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Abstract: In this paper, we propose an unsupervised anomaly detection method based on the Au-
toencoder with Long Short-Term Memory (LSTM-Autoencoder) network and Generative Adver-
sarial Network (GAN) to detect anomalies in industrial control system (ICS) using cyber–physical 
fusion features. This method improves the recall of anomaly detection and overcomes the challenges 
of unbalanced datasets and insufficient labeled samples in ICS. As a first step, additional network 
features are extracted and fused with physical features to create a cyber–physical dataset. Following 
this, the model is trained using normal data to ensure that it can properly reconstruct the normal 
data. In the testing phase, samples with unknown labels are used as inputs to the model. The model 
will output an anomaly score for each sample, and whether a sample is anomalous depends on 
whether the anomaly score exceeds the threshold. Whether using supervised or unsupervised algo-
rithms, experimentation has shown that (1) cyber–physical fusion features can significantly improve 
the performance of anomaly detection algorithms; (2) the proposed method outperforms several 
other unsupervised anomaly detection methods in terms of accuracy, recall, and F1 score; (3) the 
proposed method can detect the majority of anomalous events with a low false negative rate. 
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1. Introduction 
In recent years, cyberattacks have caused significant damage to industrial production 

and national infrastructure [1]; the Stuxnet virus swept the global industry in 2010 and 
was able to carry out targeted attacks on infrastructure, with Iran suffering the most se-
vere effects [2]. In 2015, a malicious program called BlackEnergy affected multiple substa-
tions in the Ukrainian power sector [3]. Many Ukrainian government agencies and com-
panies were attacked by the ransomware NotPetya in 2017, which ultimately caused 
havoc worldwide [4]. A serious disaster can also result from the failure of hardware or 
software within an ICS as well as threats from the Internet. Globally, ICS security inci-
dents occur frequently. 

In order to secure ICS, anomaly detection is a promising approach [5]. It is usually 
physical faults or network attacks that cause anomalous events to occur in ICS. Sensors, 
actuators, pipelines, and other industrial equipment may malfunction due to physical 
faults. A network attack refers to an attack on a communication channel, host, or process 
control system, such as a man-in-the-middle attack (MITM), a denial of service (DoS), or 
a scanning attack. The purpose of industrial sensors is to collect status information (re-
ferred to in this paper as physical information) about the various industrial equipment in 
the system and to reflect the physical processes that take place within it. Physical faults 
have an impact on the physical operation of the system, but not on its network traffic. This 
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results in physical faults not being detected by anomaly detection methods based solely 
on network traffic. The physical processes of a system may not necessarily be affected by 
some network attacks. Consequently, algorithms that detect anomalies based solely on 
physical information are not able to detect these attacks. The use of anomaly detection 
algorithms that are based solely on physical information cannot detect network attacks in 
a timely manner, since most network attacks against ICS do not immediately cause the 
system to enter an abnormal state. Our conclusion is that taking into account both network 
traffic information and physical information is an effective way to improve the detection 
performance for anomaly detection algorithms that are used in industrial control systems 
[6], which has tended to be ignored in past studies. 

In the past decade, artificial intelligence (AI) has been rapidly developed and applied 
in various fields [7–10]. A number of AI-based approaches have emerged in ICS security, 
which can be categorized as supervised and unsupervised algorithms as a result of the 
success of AI in traditional IT security [11]. In the past, many anomaly detection algo-
rithms based on supervised algorithms have been proposed. Although the industrial In-
ternet continues to develop, attacks from the Internet are emerging in new ways, and su-
pervised algorithms have a limited ability to detect unknown attacks, making them in-
creasingly unsuitable for ICS security. As ICS datasets have significant imbalances and 
abnormal data are much smaller than normal data, coupled with a lack of sufficient la-
beled samples, supervised algorithms are no longer suitable for application in ICS security 
problems. The limitations of supervised learning can be overcome by unsupervised algo-
rithms such as One-Class SVM (OCSVM) [12] and isolation forests [13]. 

Autoencoder is an unsupervised algorithm that contains an encoder and a decoder 
[14]. The input X is mapped by the encoder to the latent variable Z, and subsequently Z is 
mapped by the decoder to the reconstruction R. The deviation between the input X and 
the reconstruction R is called reconstruction error. For autoencoder-based anomaly detec-
tion, the reconstruction error is used to calculate an anomaly score. Detecting anomalies 
can be accomplished using autoencoders trained using only normal data. When training 
a model, it is assumed that the model will only learn how to reconstruct for normal sam-
ples. During the testing phase, the model may not be able to reconstruct the anomaly sam-
ple well, so the anomaly sample will produce a higher reconstruction error compared to 
the reconstruction error of the normal sample. In some cases, small anomalies can lead to 
small reconstruction errors, making it difficult to detect small anomalies. Generative ad-
versarial networks (GANs) may be used to identify small anomalies and amplify recon-
struction errors [15]. Autoencoders and GANs are both unsupervised artificial neural net-
works, with the difference being that GANs include an adversarial game mechanism [16]. 
The goal of training the generator is to generate data that are as realistic as possible and 
thus fool the discriminator (i.e., maximizing the likelihood that the discriminator will be 
incorrect). As well as a generator, the GAN contains a discriminator. When training a dis-
criminator, the objective is to minimize its own error probability, i.e., to be able to distin-
guish with high accuracy whether the data are real or generated. Due to the time series 
nature of ICS data, individual samples cannot be considered independently. Compared 
with ordinary autoencoders, LSTM-based autoencoders [17] have more powerful capabil-
ity in reconstructing time series data. 

In light of the above issues, the main contributions of this paper include the follow-
ing: 
• Based on the latest public ICS dataset, a method for extracting system network fea-

tures is designed for ICS, and the original physical features are fused with addition-
ally extracted network features to create a cyber–physical dataset with fusion fea-
tures. 

• A model is proposed for unsupervised anomaly detection for ICS based on LSTM-
Autoencoder and GAN, which is evaluated using the cyber–physical dataset. In 
terms of precision, recall, and F1-score, the model outperforms several other meth-
ods. 
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• Both supervised and unsupervised algorithms are used to investigate the effects of 
additional extracted network features on anomaly detection results. As a result of the 
experiments performed in this paper, it has been found that the features extracted 
from the network can significantly improve the performance of the anomaly detec-
tion algorithm. 
Acquiring data from industrial sensors is an inherent function of ICS, and ICS net-

work traffic data can be collected by listening to communication channels. It is feasible to 
collect both network data and physical data, and then extract the cyber–physical fusion 
features. The massive amount of data generated during the normal operation of the ICS 
is sufficient to train the unsupervised model. Without significantly changing the compo-
nents of the ICS, the models need to be trained only once to detect anomalies, including 
various novel attack methods. It is undeniable that the components of an ICS are fixed for 
a long time, and the network topology is not easily changed. Therefore, the unsupervised 
anomaly detection model using the cyber–physical fusion features proposed in this paper 
can help industrial control systems cope with various cyber and physical threats, attacks, 
and challenges in a cost-effective and profitable manner. 

In the remainder of this paper, the following sections are presented: Section 2 dis-
cusses related work in the area of anomaly detection of ICS; Section 3 describes the dataset 
used in this paper; Section 4 describes the method proposed in this paper; Section 5 de-
scribes the experimental setup and presents the experimental results and analysis; and 
Section 6 concludes with our future plans. 

2. Related Work 
It is necessary to detect anomalies in ICS in order to ensure its security. Studies con-

ducted in the past can be categorized according to their use of physical information or 
network traffic, depending on the features selected. 
(1) Studies using physical information. Industrial sensors collect physical data such as 

water level, temperature, and humidity. Ahmed et al. [18] use the hardware charac-
teristics of the sensor and the physical characteristics of the process to create a unique 
fingerprint for each sensor. In normal operation, noise-based fingerprints are created 
and can be used to detect attacks by comparing the differences between the noise 
pattern and the fingerprint pattern. According to Lin et al. [19], timed automata can 
be used to learn the laws that govern the change of sensor value. Furthermore, sensor 
and actuator dependencies are analyzed using a Bayesian network. The method is 
capable of detecting anomalies and locating the abnormal sensor or actuator. Indus-
trial sensor data can be analyzed based on their time and frequency characteristics. 
In their study, Nguyen et al. [20] developed a method for detecting outliers in time-
frequency data using continuous wavelet transforms. The authors of Zhao et al. [21] 
proposed a correlation-based method for detecting anomalies using sensor data and 
the correlations between them. Compared with only using sensor data, their method 
achieved higher accuracy. 

(2) Studies using network traffic. Since ICS networks are more stable than IT networks, 
abnormal network traffic usually indicates that the system is being attacked. Net-
work traffic-based anomaly detection methods can be further divided into packet-
based detection, flow-based detection, and session-based detection [22]. To detect ab-
normal behavior in ICS, Song et al. [23] extracted the behavioral sequence data from 
Modbus traffic to model the system’s normal behavior, and compared the actual be-
havioral data with the model’s predictions. Lee et al. [24] proposed AE-CGAN (au-
toencoder-conditional GAN) to oversample rare classes on the basis of the GAN 
model. It is able to achieve more accurate performance metrics in the case of signifi-
cant imbalance between normal and abnormal traffic. Benaddi et al. [25] used Distri-
butional Reinforcement Learning (DRL) and GAN to help distributional RL-based 
IDS enhance the detection of minority network attacks and improve the efficiency 
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and robustness of anomaly detection systems in the Industrial Internet of Things 
(IIoT). By extracting the temporal characteristics of the original traffic in the SCADA 
system, Kalech et al. [26] proposed a method for detecting network anomalies based 
on temporal pattern recognition. In order to detect abnormal behavior, Hidden Mar-
kov models and artificial neural networks are used. A multi-level anomaly detection 
scheme combining LSTMs and Bloom filters was proposed by Feng et al. [27] in order 
to detect malicious traffic in SCADA datasets. An algorithm for detecting anomalous 
traffic was proposed by Zhang et al. [28]. A grayscale image was created by convert-
ing the ICS traffic feature values into grayscale images, and then the model was 
trained with the resulting grayscale images, which improved the accuracy of anom-
aly detection. 
According to another perspective, past research can also be divided into supervised 

and unsupervised research. The use of supervised machine learning has been demon-
strated in some studies [29,30] as a means of detecting anomalous events or attacks. In 
spite of good results, the system was only able to detect known attacks and not unknown 
or zero-day attacks. ICS datasets are also often imbalanced, i.e., the anomalous samples 
are much smaller than the normal samples, which limits the performance of the super-
vised algorithm. Unsupervised or semi-supervised algorithms have been used in other 
studies to overcome the limitations of supervised algorithms. According to Kravchik et al. 
[31], their algorithm was able to detect 31 out of 36 network attacks using a one-dimen-
sional CNN-based semi-supervised algorithm. Chang et al. [32] reported that an anomaly 
detection framework based on k-means and convolutional autoencoders achieved an F1-
score of 0.9373 for water storage tank datasets. An autoencoder-based anomaly detection 
model was proposed by Audibert et al. [33], which used the reconstruction error as the 
loss function during the training phase and as the anomaly score during the testing phase. 
An anomaly is determined when the sample’s anomaly score exceeds a predetermined 
threshold. Using an adaptive update strategy based on WGAN-GP, Lu et al. [34] proposed 
an improved generative adversarial network that produces fake anomaly samples, im-
proving the accuracy of anomaly detection. Li et al.’s [35] GAN-based semi-supervised 
method, MAD-GAN, utilizes both LSTMs as generators and discriminators to capture the 
temporal correlation between time series distributions and potential interactions between 
variables, and it can detect anomalies effectively. 

Anomaly detection algorithms are designed based on the selection of appropriate 
features. In order to detect anomalies in ICS, it is not enough to rely solely on physical 
information, but it is also necessary to consider network information. However, there are 
some limitations to the above methods due to the dataset. It was found that the datasets 
they selected had the following problems: (1) the dataset was not acquired in an ICS en-
vironment; (2) the dataset was nonpublic; (3) the dataset was outdated; and (4) the dataset 
was either restricted to physical process data or to network traffic. The authors in [36] 
compared the classification performance achieved by the algorithm when only using net-
work features with that achieved by the algorithm when using physical network features, 
demonstrating that the fusion of physical and network information contributes to im-
proved classification accuracy. The experiment was conducted on four supervised ma-
chine learning algorithms, but unsupervised algorithms were not considered. 

Due to the above deficiencies, the following improvements have been made in this 
paper. 
 In terms of the dataset, the latest ICS public dataset WDT [37] is utilized, which pro-

vides data on physical processes and their corresponding network traffic. 
 When extracting features, we take into account the physical information and network 

traffic of ICS. 
 Both supervised and unsupervised algorithms are used in the evaluation of perfor-

mance to determine whether cyber–physical features contribute to the improvement 
of anomaly detection. 
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 An unsupervised anomaly detection model based on LSTM-Autoencoder and GAN 
is proposed, which solves the problem of low recall in past anomaly detection mod-
els, and is suitable for the ICS field that does not have sufficient labeled samples. 

3. Dataset Description 
During the normal operation of the Water Distribution Testbed as well as in the event 

of network attacks or physical faults, the dataset used in this study was compiled from 
four acquisitions. In Table 1, each acquisition is represented as a sub-dataset. During the 
first acquisition, eight network attacks or physical failures were conducted, resulting in 
eight scenarios. In a similar manner, the second and third acquisitions yielded thirteen 
and seven scenarios, respectively. As of the time of the fourth acquisition, the system was 
functioning normally, without any network attacks or physical faults. In total, physical 
faults included two water leaks and six sensors and pumps breakdowns, and network 
attacks included eight man-in-the-middle (MITM) attacks, five denial of service (DoS) at-
tacks, and seven scanning attacks. Figure 1 shows the number and proportion of samples 
divided into normal and malicious for each acquisition. 

Table 1. Data acquisition and description. 

Acquisitions 
Description 

(Scenario Number: 1.1–1.8, 2.1–2.13, 3.1–3.7) 

First 
(Attack 1) 

phy_att_1.csv, attack_1.pcap 
5 MITM attack scenarios. (1.1, 1.3, 1.5, 1.7, 1.8) 

3 physical fault scenarios. (1.2, 1.4, 1.6) 

Second 
(Attack 2) 

phy_att_2.csv, attack_2.pcap 
7 scan attack scenarios. (2.1, 2.2, 2.3, 2.4, 2.7, 2.9, 2.11) 

3 Dos attack scenarios. (2.5, 2.10, 2.13) 
2 physical fault scenarios. (2.6, 2.8) 

1 MITM attack scenarios. (2.12) 

Third 
(Attack 3) 

phy_att_3.csv, attack_3.pcap 
3 physical fault scenarios. (3.1, 3.3, 3.4) 

2 Dos attack scenarios. (3.2, 3.5) 
2 MITM attack scenarios. (3.6, 3.7) 

Fourth 
(Normal) 

phy_normal.csv, normal.pcap  
No attack. 

 
Figure 1. Number and proportion of samples divided into normal and malicious. 

This dataset provides both the physical process data and the corresponding raw net-
work traffic. The physical process data describe the information for the 40 physical sta-
tuses of the system in every second, such as whether the pump is turned on and the pres-
sure sensor value of the water tank. In addition, the dataset also provides some network 
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features extracted from raw network traffic data, such as the IP and MAC addresses of 
packets. For more detailed information on this dataset, please refer to [37]. 

4. Methodology 
Firstly, we describe how to extract additional network features and fuse them with 

the original physical features. Then we formulate the problem, and finally we describe 
our proposed anomaly detection model in more detail. 

4.1. Extraction and Fusion of Additional Network Features 
The physical information collected by industrial sensors alone is not capable of de-

tecting abnormal behavior in time owing to the widespread adoption of traditional infor-
mation technology in ICS, and the damage caused by cyberattacks has a hysteresis. It is 
therefore important to take into account both physical information and network traffic 
when extracting features for anomaly detection. 

The original physical process datasets have a sampling interval of one second, while 
the number of samples collected per second in the original network datasets is over 1000. 
By re-extracting the network features from the original network traffic according to the 
specifics of the ICS network, we can fuse the physical and network features together and 
summarize the situation every second. To enhance the performance of anomaly detection, 
22 additional features were extracted from the original dataset. In Table 2, you will find a 
list of the new features that have been added. 

Table 2. Additional extracted features. 

No. Features Description 
1 pkt_num Number of all types of packets 
2 icmp_pkt_num Number of ICMP packets 
3 arp_pkt_num Number of ARP packets 
4 tcp_pkt_num Number of TCP packets 
5 mb_q_num Number of MODBUS request packets 
6 mb_r_num Number of MODBUS response packets 
7 avg_pkt_size Average packet byte size 
8 avg_payload_size Average packet payload byte size 
9 mb_q_avg Average MODBUS request packet payload byte size 

10 mb_r_avg Average MODBUS response packet payload byte size 
11 illegal_mac Illegal MAC address appears 
12 illegal_ip Illegal IP address appears 
13 fc1_pkt_num Number of Modbus packets with function code 1 
14 fc3_pkt_num Number of Modbus packets with function code 3 
15 fc5_pkt_num Number of Modbus packets with function code 5 
16 fc6_pkt_num Number of Modbus packets with function code 6 
17 fin_flag_num Number of packets with FIN in the TCP flag 
18 syn_flag_num Number of packets with SYN in the TCP flag 
19 rst_flag_num Number of packets with RST in the TCP flag 
20 psh_flag_num Number of packets with PSH in the TCP flag 
21 ack_flag_num Number of packets with ACK in the TCP flag 
22 stage Stage of the current moment in a process cycle 

In addition, a feature named stage is added, which describes the stage of the current 
moment in the process cycle, and its value range is (0,1]. Taking the fourth acquisition as 
an example, there are a total of 3423 sampling points, including 12 complete process cy-
cles. As shown in Figure 2, in each process cycle, the water level of Tank_1 gradually in-
creases from 0 to the maximum value, and then gradually decreases to 0 and maintains 
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for a period of time. Correspondingly, the value of stage is gradually increased from 0 to 
1 and maintained for a period of time. 

 
Figure 2. Changes of stage value and Tank_1 water level during process cycle. 

The architecture of additional feature extraction and fusion is shown in Figure 3. For 
each row (sample) in the original physical dataset, its sampling time is time t (e.g., 
09/04/2021 11:30:55). All packets with time t are aggregated from the network traffic cor-
responding to this physical dataset, and the features described in Table 2 are extracted 
from those packets. Subsequently, the newly extracted features are fused with the original 
physical features to form a cyber–physical dataset. Some incomplete data were deleted, 
which were mainly concentrated in the first and last part of the dataset. The reason for the 
incomplete data is that when the original physical dataset is acquired, the corresponding 
original network dataset has not yet been acquired or the acquisition has been completed. 
The information of the finally formed cyber–physical dataset is shown in Table 3. 

 
Figure 3. Additional network feature extraction and fusion architecture. 
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Table 3. Cyber–physical dataset after feature fusion. 

Dataset Number of Samples and Features 
net_phy_att_1.csv (2409, 62) 
net_phy_att_2.csv (2092, 62) 
net_phy_att_3.csv (1248, 62) 
net_phy_norm.csv (3421, 62) 

Total samples 9170 

4.2. Problem Formulation 
In this paper, a dataset with sample number T is considered a multivariate time series 𝑇𝑆 of length T. 𝑥𝑡 is a vector consisting of all physical features and network features at 

time t, and the number of features is m. 𝑇𝑆 = 𝑥 , 𝑥 , … , 𝑥 (𝑥 ∈ ℝ , 1 ≤ 𝑡 ≤ 𝑇) (1) 

In order to make better use of the correlation between observations at the current 
moment and previous observations, a time window 𝑊  is defined. For each observation, 
its correlation with the previous K observations is considered. Therefore, the original time 
series 𝑇𝑆 can be transformed into a time window series 𝑊. 𝑊 = 𝑊 , 𝑊 , … , 𝑊 (𝑊 = 𝑥 , … , 𝑥 , 𝑥 ∈ ℝ ∗ , 1 ≤ 𝑡 ≤ 𝑇) (2) 

Use the time window series 𝑊 as the input to the model instead of the raw time 
series 𝑇𝑆. Before conversion to a time window series, each observation 𝑥𝑡 in the 𝑇𝑆 was 
normalized by 𝑇𝑆 = 𝑥 , 𝑥 , … , 𝑥 (𝑥 = 𝑥 − min(𝑇𝑆 )𝜀 + 𝑚𝑎𝑥(𝑇𝑆 ) − 𝑚𝑖𝑛(𝑇𝑆 ) , 1 ≤ 𝑗 ≤ 𝑚, 1 ≤ 𝑡 ≤ 𝑇) (3) 

where 𝜀 is a very small number in order to prevent zero-division. 

4.3. Proposed Model 
The proposed model consists of three modules: an encoder network 𝐿𝐸 using LSTM, 

and two decoder networks 𝐿𝐷  and 𝐿𝐷  using LSTM. As can be seen from Figure 4, 
these three modules constitute two LSTM-Autoencoders 𝐿𝐴𝐸  and 𝐿𝐴𝐸  that share the 
encoder network. The hyperparameters of the model are shown in Table 4. The training 
of the model consists of two phases. 
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Figure 4. Proposed model architecture. The proposed model consists of three modules: an encoder 
network LE, and two decoder networks 𝐿𝐷1 and 𝐿𝐷2. 

Table 4. Model hyperparameters. 

Module Hyperparameter Value 

LSTM encoder 
Layer of LSTM 1 

Input size and hidden size for each layer of LSTM (62, 128) 
Dropout 0.2 

LSTM decoder1 
and 

LSTM decoder2 

Layer of LSTM 1 
Input size and hidden size for each layer of LSTM (62, 128) 

Dropout 0.2 
Layer of Dense 1 

Size of each layer of the Dense (128, 62) 

4.3.1. Phase 1—Input Reconstruction 
The goal of this phase is to train 𝐿𝐴𝐸  and 𝐿𝐴𝐸  to reconstruct the input. LSTM-

Autoencoder can reconstruct each time window 𝑊 = 𝑥 , … , 𝑥 , 𝑥 . The time window 𝑊  is used as the input of the model, and the encoder network 𝐿𝐸 will output the hidden 
variable ℎ ∈ ℝ  (n is the number of cells in the LSTM hidden layer). Then, the two de-
coder networks will output the reconstructions of 𝑊  (𝑂 and 𝑂 ) according to ℎ  and 𝑥  in reverse order, where 𝑥  is the last of 𝑊 . Use L2-norm to define the reconstruction 
loss for each decoder: 𝑂 = 𝐿𝐴𝐸 (𝑊 ), 𝑂 = 𝐿𝐴𝐸 (𝑊 ) (4) 𝐿𝑜𝑠𝑠1 = ||𝑊 − 𝑂 || , 𝐿𝑜𝑠𝑠2 = ||𝑊 − 𝑂 ||  (5) 
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4.3.2. Phase 2—Adversarial Training 
In the second phase, 𝐿𝐴𝐸  and 𝐿𝐴𝐸  are trained adversarially. Put reconstruction 𝑂  as input to 𝐿𝐴𝐸  again and output reconstruction 𝑂 . The purpose of training 𝐿𝐴𝐸  

is to hope that it can distinguish whether 𝑂  is the real data or a reconstruction of the 
output of 𝐿𝐴𝐸 . Conversely, 𝐿𝐴𝐸  is trained to fool 𝐿𝐴𝐸 , that is, making 𝐿𝐴𝐸  unable 
to judge whether 𝑂  is the real data. The training objective is: 𝑂 = 𝐿𝐴𝐸 (𝐿𝐴𝐸 (𝑊 )) (6) 𝑚𝑖𝑛𝐿𝐴𝐸 𝑚𝑎𝑥𝐿𝐴𝐸 ||𝑊 − 𝑂 ||  (7) 

Therefore, the goal of 𝐿𝐴𝐸  is to minimize the distance between 𝑂  and 𝑊 , and the 
goal of 𝐿𝐴𝐸  is to maximize this distance, and the loss is defined as follows: 𝐿𝑜𝑠𝑠1 = +||𝑊 − 𝑂 || , 𝐿𝑜𝑠𝑠2 = −||𝑊 − 𝑂 ||  (8) 

Then, the evolutionary loss function is used to combine the losses of the two phases 
as the total loss for each LAE. 𝐿𝑜𝑠𝑠1 = 1𝑛 ||𝑊 − 𝑂 || + (1 − 1𝑛)||𝑊 − 𝑂 ||  (9) 

𝐿𝑜𝑠𝑠2 = 1𝑛 ||𝑊 − 𝑂 || − (1 − 1𝑛)||𝑊 − 𝑂 ||  (10) 

where n denotes the number of training iterations. The training process of the model can 
be seen in Figure 5a. Now define the anomaly score: 𝐴𝑛𝑜𝑚𝑎𝑙𝑦𝑆𝑐𝑜𝑟𝑒 = 12 ||𝑊 − 𝑂 || + 12 ||𝑊 − 𝑂 ||  (11) 

After the training is completed, the model is used to calculate the anomaly scores for 
each time window in the normal dataset, and then a threshold is determined based on the 
distribution of the anomaly scores. During the testing phase, shown in Figure 5b, for each 
unseen time window, the trained model will output its anomaly score. When the anomaly 
score of a time window is higher than the threshold, the model judges it as an anomaly. 
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Figure 5. Proposed model training and testing flow chart. (a) Training flow chart; (b) testing flow 
chart. 

5. Experiments and Results Analysis 
5.1. Experiment Environment and Metrics 

The experiments were performed using the following hardware and software plat-
forms: Intel(R) Core (TM) i5-12400 CPU, Windows 10 Professional (64 bits), NVIDIA Ge-
Force GTX 1650 Super, NVIDIA CUDA 11.1, Python 3.7.13, Pytorch 1.8.2, Python Scikit-
learn library 1.0.2. 

The proposed model is evaluated using recall, precision, F1-score, and accuracy. TP, 
TN, FP, and FN represent true positive, true negative, false positive, and false negative, 
respectively. 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 (12) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃 (13) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 × 𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (14) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁 (15) 
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5.2. Dataset 
The dataset needs to be divided differently for supervised and unsupervised algo-

rithms. 

5.2.1. Dataset for Supervised Algorithms 
In this paper, the datasets are organized chronologically, with each cyberattack or 

physical fault lasting for a period of time, corresponding to multiple consecutive samples. 
When the dataset is shuffled and then divided, some samples from an abnormal event 
will be placed in the training set, and the remainder will be placed in the testing set. As a 
result, the model is able to achieve a higher accuracy on the testing set, but this is an illu-
sion [36]. As a result, all samples will be either divided into training sets or testing sets, 
depending on the scenario. Divide 85% of the normal data into the training set and the 
rest into the testing set. For the anomaly scenarios, scenario 1.1–1.6, 2.1–2.7, 3.1–3.3 are 
divided into the training set and the rest are divided into the testing set. Use min–max to 
normalize the data, and the information of the dataset is shown in Table 5. 

Table 5. Dataset information for supervised algorithms. 

Label Training Set Testing Set 
Normal 5848 1864 

Physical fault 426 385 
MITM 358 126 
DoS 67 89 
Scan 5 2 
Total 6704 2466 

5.2.2. Dataset for Unsupervised Algorithms 
The fourth acquisition (no anomalies) is used as the training set to train the model. 

The other three acquisitions (with anomalies) were used as testing sets to evaluate the 
model. 

5.3. Experiments of Using Supervised Algorithms 
Three supervised machine learning algorithms were used for training and testing: 

random forest (RF), support vector machine (SVM), and naïve Bayes (NB). Use Random-
ForestClassifier, SVC, and GaussianNB in the Python Scikit-learn library to implement the 
above algorithm, and the hyperparameters for all of the above algorithms are generated 
by Python Scikit-learn library 1.0.2 defaulted. 

The experimental results are shown in Table 6. All three algorithms achieve poor 
performance when only using physical features. The best performance is achieved by RF, 
but its F1 score is only 0.28. When using cyber–physical features, the performance 
achieved by all three algorithms is greatly improved, with F1 scores exceeding 0.87. The 
results show that the additionally extracted network features can significantly improve 
the anomaly detection performance of the supervised algorithm. 

Table 6. Performance of three supervised machine learning algorithms. 

Algorithm 
Physical Features Cyber–Physical Features 

F1 P R A F1 P R A 
RF 0.257 0.754 0.155 0.777 0.907 1.000 0.831 0.958 

SVM 0.126 0.764 0.068 0.763 0.895 1.000 0.809 0.953 
NB 0.196 0.276 0.151 0.690 0.878 0.982 0.795 0.945 

  



Mathematics 2022, 10, 4373 13 of 21 
 

 

5.4. Experiments of Unsupervised Algorithms 
5.4.1. Performance of the Proposed Model 

Consider two situations, one using only physical features and another using cyber–
physical features. Table 7 shows the performance achieved by the proposed model in the 
above two situations. In addition, the anomaly scores of the three test sets obtained by the 
model in the above two situations are shown in Figure 6 and Figure 7, respectively. 
Cyberattacks and physical faults are marked in red and blue, respectively, in the figure. 

When using only physical features, the model performed poorly on all test sets. Con-
versely, when combining additionally extracted network features, the performance is 
greatly improved on each test set. We believe that the reason for the poor results obtained 
by physical features alone is that there are some network attacks that do not affect the 
physical state of the system too much, so the model fails to detect these network attacks. 
For the network attack scenario, the anomaly score given by the model for anomalous 
time points is significantly higher than that for non-anomalous time points, indicating that 
the model can easily detect network attack events. For physical fault scenarios, the anom-
aly scores given to anomalous time points are not very significant, but are sufficient to 
detect most physical fault events. 

Table 7. Performance of the proposed model. 

Acquisition 
Physical Features Cyber–Physical Features 

F1 P R A F1 P R A 
Attack 1 0.574 0.574 0.574 0.657 0.827 0.827 0.826 0.860 
Attack 2 0.292 0.293 0.292 0.730 0.646 0.646 0.645 0.865 
Attack 3 0.029 0.143 0.016 0.667 0.692 0.957 0.542 0.851 

Sum 0.425 0.479 0.382 0.686 0.758 0.800 0.720 0.860 

Due to the continuous increase in the degree of impact of an attack or fault on the 
system, it may not cause immediate damage to the system at the beginning, resulting in 
false negatives. Furthermore, it may still take some time for the attacked system to return 
to normal after the attack has ended, which may result in false positives. An example 
would be Scenario 1.6, which simulates the rise of the water level in Tank 3 as a result of 
a leak in the pipeline. A graph of the water level in Tank 3 over time is shown in Figure 
8a. Figure 8b shows the corresponding anomaly scores, as well as the time period during 
which the fault occurred (scenario 1.6). While the water level rose initially, it was con-
sistent with the normal rise in the tank’s level. In this period, the anomaly score does not 
exceed the threshold, and the model considers it to be a normal period. Persistent faults 
cause the water level to exceed the normal level and continue to rise. As a result, the 
anomaly score for this period gradually increases and exceeds the threshold. Upon the 
resolution of the fault, the water level begins to decline, which is reflected in the anomaly 
score as well. Nevertheless, the water level remains above the normal level for a period of 
time after the faults have been resolved, so the anomaly score remains above the thresh-
old, and the model still considers the system to be abnormal. 
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Figure 6. Anomaly scores for the proposed model (using only physical features). 

Figure 9a shows the changes of the water levels of Tank 1 and Tank 5 over time, and 
Figure 9b shows the corresponding anomaly scores. The time periods of the three fault 
scenarios are marked by red, green, and blue, respectively. Scenario 3.1 simulates a fault 
that pauses the transfer of water from Tank 1 to Tank 5. Scenario 3.3 simulates a fault by 
closing the Tank 5 outlet valve, thus achieving a slowdown in the flow of water from Tank 
5. Scenario 3.4 simulates a fault that suspends the transfer of water from the reservoir to 
Tank 1. None of the above three faults caused the water level to exceed the normal level, 
so none of the anomaly scores exceeded the threshold and the model considered the sys-
tem to be in a normal state. 

5.4.2. Comparison with Other Unsupervised Algorithms 
This section compares the performance of OCSVM [12], Isolation Forest (iForest) [13], 

USAD [33], and the proposed model. This paper implements USAD based on the author’s 
GitHub repository. Both One-Class SVM and Isolation Forest are provided by the Python 
Scikit-learn library and use default parameters. 
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Figure 7. Anomaly scores for the proposed model (using cyber–physical features). 

 
Figure 8. Scenario 1.6. (a) Water level in Tank 3; (b) anomaly score. 

As can be seen in Table 8, the proposed model outperforms several other algorithms. 
OCSVM and iForest achieved a high recall rate, but too many false positives resulted in a 
low F1 score. Compared with the first two algorithms, the F1 score of USAD has been 
greatly improved, but the recall rate is lower. Low recall means that there are more false 
negatives, meaning that the model does not effectively detect anomalies, which is fatal for 
anomaly detection systems. As shown in Figure 10, USAD is able to detect most network 
attacks, but it is almost incapable of detecting physical faults. In contrast, the proposed 
model can detect most physical faults. The experimental results show that for the ICS 
anomaly detection task, the model proposed in this paper can achieve better performance. 
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Table 8. Performance comparison of the proposed model with other methods. 

Methods F1 P R A 
OC-SVM 0.489 0.324 0.999 0.364 
iForest 0.484 0.341 0.834 0.458 
USAD 0.622 0.632 0.613 0.774 

Proposed model 0.758 0.800 0.720 0.860 

 
Figure 9. Scenario 3.1, 3.3, 3.4. (a) Water level in Tank 3 and Tank 5; (b) anomaly score. 

5.5. Ablation Experiments 
The LSTM autoencoder in the proposed model is replaced by the standard autoen-

coder, BiLSTM autoencoder, and GRU autoencoder, and their hyperparameters are 
shown in Table 9. We removed the adversarial training phase from the proposed model, 
which is hereafter referred to as the proposed model with no adversarial training. The 
same training settings were set for the above models: the batch size is 32, the window size 
is 3, the optimizer is Adam, the learning rate is 0.001, the max epoch is 100, and the initial 
parameters are generated by Pytorch-1.8.2 defaulted. 

Table 9. Three autoencoder hyperparameters. 

Category Hyperparameter Value 

Standard 
autoencoder 

Encoder 

Layer of Dense 2 
Size of the Dense 

(W means window size) 
(62×W, 128) 

(128, 64) 
Dropout, Activation function 0.1, ReLu 

Decoder 

Layer of Dense 2 
Size of the Dense 

(W means window size) 
(64, 128) 

(128, 62×W) 
Dropout, Activation function 0.1, ReLu 

BiLSTM 
autoencoder 

Encoder 

Layer of BiLSTM 1 
Input size and hidden size for each 

layer of BiLSTM (62, 128) 

Dropout 0.2 
Layer of BiLSTM 1 
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Decoder 

Input size and hidden size for each 
layer of BiLSTM 

(62, 128) 

Dropout 0.2 
Layer of Dense 1 

Size of each layer of the Dense (128, 62) 

GRU 
autoencoder 

Encoder 

Layer of GRU 1 
Input size and hidden size for each 

layer of GRU (62, 128) 

Dropout 0.2 
Layer of GRU 1 

Decoder 

Input size and hidden size for each 
layer of GRU 

(62, 128) 

Dropout 0.2 
Layer of Dense 1 

Size of each layer of the Dense (128, 62) 

 
Figure 10. Anomaly scores for USAD (using network and physical features). 
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5.6. Discussion 
As shown in Table 6, with the addition of network features, the accuracies of RF, 

SVM, and NB improved from 0.777, 0.763, and 0.690 to 0.958, 0.953, and 0.945, respec-
tively, and the F1 score, precision, recall, and accuracies of the proposed model improved 
from 0.425, 0.479, 0.382, and 0.686 to 0.758, 0.800, 0.720, and 0.860, respectively. This is due 
to the existence of some network attacks, such as scanning attacks, which only generate 
some anomalous network traffic data, but do not have a substantial impact on the physical 
conduct of the system. Therefore, the fusion of network traffic data and physical sensor 
data definitely helps to improve the anomaly detection capability. 

Compared with other unsupervised algorithms, the unsupervised anomaly detection 
model proposed in this paper has better performance. As shown in Table 8, the USAD 
model achieves a recall of only 0.613 when using cyber–physical fusion features, while the 
proposed model can improve the recall to 0.720, with a performance improvement of 
about 17.5%. As can be seen from Figures 7 and 10, the USAD model gives anomaly scores 
for normal and abnormal data that are not very different in general, which means that it 
does not reconstruct normal data perfectly and therefore cannot clearly distinguish be-
tween normal and abnormal samples. In contrast, the proposed model gives a large dif-
ference in the abnormal scores for normal and abnormal data, which indicates that the 
model can detect abnormalities well. 

Table 10 depicts the performance of the standard autoencoder, BiLSTM autoencoder, 
GRU autoencoder, the proposed model (LSTM autoencoder), and the proposed model 
with no adversarial training, and Figure 11 shows the time they need to consume for one 
training. It can be seen that the standard autoencoder achieves the fastest training speed 
as well as the highest recall rate, but its precision and F1 scores are the lowest. This means 
that the model identifies numerous normal data as abnormal. The BiLSTM autoencoder 
took more time to train, but the improvement in performance was marginal. The time cost 
of training the GRU autoencoder is slightly lower than the time cost of training the pro-
posed model, but the performance of the GRU autoencoder is much worse than the pro-
posed model. It achieves a recall of 0.618, while the proposed model achieves a recall of 
0.72, which we believe is worth the small time cost to obtain such a significant improve-
ment. As shown in Figure 12, the model is able to reduce the loss earlier and with smaller 
loss values when adversarial training is performed. Furthermore, when adversarial train-
ing is removed, the recall decreases from 0.72 to 0.652, which is sufficient to demonstrate 
that adversarial training based on generative adversarial networks is indeed able to iden-
tify small anomalies by amplifying the reconstruction error. 

Table 10. Performance comparison of LSTM autoencoder with others. 

Category F1 P R A 
Standard autoencoder 0.568 0.414 0.903 0.581 
BiLSTM autoencoder 0.767 0.843 0.703 0.870 

GRU autoencoder 0.729 0.888 0.618 0.860 
LSTM autoencoder 
(proposed model) 0.758 0.800 0.720 0.860 

Proposed model with no 
adversarial training 0.730 0.828 0.652 0.853 
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Figure 11. Training time for proposed model and other models. 

 
Figure 12. Loss with adversarial training and without adversarial training. 

6. Conclusions 
Given the special characteristics of ICS networks, we designed a method to extract 

network features. Based on the latest publicly available ICS dataset, the network features 
are extracted using the previously mentioned method, and then an ICS cyber–physical 
dataset is created. The anomaly detection algorithm obtained by training with this fused 
feature has better performance. In addition, we propose an unsupervised anomaly detec-
tion method based on LSTM-Autoencoder and GAN. The results of the ablation experi-
ments show that using LSTM as an autoencoder is the optimal choice, and adversarial 
training based on GAN can also help the model to detect more anomalies. 

This paper uses a dataset acquired in ICS using only the Modbus TCP protocol, but 
other protocols such as S7 and EtherNet/IP exist in the global industry. Our future work 
will investigate a more effective and compatible method for detecting ICS anomalies 
based on a more comprehensive dataset. 
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