn‖an − a∗‖C

≤‖an − a∗‖C (43)

Now, let en = (1− ρn)dn + ρn ϕ(dn); following the arguments similar to those given
above, we obtain

‖en − a∗‖C ≤ ‖dn − a∗‖C ≤ ‖an − a∗‖C.

So,
‖cn − a∗‖C ≤ ‖ϕ(cn)− ϕ(a∗)‖C.

From (42), we obtain

‖cn − a∗‖C ≤ ‖en − a∗‖C ≤ ‖an − a∗‖C.

Similarly,
‖bn − a∗‖C ≤ ‖an − a∗‖C.

If we set ‖an − a∗‖C = vn, then we obtain

vn+1 ≤ vn, ∀ n ∈ N

which implies that
lim

n→∞
vn = 0.

Hence, an → a∗.

6. Conclusions

In this paper, we approximated the fixed points of generalized α-nonexpansive map-
pings using an AA-iterative algorithm. We established some weak and strong convergence
results for generalized α-nonexpansive mappings in uniformly convex Banach spaces. A
numerical example was given to show that AA-iterative algorithm converged faster than
some existing algorithms for generalized α-nonexpansive mappings. We approximated the
weak solution of delay composite functional differential equation of the Volterra–Stieltjes
type by AA-iterative scheme. In future work, we shall extend these results for some gen-
eral class of mappings in some important abstract spaces, and try to extend the iterative
scheme to approximate the solution of certain nonlinear problems, such as fixed-point and
optimization problems in fewer steps.
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