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Abstract: In this paper, we propose an unsupervised anomaly detection method based on the Au-
toencoder with Long Short-Term Memory (LSTM-Autoencoder) network and Generative Adversarial
Network (GAN) to detect anomalies in industrial control system (ICS) using cyber–physical fusion
features. This method improves the recall of anomaly detection and overcomes the challenges of
unbalanced datasets and insufficient labeled samples in ICS. As a first step, additional network
features are extracted and fused with physical features to create a cyber–physical dataset. Following
this, the model is trained using normal data to ensure that it can properly reconstruct the normal data.
In the testing phase, samples with unknown labels are used as inputs to the model. The model will
output an anomaly score for each sample, and whether a sample is anomalous depends on whether
the anomaly score exceeds the threshold. Whether using supervised or unsupervised algorithms,
experimentation has shown that (1) cyber–physical fusion features can significantly improve the
performance of anomaly detection algorithms; (2) the proposed method outperforms several other
unsupervised anomaly detection methods in terms of accuracy, recall, and F1 score; (3) the proposed
method can detect the majority of anomalous events with a low false negative rate.

Keywords: deep learning; anomaly detection; cyber–physical; industrial control systems

MSC: 68T09

1. Introduction

In recent years, cyberattacks have caused significant damage to industrial production
and national infrastructure [1]; the Stuxnet virus swept the global industry in 2010 and
was able to carry out targeted attacks on infrastructure, with Iran suffering the most
severe effects [2]. In 2015, a malicious program called BlackEnergy affected multiple
substations in the Ukrainian power sector [3]. Many Ukrainian government agencies and
companies were attacked by the ransomware NotPetya in 2017, which ultimately caused
havoc worldwide [4]. A serious disaster can also result from the failure of hardware or
software within an ICS as well as threats from the Internet. Globally, ICS security incidents
occur frequently.

In order to secure ICS, anomaly detection is a promising approach [5]. It is usually
physical faults or network attacks that cause anomalous events to occur in ICS. Sensors,
actuators, pipelines, and other industrial equipment may malfunction due to physical
faults. A network attack refers to an attack on a communication channel, host, or process
control system, such as a man-in-the-middle attack (MITM), a denial of service (DoS), or a
scanning attack. The purpose of industrial sensors is to collect status information (referred
to in this paper as physical information) about the various industrial equipment in the
system and to reflect the physical processes that take place within it. Physical faults have
an impact on the physical operation of the system, but not on its network traffic. This
results in physical faults not being detected by anomaly detection methods based solely
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on network traffic. The physical processes of a system may not necessarily be affected by
some network attacks. Consequently, algorithms that detect anomalies based solely on
physical information are not able to detect these attacks. The use of anomaly detection
algorithms that are based solely on physical information cannot detect network attacks
in a timely manner, since most network attacks against ICS do not immediately cause
the system to enter an abnormal state. Our conclusion is that taking into account both
network traffic information and physical information is an effective way to improve the
detection performance for anomaly detection algorithms that are used in industrial control
systems [6], which has tended to be ignored in past studies.

In the past decade, artificial intelligence (AI) has been rapidly developed and applied
in various fields [7–10]. A number of AI-based approaches have emerged in ICS security,
which can be categorized as supervised and unsupervised algorithms as a result of the
success of AI in traditional IT security [11]. In the past, many anomaly detection algorithms
based on supervised algorithms have been proposed. Although the industrial Internet
continues to develop, attacks from the Internet are emerging in new ways, and supervised
algorithms have a limited ability to detect unknown attacks, making them increasingly
unsuitable for ICS security. As ICS datasets have significant imbalances and abnormal
data are much smaller than normal data, coupled with a lack of sufficient labeled samples,
supervised algorithms are no longer suitable for application in ICS security problems. The
limitations of supervised learning can be overcome by unsupervised algorithms such as
One-Class SVM (OCSVM) [12] and isolation forests [13].

Autoencoder is an unsupervised algorithm that contains an encoder and a decoder [14].
The input X is mapped by the encoder to the latent variable Z, and subsequently Z is
mapped by the decoder to the reconstruction R. The deviation between the input X and the
reconstruction R is called reconstruction error. For autoencoder-based anomaly detection,
the reconstruction error is used to calculate an anomaly score. Detecting anomalies can
be accomplished using autoencoders trained using only normal data. When training a
model, it is assumed that the model will only learn how to reconstruct for normal samples.
During the testing phase, the model may not be able to reconstruct the anomaly sample
well, so the anomaly sample will produce a higher reconstruction error compared to the
reconstruction error of the normal sample. In some cases, small anomalies can lead to small
reconstruction errors, making it difficult to detect small anomalies. Generative adversarial
networks (GANs) may be used to identify small anomalies and amplify reconstruction
errors [15]. Autoencoders and GANs are both unsupervised artificial neural networks, with
the difference being that GANs include an adversarial game mechanism [16]. The goal
of training the generator is to generate data that are as realistic as possible and thus fool
the discriminator (i.e., maximizing the likelihood that the discriminator will be incorrect).
As well as a generator, the GAN contains a discriminator. When training a discriminator,
the objective is to minimize its own error probability, i.e., to be able to distinguish with
high accuracy whether the data are real or generated. Due to the time series nature
of ICS data, individual samples cannot be considered independently. Compared with
ordinary autoencoders, LSTM-based autoencoders [17] have more powerful capability in
reconstructing time series data.

In light of the above issues, the main contributions of this paper include the following:

• Based on the latest public ICS dataset, a method for extracting system network features
is designed for ICS, and the original physical features are fused with additionally
extracted network features to create a cyber–physical dataset with fusion features.

• A model is proposed for unsupervised anomaly detection for ICS based on LSTM-
Autoencoder and GAN, which is evaluated using the cyber–physical dataset. In terms
of precision, recall, and F1-score, the model outperforms several other methods.

• Both supervised and unsupervised algorithms are used to investigate the effects of
additional extracted network features on anomaly detection results. As a result of the
experiments performed in this paper, it has been found that the features extracted
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from the network can significantly improve the performance of the anomaly detec-
tion algorithm.

Acquiring data from industrial sensors is an inherent function of ICS, and ICS network
traffic data can be collected by listening to communication channels. It is feasible to collect
both network data and physical data, and then extract the cyber–physical fusion features.
The massive amount of data generated during the normal operation of the ICS is sufficient
to train the unsupervised model. Without significantly changing the components of the ICS,
the models need to be trained only once to detect anomalies, including various novel attack
methods. It is undeniable that the components of an ICS are fixed for a long time, and the
network topology is not easily changed. Therefore, the unsupervised anomaly detection
model using the cyber–physical fusion features proposed in this paper can help industrial
control systems cope with various cyber and physical threats, attacks, and challenges in a
cost-effective and profitable manner.

In the remainder of this paper, the following sections are presented: Section 2 discusses
related work in the area of anomaly detection of ICS; Section 3 describes the dataset used
in this paper; Section 4 describes the method proposed in this paper; Section 5 describes
the experimental setup and presents the experimental results and analysis; and Section 6
concludes with our future plans.

2. Related Work

It is necessary to detect anomalies in ICS in order to ensure its security. Studies
conducted in the past can be categorized according to their use of physical information or
network traffic, depending on the features selected.

(1) Studies using physical information. Industrial sensors collect physical data such as
water level, temperature, and humidity. Ahmed et al. [18] use the hardware character-
istics of the sensor and the physical characteristics of the process to create a unique
fingerprint for each sensor. In normal operation, noise-based fingerprints are created
and can be used to detect attacks by comparing the differences between the noise
pattern and the fingerprint pattern. According to Lin et al. [19], timed automata can
be used to learn the laws that govern the change of sensor value. Furthermore, sensor
and actuator dependencies are analyzed using a Bayesian network. The method is
capable of detecting anomalies and locating the abnormal sensor or actuator. Indus-
trial sensor data can be analyzed based on their time and frequency characteristics.
In their study, Nguyen et al. [20] developed a method for detecting outliers in time-
frequency data using continuous wavelet transforms. The authors of Zhao et al. [21]
proposed a correlation-based method for detecting anomalies using sensor data and
the correlations between them. Compared with only using sensor data, their method
achieved higher accuracy.

(2) Studies using network traffic. Since ICS networks are more stable than IT networks,
abnormal network traffic usually indicates that the system is being attacked. Network
traffic-based anomaly detection methods can be further divided into packet-based
detection, flow-based detection, and session-based detection [22]. To detect abnormal
behavior in ICS, Song et al. [23] extracted the behavioral sequence data from Modbus
traffic to model the system’s normal behavior, and compared the actual behavioral
data with the model’s predictions. Lee et al. [24] proposed AE-CGAN (autoencoder-
conditional GAN) to oversample rare classes on the basis of the GAN model. It is
able to achieve more accurate performance metrics in the case of significant imbalance
between normal and abnormal traffic. Benaddi et al. [25] used Distributional Rein-
forcement Learning (DRL) and GAN to help distributional RL-based IDS enhance the
detection of minority network attacks and improve the efficiency and robustness of
anomaly detection systems in the Industrial Internet of Things (IIoT). By extracting the
temporal characteristics of the original traffic in the SCADA system, Kalech et al. [26]
proposed a method for detecting network anomalies based on temporal pattern recog-
nition. In order to detect abnormal behavior, Hidden Markov models and artificial
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neural networks are used. A multi-level anomaly detection scheme combining LSTMs
and Bloom filters was proposed by Feng et al. [27] in order to detect malicious traffic
in SCADA datasets. An algorithm for detecting anomalous traffic was proposed by
Zhang et al. [28]. A grayscale image was created by converting the ICS traffic feature
values into grayscale images, and then the model was trained with the resulting
grayscale images, which improved the accuracy of anomaly detection.

According to another perspective, past research can also be divided into supervised
and unsupervised research. The use of supervised machine learning has been demon-
strated in some studies [29,30] as a means of detecting anomalous events or attacks. In
spite of good results, the system was only able to detect known attacks and not unknown
or zero-day attacks. ICS datasets are also often imbalanced, i.e., the anomalous samples are
much smaller than the normal samples, which limits the performance of the supervised
algorithm. Unsupervised or semi-supervised algorithms have been used in other studies
to overcome the limitations of supervised algorithms. According to Kravchik et al. [31],
their algorithm was able to detect 31 out of 36 network attacks using a one-dimensional
CNN-based semi-supervised algorithm. Chang et al. [32] reported that an anomaly detec-
tion framework based on k-means and convolutional autoencoders achieved an F1-score of
0.9373 for water storage tank datasets. An autoencoder-based anomaly detection model was
proposed by Audibert et al. [33], which used the reconstruction error as the loss function
during the training phase and as the anomaly score during the testing phase. An anomaly
is determined when the sample’s anomaly score exceeds a predetermined threshold. Using
an adaptive update strategy based on WGAN-GP, Lu et al. [34] proposed an improved gen-
erative adversarial network that produces fake anomaly samples, improving the accuracy
of anomaly detection. Li et al.’s [35] GAN-based semi-supervised method, MAD-GAN,
utilizes both LSTMs as generators and discriminators to capture the temporal correlation
between time series distributions and potential interactions between variables, and it can
detect anomalies effectively.

Anomaly detection algorithms are designed based on the selection of appropriate
features. In order to detect anomalies in ICS, it is not enough to rely solely on physical
information, but it is also necessary to consider network information. However, there are
some limitations to the above methods due to the dataset. It was found that the datasets
they selected had the following problems: (1) the dataset was not acquired in an ICS
environment; (2) the dataset was nonpublic; (3) the dataset was outdated; and (4) the
dataset was either restricted to physical process data or to network traffic. The authors
in [36] compared the classification performance achieved by the algorithm when only
using network features with that achieved by the algorithm when using physical network
features, demonstrating that the fusion of physical and network information contributes
to improved classification accuracy. The experiment was conducted on four supervised
machine learning algorithms, but unsupervised algorithms were not considered.

Due to the above deficiencies, the following improvements have been made in this paper.

• In terms of the dataset, the latest ICS public dataset WDT [37] is utilized, which
provides data on physical processes and their corresponding network traffic.

• When extracting features, we take into account the physical information and network
traffic of ICS.

• Both supervised and unsupervised algorithms are used in the evaluation of perfor-
mance to determine whether cyber–physical features contribute to the improvement
of anomaly detection.

• An unsupervised anomaly detection model based on LSTM-Autoencoder and GAN is
proposed, which solves the problem of low recall in past anomaly detection models,
and is suitable for the ICS field that does not have sufficient labeled samples.

3. Dataset Description

During the normal operation of the Water Distribution Testbed as well as in the event
of network attacks or physical faults, the dataset used in this study was compiled from four
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acquisitions. In Table 1, each acquisition is represented as a sub-dataset. During the first
acquisition, eight network attacks or physical failures were conducted, resulting in eight
scenarios. In a similar manner, the second and third acquisitions yielded thirteen and seven
scenarios, respectively. As of the time of the fourth acquisition, the system was functioning
normally, without any network attacks or physical faults. In total, physical faults included
two water leaks and six sensors and pumps breakdowns, and network attacks included
eight man-in-the-middle (MITM) attacks, five denial of service (DoS) attacks, and seven
scanning attacks. Figure 1 shows the number and proportion of samples divided into
normal and malicious for each acquisition.

Table 1. Data acquisition and description.

Acquisitions Description
(Scenario Number: 1.1–1.8, 2.1–2.13, 3.1–3.7)

First
(Attack 1)

phy_att_1.csv, attack_1.pcap
5 MITM attack scenarios. (1.1, 1.3, 1.5, 1.7, 1.8)

3 physical fault scenarios. (1.2, 1.4, 1.6)

Second
(Attack 2)

phy_att_2.csv, attack_2.pcap
7 scan attack scenarios. (2.1, 2.2, 2.3, 2.4, 2.7, 2.9, 2.11)

3 Dos attack scenarios. (2.5, 2.10, 2.13)
2 physical fault scenarios. (2.6, 2.8)

1 MITM attack scenarios. (2.12)

Third
(Attack 3)

phy_att_3.csv, attack_3.pcap
3 physical fault scenarios. (3.1, 3.3, 3.4)

2 Dos attack scenarios. (3.2, 3.5)
2 MITM attack scenarios. (3.6, 3.7)

Fourth
(Normal)

phy_normal.csv, normal.pcap
No attack.
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This dataset provides both the physical process data and the corresponding raw
network traffic. The physical process data describe the information for the 40 physical
statuses of the system in every second, such as whether the pump is turned on and the
pressure sensor value of the water tank. In addition, the dataset also provides some network
features extracted from raw network traffic data, such as the IP and MAC addresses of
packets. For more detailed information on this dataset, please refer to [37].

4. Methodology

Firstly, we describe how to extract additional network features and fuse them with
the original physical features. Then we formulate the problem, and finally we describe our
proposed anomaly detection model in more detail.

4.1. Extraction and Fusion of Additional Network Features

The physical information collected by industrial sensors alone is not capable of detect-
ing abnormal behavior in time owing to the widespread adoption of traditional information
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technology in ICS, and the damage caused by cyberattacks has a hysteresis. It is there-
fore important to take into account both physical information and network traffic when
extracting features for anomaly detection.

The original physical process datasets have a sampling interval of one second, while
the number of samples collected per second in the original network datasets is over 1000.
By re-extracting the network features from the original network traffic according to the
specifics of the ICS network, we can fuse the physical and network features together and
summarize the situation every second. To enhance the performance of anomaly detection,
22 additional features were extracted from the original dataset. In Table 2, you will find a
list of the new features that have been added.

Table 2. Additional extracted features.

No. Features Description

1 pkt_num Number of all types of packets
2 icmp_pkt_num Number of ICMP packets
3 arp_pkt_num Number of ARP packets
4 tcp_pkt_num Number of TCP packets
5 mb_q_num Number of MODBUS request packets
6 mb_r_num Number of MODBUS response packets
7 avg_pkt_size Average packet byte size
8 avg_payload_size Average packet payload byte size
9 mb_q_avg Average MODBUS request packet payload byte size
10 mb_r_avg Average MODBUS response packet payload byte size
11 illegal_mac Illegal MAC address appears
12 illegal_ip Illegal IP address appears
13 fc1_pkt_num Number of Modbus packets with function code 1
14 fc3_pkt_num Number of Modbus packets with function code 3
15 fc5_pkt_num Number of Modbus packets with function code 5
16 fc6_pkt_num Number of Modbus packets with function code 6
17 fin_flag_num Number of packets with FIN in the TCP flag
18 syn_flag_num Number of packets with SYN in the TCP flag
19 rst_flag_num Number of packets with RST in the TCP flag
20 psh_flag_num Number of packets with PSH in the TCP flag
21 ack_flag_num Number of packets with ACK in the TCP flag
22 stage Stage of the current moment in a process cycle

In addition, a feature named stage is added, which describes the stage of the current
moment in the process cycle, and its value range is (0,1]. Taking the fourth acquisition as an
example, there are a total of 3423 sampling points, including 12 complete process cycles. As
shown in Figure 2, in each process cycle, the water level of Tank_1 gradually increases from
0 to the maximum value, and then gradually decreases to 0 and maintains for a period of
time. Correspondingly, the value of stage is gradually increased from 0 to 1 and maintained
for a period of time.

The architecture of additional feature extraction and fusion is shown in Figure 3. For
each row (sample) in the original physical dataset, its sampling time is time t (e.g., 09/04/2021
11:30:55). All packets with time t are aggregated from the network traffic corresponding to
this physical dataset, and the features described in Table 2 are extracted from those packets.
Subsequently, the newly extracted features are fused with the original physical features to
form a cyber–physical dataset. Some incomplete data were deleted, which were mainly
concentrated in the first and last part of the dataset. The reason for the incomplete data is
that when the original physical dataset is acquired, the corresponding original network
dataset has not yet been acquired or the acquisition has been completed. The information
of the finally formed cyber–physical dataset is shown in Table 3.
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Table 3. Cyber–physical dataset after feature fusion.

Dataset Number of Samples and Features

net_phy_att_1.csv (2409, 62)
net_phy_att_2.csv (2092, 62)
net_phy_att_3.csv (1248, 62)
net_phy_norm.csv (3421, 62)

Total samples 9170

4.2. Problem Formulation

In this paper, a dataset with sample number T is considered a multivariate time series
TS of length T. xt is a vector consisting of all physical features and network features at time
t, and the number of features is m.

TS = {x1, x2, . . . , xT}(xt ∈ Rm, 1 ≤ t ≤ T) (1)

In order to make better use of the correlation between observations at the current
moment and previous observations, a time window Wt is defined. For each observation,
its correlation with the previous K observations is considered. Therefore, the original time
series TS can be transformed into a time window series W.

W = {W1, W2, . . . , WT}(Wt = {xt−K+1, . . . , xt−1, xt} ∈ RK∗m, 1 ≤ t ≤ T) (2)
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Use the time window series W as the input to the model instead of the raw time
series TS. Before conversion to a time window series, each observation xt in the TS was
normalized by

TSj =
{

xj
1, xj

2, . . . , xj
T

}(
xj

t =
xj

t −min
(
TSj)

ε + max
(
TSj
)
−min

(
TSj
) , 1 ≤ j ≤ m, 1 ≤ t ≤ T

)
(3)

where ε is a very small number in order to prevent zero-division.

4.3. Proposed Model

The proposed model consists of three modules: an encoder network LE using LSTM,
and two decoder networks LD1 and LD2 using LSTM. As can be seen from Figure 4, these
three modules constitute two LSTM-Autoencoders LAE1 and LAE2 that share the encoder
network. The hyperparameters of the model are shown in Table 4. The training of the
model consists of two phases.

Mathematics 2022, 10, x FOR PEER REVIEW 9 of 21 
 

 

 

Figure 4. Proposed model architecture. The proposed model consists of three modules: an encoder 

network LE, and two decoder networks 𝐿𝐷1 and 𝐿𝐷2. 

Table 4. Model hyperparameters. 

Module Hyperparameter Value 

LSTM encoder 

Layer of LSTM 1 

Input size and hidden size for each layer of LSTM (62, 128) 

Dropout 0.2 

LSTM decoder1 

and 

LSTM decoder2 

Layer of LSTM 1 

Input size and hidden size for each layer of LSTM (62, 128) 

Dropout 0.2 

Layer of Dense 1 

Size of each layer of the Dense (128, 62) 

4.3.1. Phase 1—Input Reconstruction 

The goal of this phase is to train 𝐿𝐴𝐸1 and 𝐿𝐴𝐸2 to reconstruct the input. LSTM-

Autoencoder can reconstruct each time window 𝑊𝑡 = {𝑥1, … , 𝑥𝐾−1, 𝑥𝐾}. The time window 

𝑊𝑡 is used as the input of the model, and the encoder network 𝐿𝐸 will output the hidden 

variable ℎ𝐾 ∈ ℝ𝑛 (n is the number of cells in the LSTM hidden layer). Then, the two de-

coder networks will output the reconstructions of 𝑊𝑡 (𝑂1and 𝑂2) according to ℎ𝐾 and 

𝑥𝐾  in reverse order, where 𝑥𝐾  is the last of 𝑊𝑡. Use L2-norm to define the reconstruction 

loss for each decoder: 

𝑂1 = 𝐿𝐴𝐸1(𝑊𝑡), 𝑂2 = 𝐿𝐴𝐸2(𝑊𝑡) (4) 

𝐿𝑜𝑠𝑠1 = ||𝑊𝑡 − 𝑂1||2, 𝐿𝑜𝑠𝑠2 = ||𝑊𝑡 − 𝑂2||2 (5) 

4.3.2. Phase 2—Adversarial Training 

Figure 4. Proposed model architecture. The proposed model consists of three modules: an encoder
network LE, and two decoder networks LD1 and LD2.

Table 4. Model hyperparameters.

Module Hyperparameter Value

LSTM encoder
Layer of LSTM 1

Input size and hidden size for each layer of LSTM (62, 128)
Dropout 0.2

LSTM decoder1
and

LSTM decoder2

Layer of LSTM 1
Input size and hidden size for each layer of LSTM (62, 128)

Dropout 0.2
Layer of Dense 1

Size of each layer of the Dense (128, 62)



Mathematics 2022, 10, 4373 9 of 20

4.3.1. Phase 1—Input Reconstruction

The goal of this phase is to train LAE1 and LAE2 to reconstruct the input. LSTM-
Autoencoder can reconstruct each time window Wt = {x1, . . . , xK−1, xK}. The time window
Wt is used as the input of the model, and the encoder network LE will output the hidden
variable hK ∈ Rn (n is the number of cells in the LSTM hidden layer). Then, the two
decoder networks will output the reconstructions of Wt (O1 and O2) according to hK and
xK in reverse order, where xK is the last of Wt. Use L2-norm to define the reconstruction
loss for each decoder:

O1 = LAE1(Wt), O2 = LAE2(Wt) (4)

Loss1 = ||Wt −O1||2, Loss2 =||Wt −O2||2 (5)

4.3.2. Phase 2—Adversarial Training

In the second phase, LAE1 and LAE2 are trained adversarially. Put reconstruction O1
as input to LAE2 again and output reconstruction O3. The purpose of training LAE2 is to
hope that it can distinguish whether O3 is the real data or a reconstruction of the output
of LAE1. Conversely, LAE1 is trained to fool LAE2, that is, making LAE2 unable to judge
whether O3 is the real data. The training objective is:

O3 = LAE2(LAE1(Wt)) (6)

min
LAE1

max
LAE2

||Wt −O3||2 (7)

Therefore, the goal of LAE1 is to minimize the distance between O3 and Wt, and the
goal of LAE2 is to maximize this distance, and the loss is defined as follows:

Loss1 = +||Wt −O3||2, Loss2 = −||Wt −O3||2 (8)

Then, the evolutionary loss function is used to combine the losses of the two phases as
the total loss for each LAE.

Loss1 =
1
n
||Wt −O1||2 + (1− 1

n
)||Wt −O3||2 (9)

Loss2 =
1
n
||Wt −O2||2 − (1− 1

n
)||Wt −O3||2 (10)

where n denotes the number of training iterations. The training process of the model can
be seen in Figure 5a. Now define the anomaly score:

AnomalyScore =
1
2
||Wt −O1||2 +

1
2
||Wt −O3||2 (11)

After the training is completed, the model is used to calculate the anomaly scores for
each time window in the normal dataset, and then a threshold is determined based on the
distribution of the anomaly scores. During the testing phase, shown in Figure 5b, for each
unseen time window, the trained model will output its anomaly score. When the anomaly
score of a time window is higher than the threshold, the model judges it as an anomaly.
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5. Experiments and Results Analysis
5.1. Experiment Environment and Metrics

The experiments were performed using the following hardware and software plat-
forms: Intel(R) Core (TM) i5-12400 CPU, Windows 10 Professional (64 bits), NVIDIA
GeForce GTX 1650 Super, NVIDIA CUDA 11.1, Python 3.7.13, Pytorch 1.8.2, Python Scikit-
learn library 1.0.2.

The proposed model is evaluated using recall, precision, F1-score, and accuracy. TP, TN,
FP, and FN represent true positive, true negative, false positive, and false negative, respectively.

Recall =
TP

TP + FN
(12)

Precision =
TP

TP + FP
(13)

F1− score = 2× Recall × Precision
Recall + Precision

(14)

Accuracy =
TP + TN

TP + FP + FN + TN
(15)

5.2. Dataset

The dataset needs to be divided differently for supervised and unsupervised algorithms.
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5.2.1. Dataset for Supervised Algorithms

In this paper, the datasets are organized chronologically, with each cyberattack or
physical fault lasting for a period of time, corresponding to multiple consecutive samples.
When the dataset is shuffled and then divided, some samples from an abnormal event will
be placed in the training set, and the remainder will be placed in the testing set. As a result,
the model is able to achieve a higher accuracy on the testing set, but this is an illusion [36].
As a result, all samples will be either divided into training sets or testing sets, depending
on the scenario. Divide 85% of the normal data into the training set and the rest into the
testing set. For the anomaly scenarios, scenario 1.1–1.6, 2.1–2.7, 3.1–3.3 are divided into the
training set and the rest are divided into the testing set. Use min–max to normalize the
data, and the information of the dataset is shown in Table 5.

Table 5. Dataset information for supervised algorithms.

Label Training Set Testing Set

Normal 5848 1864
Physical fault 426 385

MITM 358 126
DoS 67 89
Scan 5 2
Total 6704 2466

5.2.2. Dataset for Unsupervised Algorithms

The fourth acquisition (no anomalies) is used as the training set to train the model. The
other three acquisitions (with anomalies) were used as testing sets to evaluate the model.

5.3. Experiments of Using Supervised Algorithms

Three supervised machine learning algorithms were used for training and testing:
random forest (RF), support vector machine (SVM), and naïve Bayes (NB). Use Random-
ForestClassifier, SVC, and GaussianNB in the Python Scikit-learn library to implement the
above algorithm, and the hyperparameters for all of the above algorithms are generated by
Python Scikit-learn library 1.0.2 defaulted.

The experimental results are shown in Table 6. All three algorithms achieve poor
performance when only using physical features. The best performance is achieved by RF,
but its F1 score is only 0.28. When using cyber–physical features, the performance achieved
by all three algorithms is greatly improved, with F1 scores exceeding 0.87. The results show
that the additionally extracted network features can significantly improve the anomaly
detection performance of the supervised algorithm.

Table 6. Performance of three supervised machine learning algorithms.

Algorithm
Physical Features Cyber–Physical Features

F1 P R A F1 P R A

RF 0.257 0.754 0.155 0.777 0.907 1.000 0.831 0.958
SVM 0.126 0.764 0.068 0.763 0.895 1.000 0.809 0.953
NB 0.196 0.276 0.151 0.690 0.878 0.982 0.795 0.945

5.4. Experiments of Unsupervised Algorithms
5.4.1. Performance of the Proposed Model

Consider two situations, one using only physical features and another using cyber–
physical features. Table 7 shows the performance achieved by the proposed model in the
above two situations. In addition, the anomaly scores of the three test sets obtained by the
model in the above two situations are shown in Figures 6 and 7, respectively. Cyberattacks
and physical faults are marked in red and blue, respectively, in the figure.
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Table 7. Performance of the proposed model.

Acquisition
Physical Features Cyber–Physical Features

F1 P R A F1 P R A

Attack 1 0.574 0.574 0.574 0.657 0.827 0.827 0.826 0.860
Attack 2 0.292 0.293 0.292 0.730 0.646 0.646 0.645 0.865
Attack 3 0.029 0.143 0.016 0.667 0.692 0.957 0.542 0.851

Sum 0.425 0.479 0.382 0.686 0.758 0.800 0.720 0.860
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When using only physical features, the model performed poorly on all test sets.
Conversely, when combining additionally extracted network features, the performance is
greatly improved on each test set. We believe that the reason for the poor results obtained
by physical features alone is that there are some network attacks that do not affect the
physical state of the system too much, so the model fails to detect these network attacks.
For the network attack scenario, the anomaly score given by the model for anomalous time
points is significantly higher than that for non-anomalous time points, indicating that the
model can easily detect network attack events. For physical fault scenarios, the anomaly
scores given to anomalous time points are not very significant, but are sufficient to detect
most physical fault events.
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Due to the continuous increase in the degree of impact of an attack or fault on the
system, it may not cause immediate damage to the system at the beginning, resulting in
false negatives. Furthermore, it may still take some time for the attacked system to return to
normal after the attack has ended, which may result in false positives. An example would
be Scenario 1.6, which simulates the rise of the water level in Tank 3 as a result of a leak in
the pipeline. A graph of the water level in Tank 3 over time is shown in Figure 8a. Figure 8b
shows the corresponding anomaly scores, as well as the time period during which the
fault occurred (scenario 1.6). While the water level rose initially, it was consistent with
the normal rise in the tank’s level. In this period, the anomaly score does not exceed the
threshold, and the model considers it to be a normal period. Persistent faults cause the
water level to exceed the normal level and continue to rise. As a result, the anomaly score
for this period gradually increases and exceeds the threshold. Upon the resolution of the
fault, the water level begins to decline, which is reflected in the anomaly score as well.
Nevertheless, the water level remains above the normal level for a period of time after
the faults have been resolved, so the anomaly score remains above the threshold, and the
model still considers the system to be abnormal.

Figure 9a shows the changes of the water levels of Tank 1 and Tank 5 over time, and
Figure 9b shows the corresponding anomaly scores. The time periods of the three fault
scenarios are marked by red, green, and blue, respectively. Scenario 3.1 simulates a fault
that pauses the transfer of water from Tank 1 to Tank 5. Scenario 3.3 simulates a fault
by closing the Tank 5 outlet valve, thus achieving a slowdown in the flow of water from
Tank 5. Scenario 3.4 simulates a fault that suspends the transfer of water from the reservoir
to Tank 1. None of the above three faults caused the water level to exceed the normal level,
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so none of the anomaly scores exceeded the threshold and the model considered the system
to be in a normal state.
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5.4.2. Comparison with Other Unsupervised Algorithms

This section compares the performance of OCSVM [12], Isolation Forest (iForest) [13],
USAD [33], and the proposed model. This paper implements USAD based on the author’s
GitHub repository. Both One-Class SVM and Isolation Forest are provided by the Python
Scikit-learn library and use default parameters.

As can be seen in Table 8, the proposed model outperforms several other algorithms.
OCSVM and iForest achieved a high recall rate, but too many false positives resulted in
a low F1 score. Compared with the first two algorithms, the F1 score of USAD has been
greatly improved, but the recall rate is lower. Low recall means that there are more false
negatives, meaning that the model does not effectively detect anomalies, which is fatal for
anomaly detection systems. As shown in Figure 10, USAD is able to detect most network
attacks, but it is almost incapable of detecting physical faults. In contrast, the proposed
model can detect most physical faults. The experimental results show that for the ICS
anomaly detection task, the model proposed in this paper can achieve better performance.
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Table 8. Performance comparison of the proposed model with other methods.

Methods F1 P R A

OC-SVM 0.489 0.324 0.999 0.364
iForest 0.484 0.341 0.834 0.458
USAD 0.622 0.632 0.613 0.774

Proposed model 0.758 0.800 0.720 0.860
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5.5. Ablation Experiments

The LSTM autoencoder in the proposed model is replaced by the standard autoencoder,
BiLSTM autoencoder, and GRU autoencoder, and their hyperparameters are shown in
Table 9. We removed the adversarial training phase from the proposed model, which
is hereafter referred to as the proposed model with no adversarial training. The same
training settings were set for the above models: the batch size is 32, the window size is
3, the optimizer is Adam, the learning rate is 0.001, the max epoch is 100, and the initial
parameters are generated by Pytorch-1.8.2 defaulted.
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Table 9. Three autoencoder hyperparameters.

Category Hyperparameter Value

Standard
autoencoder

Encoder

Layer of Dense 2
Size of the Dense

(W means window size)
(62 ×W, 128)

(128, 64)
Dropout, Activation function 0.1, ReLu

Decoder

Layer of Dense 2
Size of the Dense

(W means window size)
(64, 128)

(128, 62 ×W)
Dropout, Activation function 0.1, ReLu

BiLSTM
autoencoder

Encoder

Layer of BiLSTM 1
Input size and hidden size for each

layer of BiLSTM (62, 128)

Dropout 0.2
Layer of BiLSTM 1

Decoder

Input size and hidden size for each
layer of BiLSTM (62, 128)

Dropout 0.2
Layer of Dense 1

Size of each layer of the Dense (128, 62)

GRU
autoencoder

Encoder

Layer of GRU 1
Input size and hidden size for each

layer of GRU (62, 128)

Dropout 0.2
Layer of GRU 1

Decoder

Input size and hidden size for each
layer of GRU (62, 128)

Dropout 0.2
Layer of Dense 1

Size of each layer of the Dense (128, 62)

5.6. Discussion

As shown in Table 6, with the addition of network features, the accuracies of RF,
SVM, and NB improved from 0.777, 0.763, and 0.690 to 0.958, 0.953, and 0.945, respectively,
and the F1 score, precision, recall, and accuracies of the proposed model improved from
0.425, 0.479, 0.382, and 0.686 to 0.758, 0.800, 0.720, and 0.860, respectively. This is due
to the existence of some network attacks, such as scanning attacks, which only generate
some anomalous network traffic data, but do not have a substantial impact on the physical
conduct of the system. Therefore, the fusion of network traffic data and physical sensor
data definitely helps to improve the anomaly detection capability.

Compared with other unsupervised algorithms, the unsupervised anomaly detection
model proposed in this paper has better performance. As shown in Table 8, the USAD
model achieves a recall of only 0.613 when using cyber–physical fusion features, while the
proposed model can improve the recall to 0.720, with a performance improvement of about
17.5%. As can be seen from Figures 7 and 10, the USAD model gives anomaly scores for
normal and abnormal data that are not very different in general, which means that it does
not reconstruct normal data perfectly and therefore cannot clearly distinguish between
normal and abnormal samples. In contrast, the proposed model gives a large difference
in the abnormal scores for normal and abnormal data, which indicates that the model can
detect abnormalities well.

Table 10 depicts the performance of the standard autoencoder, BiLSTM autoencoder,
GRU autoencoder, the proposed model (LSTM autoencoder), and the proposed model
with no adversarial training, and Figure 11 shows the time they need to consume for one
training. It can be seen that the standard autoencoder achieves the fastest training speed as
well as the highest recall rate, but its precision and F1 scores are the lowest. This means that
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the model identifies numerous normal data as abnormal. The BiLSTM autoencoder took
more time to train, but the improvement in performance was marginal. The time cost of
training the GRU autoencoder is slightly lower than the time cost of training the proposed
model, but the performance of the GRU autoencoder is much worse than the proposed
model. It achieves a recall of 0.618, while the proposed model achieves a recall of 0.72,
which we believe is worth the small time cost to obtain such a significant improvement.
As shown in Figure 12, the model is able to reduce the loss earlier and with smaller loss
values when adversarial training is performed. Furthermore, when adversarial training
is removed, the recall decreases from 0.72 to 0.652, which is sufficient to demonstrate that
adversarial training based on generative adversarial networks is indeed able to identify
small anomalies by amplifying the reconstruction error.
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Table 10. Performance comparison of LSTM autoencoder with others.

Category F1 P R A

Standard autoencoder 0.568 0.414 0.903 0.581
BiLSTM autoencoder 0.767 0.843 0.703 0.870

GRU autoencoder 0.729 0.888 0.618 0.860
LSTM autoencoder
(proposed model) 0.758 0.800 0.720 0.860

Proposed model with no
adversarial training 0.730 0.828 0.652 0.853

6. Conclusions

Given the special characteristics of ICS networks, we designed a method to extract
network features. Based on the latest publicly available ICS dataset, the network features
are extracted using the previously mentioned method, and then an ICS cyber–physical
dataset is created. The anomaly detection algorithm obtained by training with this fused
feature has better performance. In addition, we propose an unsupervised anomaly detection
method based on LSTM-Autoencoder and GAN. The results of the ablation experiments
show that using LSTM as an autoencoder is the optimal choice, and adversarial training
based on GAN can also help the model to detect more anomalies.

This paper uses a dataset acquired in ICS using only the Modbus TCP protocol, but
other protocols such as S7 and EtherNet/IP exist in the global industry. Our future work
will investigate a more effective and compatible method for detecting ICS anomalies based
on a more comprehensive dataset.
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