
Citation: Csereoka, P.; Roman, B.-I.;

Micea, M.V.; Popa, C.-A. Novel

Reinforcement Learning Research

Platform for Role-Playing Games.

Mathematics 2022, 10, 4363. https://

doi.org/10.3390/math10224363

Academic Editors: Adrian Sergiu

Darabant and Diana-Laura Borza

Received: 12 October 2022

Accepted: 17 November 2022

Published: 20 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Novel Reinforcement Learning Research Platform for
Role-Playing Games
Petra Csereoka, Bogdan-Ionuţ Roman, Mihai Victor Micea and Călin-Adrian Popa *

Department of Computer and Software Engineering, Polytechnic University Timişoara, Blvd. V. Pârvan, No. 2, 
300223 Timişoara, Romania
* Correspondence: calin.popa@cs.upt.ro

Abstract: The latest achievements in the field of reinforcement learning have encouraged the devel-
opment of vision-based learning methods that compete with human-provided results obtained on 
various games and training environments. Convolutional neural networks together with Q-learning-
based approaches have managed to solve and outperform human players in environments such as 
Atari 2600, Doom or StarCraft II, but the niche of 3D realistic games with a high degree of freedom 
of movement and rich graphics remains unexplored, despite having the highest resemblance to 
real-world situations. In this paper, we propose a novel testbed to push the limits of deep learning 
methods, namely an OpenAI Gym-like environment based on Dark Souls III, a notoriously difficult 
role-playing game, where even human players have reportedly struggled. We explore two types 
of architectures, Deep Q-Network and Deep Recurrent Q-Network, providing the results of a first 
incursion into this new problem class. The source code for the training environment and baselines is 
made available.

Keywords: Deep Q-Network; Deep Recurrent Q-Network; Dark Souls III; video games; visual-based 
reinforcement learning; neural networks

MSC: 68T07; 68T40

1. Introduction

Learning can take various forms, but the primary source of information still remains
our interaction with the environment. A significant fraction of the inputs we receive comes
in the form of visual signals that are processed and decoded and later reasoned upon.
With the latest developments in processing power, computers are now able to process and
refine more raw data than before [1], yet humans still have the major advantage of better
retaining and organizing the information they accumulate over time, combining it in novel
ways to solve problems that arise dynamically [2]. This difference between humans and
computer models is even more pronounced when it comes to developing strategies in
complex environments that are changing fast and are rich in details. Neural networks have
been applied successfully to a wide range of tasks [3,4], making them a potentially strong
contender for solving current real-world problems.

Several models have been proposed over time to address this gap; however, the first
success story in visual learning is represented by Deep Q-Network (DQN) architectures [5,6]
that have managed to achieve human-level performance in several Atari 2600 games. This
was made possible by framing the problem as a Markov decision process (MDP) [7] and
employing convolutional neural networks (CNNs) to build a control policy using a Q-
Learning variant [8]. The neural network thus obtained has managed to learn the mappings
between input states and relevant actions and their corresponding values with the help of
stochastic gradient descent, experience replay mechanisms and exploration and exploitation
techniques.

Mathematics 2022, 10, 4363. https://doi.org/10.3390/math10224363 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10224363
https://doi.org/10.3390/math10224363
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-8224-2032
https://orcid.org/0000-0003-4445-8091
https://doi.org/10.3390/math10224363
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10224363?type=check_update&version=1


Mathematics 2022, 10, 4363 2 of 12

This breakthrough marked an important milestone, as previous methods assumed
complete knowledge about the environment, its rules and states and were fine-tuned for
particular scenarios, but the DQN solution was a step towards tackling more generic prob-
lems closer to real-world environments. Encouraged by this development, new variants of
DQNs appeared, and new test environments were proposed to further push the limits of
Q-Learning. An important limitation is related to the problem of observability. Most real
world problems involve partial knowledge about the global state of the environment, and,
in most cases, the observations that can be recorded are available for a limited time only.
Hence, reasoning upon longer sequences of events becomes harder, with detecting recipes
that span over longer periods of time being very costly if not impossible.

To mitigate such shortcomings, a new DQN variant was proposed: Deep Recurrent
Q-Network (DRQN) [9]. The changes made to the original DQN model were minimal
and localized, and the convolutional layers remained unchanged; however, the first fully-
connected layer was replaced with a recurrent one containing LSTM cells. This new
addition yielded a model able to better integrate information over time, thus making it a
more suitable contender for problems that involve longer sequences of actions and a better
generalization power for partially observable scenarios. This increase in performance, on
the other hand, came with more training time and higher hardware requirements.

Dark Souls III [10] is one of the most notoriously difficult role-playing games even for
human players, with statistics collected across the entire user base showing only 83.9% of
the players that acquire the game manage to pass the entry zone and only 3.6% finish the
game with all the achievements [11]. Their experiences with the challenges vary depending
on past encounters with similar games, but nonetheless, all players must familiarize
themselves with different warrior classes and enemies with complex movements. The
game combines difficult boss battles, layered environments with many hidden secrets and
diverse combat strategies that vary with each new enemy encountered.

Our work comes to address the research gap between existing training and testing
environments created for deep reinforcement learning. Previously implemented gyms were
based on simple games, often with 2D imagery, lacking the challenges agents must face in
the real world, which is rich in details and offers a high degree of movement in a refined
manner. To the best of our knowledge, this paper provides the first environment created
having in mind the main limitations of existing training environments in terms of graphics
and degrees of movement for the agents, attempting to boost the work done in problems
approaching the real-world level in visual deep learning.

In the next sections, we present our initial results obtained by training an agent to
defeat the first major boss, Iudex Gundyr, using DQNs and DRQNs in an OpenAI-type
gym. Being a closed-source game, extracting all the necessary information for creating
the mission as well as assigning proper rewards requires the implementation of helper
programs and scripts to access and modify the data stored in RAM and map the location of
each relevant entry. Our results are promising, with the time required to defeat the enemy
being comparable to the times obtained by players new to this genre.

This paper makes the following contributions:

• An analysis of existing training and testing environments for deep reinforcement
learning in problems that can be modeled with the help of games in a pursuit of
reaching lifelong learning;

• A complete training and testing environment, including all the Python source files
for the gym, automated RAM address retrieval in the form of Cheat Engine scripts,
.dll files needed for a complete interaction between the agent and the game, and
documentation on how to use different components and their relationship;

• The implementation of state-of-the-art baselines that match the performance of human
newcomers to the game genre, showing that value-based methods can be deployed
successfully even for more visually complex problems, and opening the path at the
same time for further research using different deep learning approaches.



Mathematics 2022, 10, 4363 3 of 12

In the following section, we discuss the state-of-the-art training and testing envi-
ronments available for researchers pursuing to create agents for reinforcement learning
problems. Then, selected baselines are detailed, together with the main components and
functional details of the novel proposed gym and mission. These are followed by the initial
experimental results obtained for the first mission that players face in normal game mode,
and future improvements and conclusions round the analysis. The source code for the train-
ing environment and baselines can be found at: https://github.com/Bo-roman/DSIII-RL
(accessed on 12 October 2022).

2. Related Work

DQNs have been first applied successfully to Atari 2600 games [5,6] and later similar
methods were implemented to solve more complex tasks with good results. To improve on
the convergence during training, a series of methods have been applied, such as experience
replay mechanisms [12], separating the target network to reduce overestimation of the
Q-values, reducing the action space and compressing the input by clipping and conversion
to grayscale. However, a large number of the games comprised in this environment ensure
total state observability and can be completed within short timespans, rendering it a good
starting benchmark [13].

Later, a more realistic training environment was proposed, based on the first-person
shooter video game called Doom. Unlike Atari 2600, this platform provided a first-person
perspective and more realistic 3D imagery with customizable mechanisms, offering a higher
degree of flexibility than previous environments [14]. The agents still had to make decisions
based only on the visual information provided by the game, but a series of tasks with
various difficulties were proposed over the years, further proving the versatility of DQN
approaches: Basic scenarios [14,15], with simple primitive movements and enemy con-
frontation, Maze navigation [16,17], which requires escaping from custom made complex
mazes, Defend the center [18], in which the agent is spawned in the middle of a room and
must defend only by performing rotations, DeathMatch scenarios [19–22], which prompted
agents to kill as many opponents as possible within a fixed time frame, etc.

Another challenging environment proposed during the same period is represented
by the StarCraft family of games [23], providing denser state spaces and a stronger focus
on multi-agent tasks. By organizing a high number of bot competitions, the environment
gained more popularity, and hence encouraged a constant improvement of the proposed
models each year [24]. The full game requires players to gather resources, construct build-
ings and create an army, and finally eliminate the opponents. The decisions taken at each
step influence long term outcomes and the duration of a game can vary. Initial solutions
focused on solving either the micro level, namely multi-unit collaboration problems [25],
or the macro level, tackling decision-making issues within big state spaces [26]. Later,
hierarchical solutions emerged combining the targets previously separated and solved in
isolation [27,28].

In recent years, with the creation of the MALMO platform [29], a new horizon has
been opened in terms of training and testing environments. Built on top of the open world
game called Minecraft, a series of OpenAI Gym-type environments [30] emerged focusing
on a variety of tasks, which were not analyzed before, allowing researchers to build agents
for long horizon missions, collaborative, and creative problems. The game offers a high
degree of freedom in creating missions in an environment which follows the laws of the real
world, and with crowd sourced datasets the range of approaches that can be implemented
was widened [31,32].

At the same time, a new research direction in the last two years was focused around
the topic of coordination in multi-agent scenarios, modeled and experimented with as an
instance of the popular card game Hanabi [33]. Games have proved to be important testing
and training environments for studying how complex decision making problems can be
attempted, and Hanabi forces players to plan ahead, reason at higher levels about beliefs
and tactics to achieve a common goal, under time and communication restrictions. The

https://github.com/Bo-roman/DSIII-RL


Mathematics 2022, 10, 4363 4 of 12

open-source learning environment has gained popularity fast and is now considered a
benchmark for machine learning coordination solutions [34,35].

While existing environments enable researchers to test and implement a wide variety
of methods for a significant number of missions, starting from simple tasks to scenarios
suitable for lifelong learning investigations, they still are strongly anchored in the virtual,
and hence cannot model the continuous nature of visual transitions and phenomena from
the real world, due to the graphics and movement rules of different entities. The new
environment that is proposed comes to address these issues with its 3D immersive graphics
and continuous movements, additionally providing starting baselines that can he enhanced
in the future.

3. Proposed Methodology
3.1. Mission Description

The first important confrontation within the game is represented by the Cemetery of
Ash mission, where the players are facing the entity called Iudex Gundyr. At the start, this
enemy has a tall humanoid form with heavy armor and a long halberd; however, after his
health is lowered below a certain threshold, the entity will transform into a black monster
that is significantly bigger and has a new set of attacks. Initially, the players are confronted
with the unique fighting style of the enemy, using a wide range of attacks and combinations
that must be dodged or sidestepped in order to survive. During the second phase, the
speed and range of the entity are further increased, making it even more difficult to defeat.

Players can choose from 10 warrior classes with various stats, such as endurance,
vitality, strength, dexterity, intelligence, faith, defense, resistance, etc., having a great impact
on what type of actions the players can take in the first parts of the game. As a starting class,
most players recommend either selecting a ranged type, allowing players to attack from
farther away and thus avoid the damage caused by most attacks, or the Knight class, as it
comes with the most durable armor and shield, as well as a melee weapon in the form of a
sword. For our experiments, we have opted for the Knight class, but, to raise the difficulty
of the task, we have removed from the list of available actions the parry commands (see
Figure 1).

Figure 1. The Knight class warrior battling with Iudex Gundyr in the first phase (left) and in the
second phase (right) [10].

Under normal circumstances, the camera can be pointed in any direction with the
help of the mouse, but, to allow the agent to better focus on the mission, we have opted
for a Lock Target mechanism which will keep the camera pointed towards the enemy, thus
freeing the agent from having to manage that as well.

3.2. Retrieving Attributes for Training

As a first step, to be able to train agents, the relevant parameters from the game must
be identified. There are two entities involved: the player or agent and the enemy. In a
normal game mode, these classes have a larger set of attributes that are read and updated
repeatedly; however, for training purposes, we have opted to reduce these to the bare



Mathematics 2022, 10, 4363 5 of 12

minimum set that enables us to reinitialize the scenario, grant appropriate rewards, and
provide the relevant metrics to the agent.

In order to build the scenario, we need access to:

• The player’s health. To start the mission, the health attribute of the player must be
reduced to zero to trigger the initialization cycle, which teleports the player to the
last checkpoint and resets the map and the attributes of the entities that are present,
including the player. This operation is usually performed as part of the environment
reset function from the API, and this is the fastest way to achieve it from an operational
point of view;

• The player’s position along the three axes (X, Y, Z). The last checkpoint is farther than
our targeted enemy; hence, by manipulating the coordinates, we can ensure that the
agent is moved closer, within the range of the entity. This operation reduces the time
wasted between fights, allowing a better use of the available computational resources,
and the agent can focus on the actual combat part as opposed to wandering connecting
paths with no added bonus;

• The enemy’s state: defeated or encountered. In order to trigger the start of the
confrontation, the enemy’s state must be set to encountered, however, after the ini-
tialization cycle, this attribute has a different value, and the player would have to go
through numerous interactions to alter it. Therefore, to reduce the time needed to set
up the mission, we overwrite this attribute automatically to the desired value.

For awarding the rewards, we have decided to take into account the health points
of the player and the enemy, and the player’s endurance. For every successful attack,
the health of the enemy will be reduced, hence resulting in positive rewards, with the
maximum amount when the enemy is killed; if the agent does not retreat to a safe area from
attacks, their health attributes are reduced, resulting in negative rewards and ultimately
their death scoring the most severe penalty.

These attributes are not directly accessible, as the game does not have an API for
parameter and entity manipulations such as existing gyms; hence, they must be extracted
and overwritten directly in the RAM memory. Exploring the RAM memory for relevant
information is hindered by the protection mechanisms built within the operating system
such as Address Space Layout Randomization [36], which makes previously identified
memory locations no longer useful at the next training session when we restart the game
or the gym. To overcome that, static offsets have to be identified each time, and this
can be achieved automatically with the help of the open-source application called Cheat
Engine [37].

Cheat Engine provides basic functionalities, such as scanning and modifying the
memory zones of running processes within the system, but it also provides more advanced
features, such as creating scripts with the help of the integrated Lua interpreter to automate
many of the tasks that would otherwise have to be done manually at each run. Previously
identified memory zones, offsets, and scripts are stored in a cheat table, and, to identify
new locations, methods such as a value scan and a pointer scan can be deployed. The
memory locations for certain attributes are easy to find, as their values are shown in the
graphical user interface of the game; however, other parameters require extensive search
and even interactions with the keys to alter the values and hence aid the search.

3.3. Gym Creation

To build our training environment, we have opted for a standardized formatting;
namely, we have extended the Env interface from the OpenAI Gym libraries. Most of the
methods within the class require a form of interaction with the environment, but, given
the nature of the underlying game, in our case, this is only possible via intermediaries,
such as Cheat Engine, which functions to retrieve attributes and alter the state of the game,
and a community-provided .dll file to allow us to emulate physical key presses from the
keyboard with software instructions. The communication between these components is



Mathematics 2022, 10, 4363 6 of 12

realized with the help of sockets, with the data being structured into JSON bursts in a
custom-built formatting.

The list of selected actions for a mission is provided via a configuration file, but
definitions within the gym allow users to select from various types of movement, rolls,
attacks, and interactions with objects. Within the same configuration file, hyperparameter
values, limits, and sizes can be specified, allowing researchers to have full control over the
problem and be able to adapt it to their needs (see Figure 2).

Figure 2. System architecture highlighting main software components for the training and testing
environment, as well as main functions and attributes.

3.4. Methods Considered for the Analysis

Given the success of DQN-based architectures in previous training environments, we
have considered 2 main approaches for this analysis, namely vanilla and recurrent DQN
models. The vanilla network architecture is based on the one proposed by Mnih et al. [5,6]
for solving Atari 2600 games, while the recurrent one is closer to the model proposed by
Hausknecht et al. [9] (see Figure 3).

Figure 3. Architectural overview of the models implemented as baselines. The black components are
part of both models, while the red LSTM cells are included only in the DRQN variant.

The input images are captured and rescaled to a smaller size while still keeping the
main elements visible and distinguishable. Due to the color palette of the game, we have
opted to keep the RGB formatting, as after the conversion to grayscale, certain important
game elements blended into the background, making it hard to detect them on time.



Mathematics 2022, 10, 4363 7 of 12

The feature map extraction was done by 3 consecutive convolutional layers, followed by
fully-connected layers to compute the approximation for the Q-values.

To reduce computational costs, gather more system state related information, and
build better policies, we have implemented a frame-skipping mechanism with a factor of
4 [38]. To balance exploration and exploitation, we have opted for an ε-greedy approach
that will prompt the agent to select a random next step with a probability of ε and require a
deliberate choice otherwise. The starting value was set to 1 and was then annealed to 0.1 to
encourage long-term exploration as well.

To ensure convergence, an experience replay memory buffer was used that stores
entries as tuples in an SQL Light database. We have opted for this solution as it enables
us to store and conveniently load samples of experiences at runtime faster; it offers better
control of the training process in case of interruptions.

4. Experiments and Results

As described in previous sections, we have selected the first boss battle from the game
that begins in the area called Cemetery of Ash. The player enters the region through a
narrow passageway and is confronted by an unmoving entity sitting in the middle of a
stone circle. The area is surrounded by impassable large stone remnants of walls and
hallways, trees with dense overhanging roots, and parts of an ancient cemetery, except for
the western region, which is an open edge over a cliff (see Figure 4).

Figure 4. Mission main battle region.

In order to win, the agent has to defeat the enemy; however, they are at disadvantage,
as the entity has much higher health, speed, agility, and attack strength and range, while the
agent can also fall over the cliff either by making a wrong choice or getting hit by the entity.

One of the main limiting factors for the player’s strategy is represented by the en-
durance attribute. This stat has a direct impact on the amount of stamina the player has to
execute actions, such as dodging and swinging weapons, and it also influences damage
resistance. During initial experiments, due to exhausting the endurance attribute in early
phases of the mission, the agent overfitted to running away from the entity as opposed to
rationing the stamina better by alternating attacks with recharging. Hence, to reduce the
difficulty of the task, we have set the endurance to an infinite amount, so the agent can
focus more on the combat aspect of the mission.

The rewards and penalties we have considered for this mission can be classified into
2 main categories: primary—they represent the main goal of the agent: every successful
attack and the defeat of the enemy will yield a positive reward, while every damage
accumulated by the agent, including their death, will be punished with negative rewards,
and auxiliary—introduced during training to correct unwanted behaviors: if the agent
performs a certain number of consecutive movement/attack actions above a threshold, a
small penalty is issued to motivate the agent to perform more attacks/dodge and retreat
movements. Defeating the entity in its phase 1 form is an important milestone, as when it
morphs into its next evolutionary step, the behavior is changed, and the agent has to learn
new tactics.

The models receive 4 input images that were scaled down to 150× 93 frames while still
keeping the RGB formatting. They are then processed by the 3 consecutive convolutional



Mathematics 2022, 10, 4363 8 of 12

layers, followed by a variable number of fully connected layers for the DQN architecture
and LSTM cells, followed by fully connected layers for the DRQN model.

For the DRQN model, the initial experiments allowed the agent to select from the
complete set of actions, and we have implemented a reward-clipping method. The agents
trained with this setup have shown a high preference for movement-type actions, resulting
in longer episodes with little damage done to the entity and no wins. For the following
experiments, we have reduced the action set to movements along the axes, dodges and
attacks, increased the training time and changed the reward proportions, obtaining the
first win (see Table 1).

Table 1. DRQN model architecture details.

Layer Type Input Size Activation Output Size

Conv1 150 × 93 × 12 ReLU 36 × 22 × 32
Conv2 36 × 22 × 32 ReLU 17 × 10 × 64
Conv3 17 × 10 × 64 ReLU 15 × 8 × 64
LSTM 7680 - 1024

Output 1024 ReLU No. of actions

For the first model type, we have given a higher reward (double) for attack type
actions, as the life of the entity is almost 4 times higher than the one of the agent and to
prevent an overfitting on evasive moves, such as those the previous versions did (DRQN-1).
This approach resulted in fairly fast wins as opposed to later models; however, they also
obtained a lower score, as this aggressive choice also resulted in the agent losing more life
points while attacking repeatedly.

The second type was a mirror of the previous model, though this time the evasive
moves gained more importance, having in mind that every health unit from the agent is
more valuable (DRQN-2); this time the agent had learned combos (chains of actions) that
human players also perform in similar scenarios, but it still did not manage to avoid certain
type of attacks from the enemy that would have required multiple dodges and putting
bigger distance between the agent and Iudex.

The most successful model type (DRQN-3) had 10% more reward for attack moves and
had obtained the first victory around the 900-episode milestone, averaging at 10 wins every
500 episodes in the last phases of training (episodes 3000–4500). The agent also managed
to reach phase 2 with an increasing tendency, on average in 50 out of every 500 episodes
(episodes 1500–4500), see Table 2.

Table 2. Reward table for the DRQN models.

Architecture
Type Frames Trained

Reward for
Successful

Attack

Reward for
Taking Damage

from Enemy

Absolute Value
for Win/Death

DRQN-1 500,000 +200 −100 2000
DRQN-2 500.000 +100 −200 2000
DRQN-3 500.000 +60 −50 2000

All of these models had 512 LSTM type cells and 2 fully connected layers. The training
sessions contained 4500 episodes (training unit lasting from the first state to the ending
state), adding up to roughly 500,000 frames for each type.

The DQN model, on the other hand, did not provide such good results. Three architec-
ture types were analyzed: two with a single fully connected layer, but with different sizes,
and one with four fully connected layers, mimicking the recurrent model. The first two
types managed to reach the second phase in later episodes but never managed to defeat
the enemy. The last type succeeded in killing the entity once during episode 1650 in a
battle that lasted 50 s and reached the second phase on average 3 times every 500 episodes.



Mathematics 2022, 10, 4363 9 of 12

These models were trained on the reduced action set with reward clipping, going through
approximately 300,000 frames.

The experiments were performed using an NVIDIA GeForce RTX 2080 Ti GPU and
an AMD Ryzen 9 5900X processor, thus marking the hardware requirements at the low-
to-medium end of the implementation cost spectrum for machine learning applications.
The time complexity of the analyzed models is consistent with the models proposed in the
original papers [5,6,9], with an additional ∼ 5% overhead due to frame preprocessing and
experience replay storing. The GPU load percentage was monitored during training, and
the average time for an inference was 104.985 milliseconds for the DRQN model and 1.001
milliseconds for the DQN model (see Tables 3 and 4).

Table 3. DQN model architecture details.

Layer Type Input Size Activation Output Size

Conv1 150 × 93 × 12 ReLU 36 × 22 × 32
Conv2 36 × 22 × 32 ReLU 17 × 10 × 64
Conv3 17 × 10 × 64 ReLU 15 × 8 × 64

FC1 7680 ReLU 128
FC2 128 ReLU 64
FC3 64 ReLU 32

Output 32 ReLU No. of actions

Table 4. Highest reward and fastest win for the most successful models.

Architecture Time until win (s) Total reward Episode reached

DRQN-1 31.8 1500 1991
24.9 1450 1867

DRQN-2 37.6 1670 1130
24.3 1450 3031

DRQN-3 63 1900 3436
45 1590 4177

DQN 48.7 1650 2147

With only the game running and the agent in an idle state, the GPU utilization revolves
around 6%, with a minimal memory utilization around 3%. Once the episode is reset, both
the game and the gym must make several steps to prepare the next session; hence, the
utilization will rise above 20%, and the memory is also pushed around 13%. During the
inference period (during decision making within the episode), the parameters move to
around 37% for the GPU load and 25% for the memory. Given these measurements, we
can also conclude that less performant GPUs, such as GTX 1050 Ti, are still able to fulfill
the minimal requirements for running our proposed gym and the baseline models (see
Figure 5).

Figure 5. GPU utilization parameters during an episode.



Mathematics 2022, 10, 4363 10 of 12

5. Conclusions and Future Work

The currently available training and testing environments for visual learning provide
the means for research in specific problem classes, but the niche of more immersive and
realistic environments was not yet explored, although they come closer to the way humans
perceive visual stimuli. Another important aspect is related to the movement of the agent:
in most of the existing environments, actions are performed relative to an existing square
grid, which is either hidden by the graphics and existing in the background or revealed,
such as in Minecraft, but in the real world, our perception has a more continuous and free
nature. The training environment proposed in this paper addresses these two main points,
providing the means for a new direction for future research in the field.

The two baselines we have implemented show promising results. During training,
both agent types have managed to learn useful combinations of primitive actions that
resulted in successful attacks at optimal locations and to avoid many of the long range
attacks either by dodging, hiding behind the enemy, or retreating right after a number of
successful attacks, thus exploiting weaknesses within the enemy mechanics.

In this paper, we have presented the results obtained by a first incursion into the
immersive world of graphically intensive games; however, there are certain aspects to the
gym design and models that can be improved in the future.

The player class which we have selected for our experiments has certain advantages
and disadvantages compared to the other available options; however, by restricting the list
of actions to the basic movements and attacks that all the classes possess, our approach
can be easily extended to any of the remaining player types without problems. A more
in-depth analysis should be further conducted into the impact of different agent classes on
the speed of learning and what attributes impact the success rate the most.

Furthermore, in our current implementation, we have used vanilla ε-greedy, but in
recent years improved versions for this approach were presented [39], as well as more
complex methods to address the problem of exploitation vs. exploration [40]. Similarly, for
sampling among gathered experiences, a number of different methods have emerged [41,42]
that could aid the training process when the number of available actions is large and the
rewards are sparse.

Finally, to automatically point the camera towards the enemy entity, we have employed
a target lock mechanism, but this creates certain problems, as Iudex Gundyr in the second
phase morphs into a very large entity that is no longer able to fit into the field of view of
the agent, which, hence, cannot detect certain attack types in time. Additionally, when the
agent is facing the enemy with their back towards the edge of the cliff, choosing an action
of the retreat type will inevitably result in the agent dying from falling into the void, as
they cannot always see the edge. A better method should be implemented to automatically
move the camera to regions of interest.

Author Contributions: Conceptualization: C.-A.P. and M.V.M.; methodology: P.C. and C.-A.P.;
software: B.-I.R. and P.C.; validation: P.C., C.-A.P. and M.V.M.; formal analysis: C.-A.P.; investigation:
P.C.; resources: C.-A.P. and M.V.M.; data curation: B.-I.R. and P.C.; writing—original draft preparation:
P.C.; writing—review and editing: C.-A.P. and M.V.M.; visualization: C.-A.P.; supervision: C.-A.P.
and M.V.M.; project administration: P.C. All authors have read and agreed to the published version
of the manuscript.

Funding: The APC was funded by Polytechnic University Timişoara, Romania.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2022, 10, 4363 11 of 12

References
1. Zheng, W.; Yin, L. Characterization inference based on joint-optimization of multi-layer semantics and deep fusion matching 

network. PeerJ Comput. Sci. 2022, 8, e908. https://doi.org/10.7717/peerj-cs.908.
2. Zheng, W.; Tian, X.; Yang, B.; Liu, S.; Ding, Y.; Tian, J.; Yin, L. A Few Shot Classification Methods Based on Multiscale Relational 

Networks. Appl. Sci. 2022, 12, 4059. https://doi.org/10.3390/app12084059.
3. Qin, X.; Liu, Z.; Liu, Y.; Liu, S.; Yang, B.; Yin, L.; Liu, M.; Zheng, W. User OCEAN Personality Model Construction Method Using 

a BP Neural Network. Electronics 2022, 11, 3022. https://doi.org/10.3390/electronics11193022.
4. Stai, E.; Kafetzoglou, S.; Tsiropoulou, E.E.; Papavassiliou, S. A holistic approach for personalization, relevance feedback & 

recommendation in enriched multimedia content. Multimed. Tools Appl. 2018, 77, 283–326. https://doi.org/10.1007/s11042-016-4
209-1.

5. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing Atari with Deep 
Reinforcement Learning. In Proceedings of the NIPS Deep Learning Workshop, Lake Tahoe, NV, USA, 9 December 2013.

6. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.; 
Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. https://doi.org/10.1 
038/nature14236.

7. Bellman, R. A Markovian Decision Process. J. Math. Mech. 1957, 6, 679–684.
8. Watkins, C.J.C.H.; Dayan, P. Q-learning. Mach. Learn. 1992, 8, 279–292. https://doi.org/10.1007/BF00992698.
9. Hausknecht, M.; Stone, P. Deep Recurrent Q-Learning for Partially Observable MDPs. In Proceedings of the AAAI Fall 

Symposium on Sequential Decision Making for Intelligent Agents (AAAI-SDMIA15), Arlington, TX, USA, 12–14 November 2015.
10. Available online: https://store.steampowered.com/app/374320/DARK_SOULS_III/ (accessed on 15 August 2022).
11. Available online: https://steamcommunity.com/stats/374320/achievements (accessed on 15 August 2022).
12. Fedus, W.; Ramachandran, P.; Agarwal, R.; Bengio, Y.; Larochelle, H.; Rowland, M.; Dabney, W. Revisiting Fundamentals of 

Experience Replay. In Proceedings of the International Conference on Machine Learning (ICML), Online, 13–18 July 2020.
13. Fan, J. A Review for Deep Reinforcement Learning in Atari:Benchmarks, Challenges, and Solutions. arXiv 2021, arXiv:2112.04145. 

https://doi.org/10.48550/ARXIV.2112.04145.
14. Kempka, M.; Wydmuch, M.; Runc, G.; Toczek, J.; Jaskowski, W. ViZDoom: A Doom-based AI research platform for visual 

reinforcement learning. In Proceedings of the 2016 IEEE Conference on Computational Intelligence and Games (CIG), Santorini, 
Greece, 20–23 September 2016; IEEE: Piscataway, NJ, USA, 2016. https://doi.org/10.1109/CIG.2016.7860433.

15. Adil, K.; Jiang, F.; Liu, S.; Grigorev, A.; Gupta, B.; Rho, S. Training an Agent for FPS Doom Game using Visual Reinforcement 
Learning and VizDoom. Int. J. Adv. Comput. Sci. Appl. 2017, 8, 32–41. https://doi.org/10.14569/IJACSA.2017.081205.

16. Kulkarni, T.D.; Saeedi, A.; Gautam, S.; Gershman, S.J. Deep Successor Reinforcement Learning. arXiv 2016, arXiv:1606.02396. 
https://doi.org/10.48550/ARXIV.1606.02396.

17. Woubie, A.; Kanervisto, A.; Karttunen, J.; Hautamaki, V. Do Autonomous Agents Benefit from Hearing? arXiv 2019, 
arXiv:1905.04192. https://doi.org/10.48550/ARXIV.1905.04192.

18. Schulze, C.; Schulze, M. ViZDoom: DRQN with Prioritized Experience Replay, Double-Q Learning and Snapshot Ensembling. In 
Proceedings of the SAI Intelligent Systems Conference, London, UK, 6–7 September 2018; Springer International Publishing: 
Berlin/Heidelberg, Germany, 2018; pp. 1–17. https://doi.org/10.1007/978-3-030-01054-6_1.

19. Zakharenkov, A.; Makarov, I. Deep Reinforcement Learning with DQN vs. PPO in VizDoom. In Proceedings of the 2021 IEEE 
21st International Symposium on Computational Intelligence and Informatics (CINTI), Budapest, Hungary, 18–20 November 
2021; IEEE: Piscataway, NJ, USA, 2021. https://doi.org/10.1109/cinti53070.2021.9668479.

20. Lample, G.; Chaplot, D.S. Playing FPS Games with Deep Reinforcement Learning. In Proceedings of the Thirty-First AAAI 
Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017.

21. Bhatti, S.; Desmaison, A.; Miksik, O.; Nardelli, N.; Siddharth, N.; Torr, P.H.S. Playing Doom with SLAM-Augmented Deep 
Reinforcement Learning. arXiv 2016, arXiv:1612.00380. https://doi.org/10.48550/ARXIV.1612.00380.

22. Wydmuch, M.; Kempka, M.; Jaskowski, W. ViZDoom Competitions: Playing Doom From Pixels. IEEE Trans. Games 2019, 
11, 248–259. https://doi.org/10.1109/tg.2018.2877047.

23. Vinyals, O.; Ewalds, T.; Bartunov, S.; Georgiev, P.; Vezhnevets, A.S.; Yeo, M.; Makhzani, A.; Küttler, H.; Agapiou, J.; 
Schrittwieser, J.; et al. StarCraft II: A New Challenge for Reinforcement Learning. arXiv 2017, arXiv:1708.04782. https://
doi.org/10.48550 /ARXIV.1708.04782.

24. Certicky, M.; Churchill, D.; Kim, K.J.; Certicky, M.; Kelly, R. StarCraft AI Competitions, Bots, and Tournament Manager Software. 
IEEE Trans. Games 2019, 11, 227–237. https://doi.org/10.1109/tg.2018.2883499.

25. Usunier, N.; Synnaeve, G.; Lin, Z.; Chintala, S. Episodic Exploration for Deep Deterministic Policies: An Application to StarCraft 
Micromanagement Tasks. In Proceedings of the International Conference on Learning Representations (ICLR), Toulon, France, 
24–26 April 2017.

26. Xu, S.; Kuang, H.; Zhuang, Z.; Hu, R.; Liu, Y.; Sun, H. Macro action selection with deep reinforcement learning in StarCraft. In 
Proceedings of the Fifteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE), Atlanta, 
GA, USA, 8–12 October 2019.

https://doi.org/10.7717/peerj-cs.908
https://doi.org/10.3390/app12084059
https://doi.org/10.3390/electronics11193022
https://doi.org/10.1007/s11042-016-4209-1
https://doi.org/10.1007/s11042-016-4209-1
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
https://doi.org/10.1007/BF00992698
https://store.steampowered.com/app/374320/DARK_SOULS_III/
https://steamcommunity.com/stats/374320/achievements
https://doi.org/10.48550/ARXIV.2112.04145
https://doi.org/10.1109/CIG.2016.7860433
https://doi.org/10.14569/IJACSA.2017.081205
https://doi.org/10.48550/ARXIV.1606.02396
https://doi.org/10.48550/ARXIV.1905.04192
https://doi.org/10.1007/978-3-030-01054-6_1
https://doi.org/10.1109/cinti53070.2021.9668479
https://doi.org/10.48550/ARXIV.1612.00380
https://doi.org/10.1109/tg.2018.2877047
https://doi.org/10.48550/ARXIV.1708.04782
https://doi.org/10.48550/ARXIV.1708.04782
https://doi.org/10.1109/tg.2018.2883499


Mathematics 2022, 10, 4363 12 of 12

27. Liu, T.; Wu, X.; Luo, D. A Hierarchical Model for StarCraft II Mini-Game. In Proceedings of the 2019 18th IEEE International 
Conference On Machine Learning And Applications (ICMLA), Boca Raton, FL, USA, 16–19 December 2019; IEEE: Piscataway, NJ, 
USA, 2019. https://doi.org/10.1109/icmla.2019.00042.

28. Hu, Y.; Li, J.; Li, X.; Pan, G.; Xu, M. Knowledge-Guided Agent-Tactic-Aware Learning for StarCraft Micromanagement. In 
Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI), Stockholm, Sweden, 13–19 
July 2018; International Joint Conferences on Artificial Intelligence Organization: CA, USA, 2018. https://doi.org/10.24963/ijcai. 
2018/204.

29. Johnson, M.; Hofmann, K.; Hutton, T.; Bignell, D. The Malmo Platform for Artificial Intelligence Experimentation. In Proceedings 
of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI), New York, NY, USA, 9–15 July 2016.

30. Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.; Schulman, J.; Tang, J.; Zaremba, W. OpenAI Gym. arXiv 2016, 
arXiv:1606.01540. https://doi.org/10.48550/ARXIV.1606.01540.

31. Guss, W.H.; Houghton, B.; Topin, N.; Wang, P.; Codel, C.; Veloso, M.; Salakhutdinov, R. MineRL: A Large-Scale Dataset 
of Minecraft Demonstrations. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence 
(IJCAI), Macao, China, 10–16 August 2019; International Joint Conferences on Artificial Intelligence Organization: 2019. 
https: //doi.org/10.24963/ijcai.2019/339.

32. Gray, J.; Srinet, K.; Jernite, Y.; Yu, H.; Chen, Z.; Guo, D.; Goyal, S.; Zitnick, C.L.; Szlam, A. CraftAssist: A Framework for 
Dialogue-enabled Interactive Agents. arXiv 2019, arXiv:1907.08584. https://doi.org/10.48550/ARXIV.1907.08584.

33. Bard, N.; Foerster, J.N.; Chandar, S.; Burch, N.; Lanctot, M.; Song, H.F.; Parisotto, E.; Dumoulin, V.; Moitra, S.; Hughes, E.; et al. The 
Hanabi challenge: A new frontier for AI research. Artif. Intell. 2020, 280, 103216. https://doi.org/10.1016/j.artint.2019.103216.

34. Muglich, D.; de Witt, C.S.; van der Pol, E.; Whiteson, S.; Foerster, J. Equivariant Networks for Zero-Shot Coordination. 
In Proceedings of the Advances in Neural Information Processing Systems (NeurIPS). arXiv 2022, arXiv.2210.12124. 
https: //doi.org/10.48550/arXiv.2210.12124.

35. Grooten, B.; Wemmenhove, J.; Poot, M.; Portegies, J. Is Vanilla Policy Gradient Overlooked? Analyzing Deep Reinforcement 
Learning for Hanabi. In Proceedings of the AAMAS Adaptive and Learning Agents Workshop. arXiv 2022, arXiv:2203.11656. 
https://doi.org/10.48550/ARXIV.2203.11656.

36. Jia, X.; Bin, Z.; Chao, F.; Chaojing, T. An Automatic Evaluation Approach for Binary Software Vulnerabilities with Address Space 
Layout Randomization Enabled. In Proceedings of the 2021 International Conference on Big Data Analysis and Computer Science 
(BDACS), Kunming, China, 25–27 June 2021; IEEE: Piscataway, NJ, USA, 2021. https://doi.org/10.1109/bdacs53596.2021.00045.

37. Developers, C.E. Cheat Engine. Available online: https://www.cheatengine.org/ (accessed on 15 August 2022).
38. Kalyanakrishnan, S.; Aravindan, S.; Bagdawat, V.; Bhatt, V.; Goka, H.; Gupta, A.; Krishna, K.; Piratla, V. An Analysis of 

Frame-skipping in Reinforcement Learning. arXiv 2021, arXiv:2102.03718. https://doi.org/10.48550/ARXIV.2102.03718.
39. Dabney, W.; Ostrovski, G.; Barreto, A. Temporally-Extended ε-Greedy Exploration. In Proceedings of the International Conference 

on Learning Representations (ICLR), Vienna, Austria, 4–8 May 2021.
40. Zhang, W.; Zhou, D.; Li, L.; Gu, Q. Neural Thompson Sampling. In Proceedings of the International Conference on Learning 

Representations (ICLR), Vienna, Austria, 4–8 May 2021.
41. Schaul, T.; Quan, J.; Antonoglou, I.; Silver, D. Prioritized Experience Replay. In Proceedings of the International Conference on 

Learning Representations (ICLR), San Juan, Puerto Rico, 2–4 May 2016.
42. Andrychowicz, M.; Wolski, F.; Ray, A.; Schneider, J.; Fong, R.; Welinder, P.; McGrew, B.; Tobin, J.; Abbeel, P.; Zaremba, W. 

Hindsight Experience Replay. In Proceedings of the Advances in Neural Information Processing Systems (NIPS), Long Beach, 
CA, USA, 4–9 December 2017.

https://doi.org/10.1109/icmla.2019.00042
https://doi.org/10.24963/ijcai.2018/204
https://doi.org/10.24963/ijcai.2018/204
https://doi.org/10.48550/ARXIV.1606.01540
https://doi.org/10.24963/ijcai.2019/339
https://doi.org/10.24963/ijcai.2019/339
https://doi.org/10.48550/ARXIV.1907.08584
https://doi.org/10.1016/j.artint.2019.103216
https://doi.org/10.48550/arXiv.2210.12124
https://doi.org/10.48550/arXiv.2210.12124
https://doi.org/10.48550/ARXIV.2203.11656
https://doi.org/10.1109/bdacs53596.2021.00045
https://www.cheatengine.org/
https://doi.org/10.48550/ARXIV.2102.03718

	Introduction
	Related Work
	Proposed Methodology
	Mission Description
	Retrieving Attributes for Training
	Gym Creation
	Methods Considered for the Analysis

	Experiments and Results
	Conclusions and Future Work
	References

