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1. Introduction

The theory of Hom-type algebras arises from the g-deformations of Witt and Virasoro
algebras (see [1,2]). Then, the theory of Hom-type algebras is rapidly developing into
a hot topic in algebra theory ([3-8]). In 2008, Makhlouf and Silvestrov introduced the
definition of Hom-associative algebras [4]. In 2012, Caenepeel and Goyvaerts introduced
the monoidal Hom-Hopf algebras ([9]) in order to provide a categorical approach to Hom-
type algebras. In 2015, as the generalization of both Hom-(co)algebras and monoidal Hom-
(co)algebras, BiHom-(co)algebras and BiHom-bialgebras were investigated by Graziani,
Makhlouf, Menini, and Panaite in [10]. Note that a BiHom-algebra is an algebra in which
the identities defining the structure are twisted by two homomorphisms. This class of
algebras was introduced from a categorical approach in [10] which can be viewed as an
extension of the class of Hom-algebras. Further research on BiHom-type algebras could be
found in [11-15] and so on.

It is well known that some classical nonlinear equations in Hopf algebra theory, such
as the quantum Yang-Baxter equation, the Hopf equation, the pentagon equation, and the
D-equation. In [16], the algebraic solutions of Hopf equation and pentagon equation are
discussed. In [17], Militaru proved that each Long dimodule gave rise to a solution for
the D-equation. Long dimodules are the building stones of the Brauer-Long group [18].
The discussion of solutions of BiHom-type Yang-Baxter equation can be seen in [11,19].
The natural consideration is to ask: does there exist algebraic solutions of BiHom-Hopf
equation, BiHom-pentagon equation, and BiHom-type D-equation? That is the motivation
of our paper.

In order to obtain the algebraic solutions of the above BiHom-type nonlinear equa-
tions, we introduced the Heisenberg doubles and the parametric generalized BiHom-Long
dimodules of a BiHom-Hopf algebra. We also generalized Theorem 3.1 and Theorem 5.10
in [20].

The paper is organized as follows. In Section 2, we first recall some notions of BiHom-
Hopf algebras. In Section 3, we describe the BiHom-Hopf equation and BiHom-pentagon
equation, and provide the algebraic solutions of BiHom-Hopf equation through Heisenberg
doubles. In Section 4, we introduce the parametric generalized BiHom-Long dimodules,
and provide the algebraic solutions of the BiHom-Yang-Baxter equation and generalized
D-equation.
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2. Preliminaries

Throughout the paper, a,b,¢,0,¢, - - - always mean integers in Z. Let k be a fixed field
and char(k) = 0, and Vecy be the category of finite dimensional k-spaces. All algebras are
supposed to be over k. For the comultiplication A of a k-space C, we use the Sweedler—
Heyneman's notation (see [21]): A(c) = ¢1 ® ¢p, for any ¢ € C. When we say a “BiHom-
algebra” or a “BiHom-coalgebra”, we mean the unital BiHom-algebra and counital BiHom-
coalgebra. We always assume that the BiHom-structure maps are invertible.

2.1. BiHom-Hopf Algebras

In this section, we will review several definitions and notations related to BiHom-
bialgebras.

Recall from [10] or [15] that a BiHom-algebra A over k is a 5-tuple (A, ua, 11, a4, Ba),
where A is a k-linear space, 14 € A is an element (the unit), 4,4 : A — A are both
bijective linear maps, yg : A® A — A is a linear map, with notation p(a ® b) = ab,
satisfying the following conditions, for all a,b,c € A:

waA(1a) = Ba(la) =14, alpg =aa(a), 1aa=Ba(a), as(a)(bc) = (ab)Bal(c),
apoPa=Paows, aa(ab) =as(a)aa(b), Ba(ab) =pBa(a)Ba(b).

Remark 1. Note that the second line of the above identities can be derived from the first line. See
([15], Proposition 2.9).

Example 1.
(1) IfA=(A,ua,14) is an associative algebra, a, B : A — A are both algebra isomorphisms,

then (A, ua o (a ® B),14,a, B) is a BiHom-algebra.
(2) Ifa = B, then A becomes a Hom-algebra.

A BiHom-coalgebra C over k is a 5-tuple (C, Ac, ec, ¢c, Pc), in which C is a linear space,
¢c, Pc : C — C are linear isomorphisms, ec : C — kand A¢ : C — C ® C are linear maps,
such that

crec(c2) = ¢c(c), ecler)ea = elc),
ec(pc(c)) = ec(pc(c)) =ec(c), Ppclcr) @ Ac(ca) = Ac(cr) @ Pe(ca),
Ppcopc =vpcopc, Ac(pc(c)) = ¢cle1) ® pc(c2), Ac(yc(c)) = yc(e1) ® Pe(ca).

Remark 2. Note that the third line of the above identities can be derived from the first two lines.
See ([15], Proposition 2.11).

Example 2.

(1) If(C,Ac,ec) is a coassociative coalgebra, ¢, : C — C are both coalgebra isomorphisms,
then (C, (¢ @ ¢) o Ac, ec, ¢, ) is a BiHom-coalgebra.
(2) Ifp =1, then C becomes a Hom-coalgebra.

A BiHom-bialgebra H over k is a 9-tuple (H, pup, 1y, Ay, €n, &g, Br, ¢y, ¥y ), with the
property that (H, uy, 1y, oy, Py) is a BiHom-algebra, (H, Ay, ey, ¢n, Yg) is a BiHom-
coalgebra, and Ap, e are all morphisms of BiHom-algebras preserving unit, i.e., for all
h,g € H,

Ap(hg) = hig1 ®@ hago, epn(hg) = en(h)en(g),
AH(lH) =1y ®1y, EH(lH) = 1.

Moreover, it is easy to check that apy, B are BiHom-coalgebra maps, ¢p, g are BiHom-
algebra maps, and they commute with each other (see ([15], Proposition 2.14).
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Example 3.

)
@)

®)

If (H,uy, 1y, Ay, ep) is a bialgebra, o, B, ¢, : H — H are all bialgebra isomorphisms,
then HP = (H, ug o (a ® B), 1y, (¢ @ ) o Ay, e, &, B, ¢, ) is a BiHom-bialgebra.

If H = (H,ug 1y, Ay e, o, B,¢,9) is a finite dimensional BiHom-bialgebra,
H* = hom(H,k). Define the multiplication x, the comultiplication Ay (with notation
Ap(p) = p1 ® p2) and ey« by

(p*q)(h) = pla=t¢1(h1))q(B 9~ (h2)), en+(p) = p(ln),
(P1@p2)(h@g) =platy t(h)p ¢~ (g)), wherep,qe H*, h,g € H.
Define apy+, B+, ¢+, Y- by
-1

ag+(p) =poa, Bu=(p) =po B, pu=(p) =po ™", Yu-(p) =po¢

Then, H* = (H*, *, €1, A+, €+, &+, Br+, ¢r+, Y+ ) is a BiHom-bialgebra.
Ifa = B = ¢ = 1, then H becomes a Hom-bialgebra. Ifa=! = B~ = ¢ = ¢, then H
becomes a monoidal Hom-bialgebra.

Recall from [22] that a BiHom-Hopf algebra H over k is a 10-tuple

(HI I/IH/ ]-Hr AH/ €H, SH/ XH, ,BH/ ¢H/ #)H)/ where H = (Hl }l/ 1H/ A/ &, ,BI 471 lp) is a BiHom-
bialgebra, S : H — H (the antipode) commutes with «, B, ¢, ¢, and satisfies, for any h € H,

h1S(h2) = S(h1)hy = e(h)1p.

Proposition 1. Recall from [22] that, if H is a BiHom-Hopf algebra, then for any a,b € H, the
antipode S satisfies

S(ab) = Sa~'B(b)Sap~'(a), S(1n) =1m, (1)
A(S(a)) = Sy~ (az) ® S¢p~'y(a1), e0S =g, 3]
Sa?¢? = SRy 3)

Moreover, if S is a bijection, then
W = pry?, 4)
§~'(ab) = Sl B(b)S e (a), ST (1) = 1n, )
A(S™H(a) = S71py~H(m) @ ST Ip(m), oS =, ©)
S~ la2p%(ay)a; = arS 'a?B2(ay) = e(a)ly. )

Example 4.

(1) If (H,S un, 1y, Ay, ey) is a Hopf algebra, o, B, ¢, : H — H are all Hoppf algebra

@)

®)

isomorphisms and satisfying Sa>¢p? = SB*¢?, then HBM = (H,S, ug o (a ® B), 1g, (¢ @
) oAy, eq, a, B, ¢, ¢) is a BiHom-Hopf algebra.

IfH = (H,S, u,1y,M,¢ a,B,¢,) isa BiHom-Hopf algebra, under the consideration of Example 3
(2), we immediately obtain that H*°F = (H*, %, &, A\, ep=, (S71)7, (1), (B71)*, (1),
(¢71)*) and H*P = (H*, <, &, Agge, e, (S1)7, (B7)*, (™), (971)", (p~1)*) areall
BiHom-Hopf algebras.

Ifa = Band ¢ = 1, then H becomes the so-called monoidal BiHom-Hopf algebra (see ([10],
Definition 6.4)). If « = B = ¢ = 1, then H becomes the usual Hom—Hopf algebra. Similarly,
ifa =B =¢ ' =1, then H becomes the usual monoidal Hom—Hopf algebra.

2.2. BiHom-Modules and BiHom-Comodules of a BiHom-Bialgebra

Assume that H = (H,u, 1y, A,¢,a,B,¢, 1) is a BiHom-bialgebra. Recall that a k-

space M is called a left BiHom-module of H (in short, an H-BiHom-module) if there exist
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k-linear isomorphisms apr, Bm, ¢, Y : M — M (the Hom-structure maps), and an H
action 61 : H® M — M (with notation 6;(h ® m) = h - m), such that, for any h,¢ € H,
me M,

aym, Bm, ¢m, Ypm commute with each other,
a(h) -ap(m) = ap(h-m), B(h) - Bm(m) = Bp(h-m), ¢p(h) - pp(m) = ppm(h-m),
P(h) - pm(m) = pp(h-m), a(h) - (g-m) = (hg) - Bm(m), 1g-m = pum(m).

If (M, apnt, Brm, oM, ) and (N, an, BN, ¢n, PN ) are left H-BiHom-modules with H-
actions 0y and, respectively, Oy, a morphism of H-BiHom-modules f € homy(M, N) is an
H-linear map satisfying the conditions

anof =foam pyof=fopm nof =fodm Pnof = foym.
The category of H-BiHom-modules and morphisms will be denoted by yBM.

Remark 3.

(1) Obviously, H € Obj(yBM).

(2)  The definition of right BiHom-module of H can be defined in a similar way.

(8) Forany integers a,b,c,0,¢,f,9,b € Z, M,N,P € yBM, yBM forms a monoidal category
under the following structures:

e thetensor product of (M, anr, Bm, o, Yum) and (N, an, BN, N, PN ) is (MR N, apeN,
ap @ an, Bm @ BN, PM @ PN, Pm & PN ), where the H-action on M @ N is given by
h-(m@n) =a®B¢y°(hy) -m@aBlp®y? (hy) -n, wherem € M, n € N, h € H;

e the unit object is (k, idy, idy, idy, idy ) with the trivial module action;
o foranym € M, n € N, p € P, the the associativity and the unit constraints are
given by

aynp((m@n) @ p) =yt Bl dat Wl (m) @ (n @ abBhpSpn™ (p));

—en—F.—a..—b—1 —ap—b —c—1,—
Ly (lx @ m) = ”‘Me,BMf(PMglPMh (m), rm(m® 1) = "‘1\/1a/3]\/1b4’1\/[c 1¢Ma(m)‘
We write this monoidal category by yBM g,'f[j gcba .

Dually, recall from ([15], Definition 5.3) that a right H-BiHom-comodule is a 5-tuple
(M, apt, Bm, ¢, Pm), where M is a linear space, ayg, Bm, dm, v : M — M are linear
isomorphisms, and we have a linear map (called a coaction) p : M — M ® H, with notation
p(m) = mp ® my, for all m € M, such that the following conditions are satisfied

oM, YMm, &p, By commute with each other,
(am®@a)op=poay, (Bu®PB)op=poPm, (Pm@¢P)op=pody,
(Ym @) 0 p = p o, pum(mo) @ myy @ map = mog @ moy @ P(my), moe(ma) = Pppr(m).

If (M, ap, Bum, oM, Yum) and (N, an, BN, ¢n, PN ) are right H-BiHom-comodules with
coactions pys and, respectively py, a morphism of right H-BiHom-comodules f : M — N is a
linear map satisfying the conditions

anof=foam Pnof=foPm Pnof=fopm,
ynof=foym pnof = (f®idy)opm.

The category of H-BiHom-comodules and H-colinear morphisms will be denoted
by BMH.
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Remark 4.
(1) Obviously, H € ObjBM?™.
(2)  The definition of left BiHom-comodule of H can be defined in a similar way.
(3) Forany integers i,j, ¢, I, m,n,p,q € Z, BMH forms a monoidal category under the following
structures:
e the tensor product of H-BiHom-comodules (U, ayy, Bu, ¢u, Yu) and (V, ay, Bv, v, Pv)
is(UV,ay®@ay, Bu® Bv, pu @ ¢v, Pu ® Yy ) with the H-coaction pH®V:

U@V = 1) @ ) ® ' PP Y (u) )™ PP YT (vy));

o the unit object is (k, idy, idy, idy, idy ) with the trivial coaction;
*  the associativity constraint a and the unit constraint 1 and r are given by

auyw((U®o) @w) = o Buehpl (1) @ (0@ ay By oy Py’ (w));
ru(u® L) = a1 BLfp(u), Tu(l @ u) = a™ By pfylu).

Hyijt !
We denote this monoidal category by (BMH )41t np.q-

3. The BiHom-Type Heisenberg Doubles and the BiHom-Hopf Equation

In this section, we will discuss the algebraic solutions of the BiHom-Hopf equation
and the BiHom-pentagon equation.

3.1. BiHom-Hopf Equation and BiHom-Pentagon Equation

In this subsection, we will discuss the relation between the BiHom-Hopf equation and
BiHom-pentagon equation.

Definition 1. Let A = (A, pia, 14,44, B4) be a BiHom-algebra overk, R = ¥ RN @ R(?) pe
an element in A ® A and satisfy

(aa®@aa)R=R, (Ba®pa)R=TR. ®)
(1) If R satisfies RPRIBRI2 = RIZR%, ie.,
Y Ba(R SV eTWs? @ 7@, (RP) = ZDCA(R(l)) @RAsM) g ﬁA(S(Z)), )

where R = S = T, then we say R is a solution of the BiHom-Hopf equation.
(2) If R satisfies RPRIBR? = RPRI2, ie.,

Y RWay (W)@ ROTY @ pa(S =Y Ba(R DR @ a,(8?), (10)

then we say 'R is a solution of the BiHom-pentagon equation.

Example 5.

(1) 14 ® 14 is a solution of the BiHom-Hopf equation and the BiHom-pentagon equation.

(2) Forany a € A, a® 1y is a solution of the BiHom-Hopf equation if and only if
ap(a) = Ba(a)and ap(a)a = ap(a), 14 @ a is a solution of the BiHom-Hopf equation if
and only if ap(a) = Ba(a) and an s (a) = ay(a).

(@) Ifaq = Pa =ida, then A is the usual algebra, and the solution of the BiHom-Hopf equation
becomes the solution of usual Hopf equation, the solution of the BiHom-pentagon equation
becomes the solution of usual pentagon equation (see [[16], Definition 11] for details).
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Proposition 2.

M FR = LRU@RP € A® A is a solution of the BiHom-Hopf equation, then
R =y R@ g R € A® A is a solution of the BiHom-pentagon equation.

(2 IfR € A® Aisinvertible, then R is a solution of the BiHom-Hopf equation if and only if
R~V is a solution of the BiHom-pentagon equation.

Proof.
(1) Self evident.
(2) Note that RPRBR!? and RPRPR® are inverse with each other, R2R? and

—=23—-12 . . = .
R™R ™ are inverse with each other, where R means the inverse of R. Hence, the
conclusion holds.

O

Proposition 3. Let A = (A, pa,1a,&4,B4), R € A® A be an invertible solution of the BiHom-
Hopf equation. If we define a k-linear map Ap : A - A® A, a — a1 @ ap, by

a1 ®ay:=(R(1p®a)R ! = szA(R(l))ﬁ(l) ® (R(z)a)ﬁ(z),

where R-1 = Zﬁ(l) ® ﬁ(z), a € A, then Ay is a BiHom-algebra morphism. Furthermore,
(A, AL,y 0 Ba) forms a Hom-coalgebra without a counit.

Proof. For any a,b € A, we compute

AL@)AL(b) = Y (aa(RDRY @ (RO > R (@a(sM)5Y & (s@5)3?)
(€a(RD) (@ (RM)aaB (SM)))BaS™M) @ (RDa) (a2(RP)B:1(S@))b))Ba(S?)
2 (RS @ (A (R (ab))S? X A, (ab),

which implies A; is a BiHom-algebra morphism.
Moreover, since Proposition 2, R ! is a solution of the BIHom-pentagon equation,
then we have

ApL(a) @ aaBalaz)
Y aa(SD)BA( g(m) ® ( 3<2)R(1>)@<1)g(2>) & (' BA(R®)anpa(a))as (ﬁ@)
Y (BaROITD)B2 () 0 (sOTOYRVED) © (03" (SR )aapa(@))aa(R?)
Y (BaRDTO)RWas(8M)) @ (sOT@)RPTY)

®<<«le< SDYR®)anpa(a)) (Ba(E*)T)
Y BaRD)aspaE") @aa(SW)pATY) @ (SP(RP)S))pa(T?)
waPa(ar) ®Ap(az),

hence the conclusion holds. [

3.2. Heisenberg Doubles of a BiHom-Hopf Algebra

In this subsection, we will provide the algebraic solutions of BiHom-Hopf equation
from Heisenberg doubles. From now on, we assume that H = (H, S) is a finite dimensional
BiHom-Hopf algebra, and S is bijective. Recall from Example 3 (2) that

H* = (H, %, en, A e, ()5 (B (97 (7))

is a BiHom-bialgebra. Then, we obtain the following definition.
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Definition 2. Forany t,s,u,v € Z, the t, s, u, v-th Heisenberg double $).s .o (H) = H® H*
of H, in a form containing H and H*, is a BiHom-algebra with the following structure

(@@ p)t®@q):=ap~'(b1) @ p(a B 9°(b2) B () xq, Lo, 0(m) = 1H D¢,
A sup(H) =& ® (“71)*’ ‘Bﬁt,s,u,u(H) = IB ® (1371)*/

where p,q € H*, a,b € H.

Proof. Foranya,b,c,x € H, p,q, f € H*, we have

(@ o (1) (3@ P))E((0 @ q)8(c @ £))(x)
= a(a) (@ (b)p™(c1n)) ® (p((a" 79 9" (b2)a™ B2 1 gp® (cr2))a™ ' BH(2))

* (q(a tﬁsﬁb P°(c2) () * ) (x)
= (ap ' (01))Bop (1) ® p(a*Bo P yp° (bp) (a*~ 113549“711/] (co1)a 2B 29 %(x11)))
q(a’poe" llfn Yem)a ' B2 H(xn2)) f(B 2 (x2))
= (agp~ (bl)) o) @ (p(a B y® (b2) p1(2)) * )( BTGNP (co)a T BT (x1))
f(B 2 (x2))
= (ap~ (b )®P(‘X B2 y° (b2) B (2)) % 9) (B(c) ® fo B1)(x)

= ((a@p)ib®a)i(B(c)® fop)(x),

which implies the BiHom-associative law. Obviously, we have

(@@p)tlpee) = (@@ (@ ) )@ep), lneeiaap) =B () )aep),

which implies the BiHom-unit law. Hence, (s 1,0(H), 8, 1g ®&,a @ (a~1)*, @ (B~1)*)
is a BiHom-algebra. 0

Theorem 1. Y (a * 2875 g 4yp—""1(¢;) ®¢) ® (g ® ) € Desuo(H) @ Nesuo(H) isa
solution of the BiHom-Hopf equation, where e; and €' are dual bases of H and H*, respectively.

Proof. For any x,y,z € H, we have

Y (a7 2B 2 p e @e)f(a 2B My (a) @e)) (x)
® ((a "2 e My " o) @ e)i(lp ®a))(y) ® (1g ® o) i(1g ® €' (a1(?))))(2)
= Y(a TR (a2 g T (4 )e () @ 6) (x)
® (@ YT T o) @a (BTN () () @ (ln @0 x e (a7 1(2)))(2)
= Y (a TP T YT A (z)a BT T T T (y) @e(x))
@@ 2B e YT () @ 1) @ (1y ® 1y.),

and

YT gy o) @) ()
@ (g @e)f(a 2" g™ ™" 0) ®e)) () ® (1n @ 0'(B71(2)))(2)
= LI ey (e) ®e(x))
® (a7 2Ty o) @ e (a By (on)a T BTH(Y))) @ (I @' (B (2)))
= (TP T T R (2)a T T T T T (y) ®e(x))
® (a2 T T (z) @ 1) @ (1 @ L),
where a; and a' and o; and o' are both dual bases of H and H*, respectively. This implies

that R = L (a 2875 ¢4y 1(e;) ® e) ® (1 ® €') is a solution of the BiHom-Hopf
equation. [
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Corollary 1. ¥(Sa " 1875¢ " ly=0"2(¢;) @ &) @ (1g ® €') € Hesun(H) @ Hes o (H) is
a solution of the BiHom-pentagon equation.

Proof. It is easy to check (by using Equation (3)) that
(S g Y26 we) @ (1g @ )

is the inverse of R = Y(a v 287514y~ 1(¢;) ® ) ® (1y ® €'). Hence, the conclusion
holds because of Proposition 2. O

4. The BiHom-Long Dimodules and the BiHom-D Equation

In this section, we will describe the algebraic solutions of the BiHom-Yang-Baxter
equation and BiHom-D equation.

4.1. The Parametric Generalized BiHom-Long Dimodules

In this subsection, we will introduce the generalized BiHom-Long dimodules which
play an important role in the BiHom-Yang-Baxter equation and BiHom-D equation. As-
sume that (H, Sy, apy, By, ¢u, W) and (B, Sp, ap, B, ¢B, P5) are two BiHom-Hopf algebras.

Definition 3. A k-space U is called a left-right generalized BiHom-Long dimodule of H and
B, if there exist morphisms ayy, Bu, du, Yu € Aut(U) such that (U, ayy, Bu, pu, Yu) is both a
left H-BiHom-module and a right B-BiHom-comodule, and the following compatibility condition
is satisfied:

hug@h-uy = ¢y(h)-uog @ Bp(ur), (11)

forallu € Uand h € H. We denote by 1L the category of generalized BiHom-Long dimodules,
with morphisms being H-linear and B-colinear.

Example 6.
(1) Foranyrt,s,u,v,t, 1,519 € Z, define the left H-action — on H ® B by

x = (h@a) = ayphPrp (V)h © p(a),
and define the right B-coaction on H @ B by
p(h®a) = ¢u(h) ©@a @ apBFPpy3(az),

then it is straightforward to check that (H ® B, —,p, apg @ ap, By ® BB, o1 X ¢, Y1 X Pp)
is a generalized BiHom-Long dimodule.
(2) Similarly, for t,s,u,0,t,1,x,9 € Z, if we define the left H-action — on B ® H by

x — (a@h) = Bp(a) © ap By (x)h,
and define the right B-coaction on B ® H by
oa®h) = a1 @ ¢u(h) @ apBE Py p(a),

then, it is straightforward to check that (B® H, —, 0,ag @ ap, By @ Bp, Py Q@ ¢p, Y1 @ Pp)
is also an object in LB

Foranya,b,¢c,0,¢,f,g,b € Z, we can define the monoidal structures in LB as follows:

e the monoidal product of (U, ay, Bu, pu, Yu) of (V,ay, By, ¢y, py) is (U V,ay ®
ay, Bu ® By, pu ® ¢v, pu ® Py ), where the BIHom-module and BiHom-comodule
structures are given by
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e (u®v) = a8 BLes Y () - u® ag Bl yl (h) -,
pUeV (@) = ug @ v @ ap* By P yp® (un)ag By’ oy Cup " (01);

e the unit object is (k, id, id, id, id) with the trivial H-action and trivial B-coaction.

Theorem 2. For any a,b,¢,0,¢,f,9,b € Z, nLB forms a monoidal category under the above
structures.

Proof. First, forany u € U, v € V, we have

p(h- (u©0)) = afyBYf Yl () - 1y @ agBlofvl () - o,
©ag® By 0y 95 (BEPEYE () - u g By’ 95 " (kPR Y () 0.

= afBhes e () - uo @ afBlddT el (h) - vo @ ap * 1B g T ()ag By 95 Sy " (v1)
= 4’H() (LW())@‘PB(LWQ/

which implies Equation (11). Hence, U ® V € g LB.
Second, define the the the associativity a and the unit constraints 1, r by

ayyw((u®v) @w) = ag®By oy vy (1) ® (0@ afyBlyphtn (w)),
(e @ u) = oy By ¢y (1), ru(u®ly) = ag®By oy vy (u);

where U, V,W € yLB, then, it is not hard to check that ( LB ®,k,a,l, r) is a monoidal
category. [

a,b,c,0

Remark 5. We denote ( HLE, ®,k, a1, r) (under the monoidal structures given above) by yLB e,

Proposition 4. For any a,b,¢,0,¢,f,9,b,d/,0',¢,0,¢,f,¢' 0 € Z, HEB

o/ ',/ 0’
isomorphic to LB, 8

o, gh is monoidal

[AAPN
Proof. Define functor . = (., .%3, %) : uL£B jf"g‘; gl z f",g‘ ;/ by

Z(U) = U as BiHom-Long dimodule,, .#(f) = f,

where (U, ay, Bu, pu, Yu) € uLE, f € Mor(yLP), and Sy is given by

Sy (o) = af B ol wi Y () @y L T oY T 9) " (0),
forany U,V € ulB uelveV. Obviously, .7 = (., .%3,.%)) is a monoidal isomorphic
functor. O

4.2. BiHom-Type Yang-Baxter Equation

In this subsection, we will show that the generalized BiHom-Long dimodules will
provide the algebraic solutions of the BiHom—Yang-Baxter equation.

Definition 4. Let H be a BiHom-Hopf algebra. Recall from [22] that a quasitriangular structure
of H is an invertible element R € H ® H, such that the following conditions hold:

Q1) (¢a@a)R=(BROPR=(¢®P)R= (y O P)R=R;

(Q2) 2R“¢ w(h1)®R2>¢¢—1( ) Dé‘lﬁ(hz) R @ a~1B(hy)R;
(@) © RV @R = L ag(R( )®ﬁ¢( D) @RE2 >R<>
(Q4) T ” “ = YRORD @ gp(RP) @ ap(R?),
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orany h € H, whereR = R = Y RM @ R@ = Y RM) g R@),
Y

Remark 6. Let a,b,¢,0,9,b,i,j be integers, R and R’ be two elements in H ® H. Recall from ([22],
Section 3.2) that, for any M, N € HBME;’;;, if we define families of maps T : @ = ®°F and
T : ®7 = ® as follows:

o Tyn:M®N — N® M is given by

MmN Za“ﬁbcpﬁpt’(R(z ) “N eﬁh f— 1cp° g+1¢a h— 1< )
®1xe,3f¢glﬁb( ) '“;Aa+e/31_\4b+f 1¢;Ac+g_1¢;40+h+1(m)

7

e Tun:N®M— M® N is given by

n@ s Yo Boge 1o (R)) . gie Uil ge et g0ty
® atplpa—Tyh+1 (R/( )) -DéR]aJre,BNbH 1¢K]c+gfllpgja+h+1<n)

7

. sy ,b,c,0
then T is a braiding in HBMS ;, gch with the inverse T’ if and only if R is a quasitriangular
structure of H with the inverse element R’.

Lemma 1. If R is a quasitriangular structure of H, then

Y e(RD)RP = Y RWe(RP) = 1. (12)

Proof. Be similar to ([23], Lemma 2.1.2). [
Lemma 2. IfR is a quasitriangular structure of H, then, for any h € H, we have
Yo tp(h)r @ gy =Y rWap () @ rPap (k) (13)
wherer = Y r) @ r? = R1,
Proof. Equation (13) holds because of Equation (Q2). Actually,

Y RWg~ whn@R ¢l (hy) = Y a'B()RY @' B(hy)RP
& YWa®D)) (g~ ty < >ﬁ*l<s<1>>>®<r<2>a<R<2>>><ﬁ¢¢*l<hz>ﬁ*<s<2>>>
= 2 DB(12)) (BRM)BH(sM)) @ (@ B(hn)) (BRP)B (1))
Y 1u(Bpp(h)s) @ 1H(ﬁ¢¢*l<hz>s<2>> =Y (WB(h))1y @ (xPB(l)) 1y
Yo gp(h)r) @ gy =Y rWap~(hy) @ *Pap (hy),

which implies the conclusion. [

Lemma 3. If H is a BiHom-Hopf algebra with bijective antipode S, and R is a quasitriangular
structure of H, then we have

(Sa 1oy ®id)R = (id® S~ la 1By 1p)R = R, (14)
and hence
(S®S)R=R. (15)

Proof. Firstly, due to Equation (12), we immediately obtain that

Y RUSERY) 9R? = 15 @ 15
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thus, from Equation (Q3), we have

ZR(l)Sa71ﬁ¢7llP(R(1)) ®RPR@ = 1501y,

which implies (Sa~!B¢p 1y ® id)R = R™1.
Secondly, we can obtain (id ® S~!'a~!f¢~1)R = R~! in a similar way.
Finally, one can easily obtain that Equation (15) holds because of Equation (3). O

Definition 5. Recall from ([22], Definition 3.18) that a coquasitriangular structure on a BiHom-
Hopf algebra H is a bilinear form o : H® H — k, such that o is invertible under the convolution
invertible, and the following formulae are satisfied:

(CQ1) o(afa) a(b)) = o (Bla), B(b)) = a(p(a) p(b)) = o(p(a), (b)) = o(a,b);
(CQ2) (a1,bl)4>lP Haz)gpyp ! (b2) = a~ ' B(br)ap~ (a1)o (a2, ba);
(CQ3) o(ap(a),bc) = o(a(ar), ¢(c))o(p(az), (b));
(CQ4) a(ab, ¢py(c)) = c(a(a), p(c1))a(B(b), p(c2))-

Remark 7. For any bilinear form ¢ € hom(H ® H, k), U,V € (BMH)L’{’E’,L,CI (where
i,j,% 1, m,n,p, qmean any integers), define the families of maps Byy : U®V — V@ U by

URD — a‘;i+m71ﬁ;j+n+1¢‘;é+p71¢‘; [+q(vo) ® D(%Imjtlﬁ{;nfl(i)l?fpfllpl[;q (140)
o(@ Bty (ugy))a™ B P (v))).

Then, recall from ([22], Theorem 3.20) that o is a coquasitriangular form of H if and only if
(BMHIY % is a braided category with the braiding B.

Being similar to Lemmas 1 and 3, we have the following property.

Lemma 4.

(1) If o is a coquasitriangular form of H, then for any h € H, we have
(T(h, 1H) = U(lH,h) = S(h)

(2) If H is a BiHom-Hopf algebra with bijective antipode S, and o is a coquasitriangular form of
H, then, for any h, ¢ € H, we have

o(Sap (1), 8)o(ha, §2) = (b1, S ap gy~ (g2)) = e(h)e(g).  (16)

Now, assume that (H, Sy, &g, By, ¢n, Yy) and (B, Sp, ap, Bs, ¢5, ¥p) are two BiHom-
Hopf algebras.

Theorem 3. If H is quasitriangular and B is coquasitriangular, then 1 LB forms a braided category.

Proof. Suppose that R is a quasitriangular structure of H, and ¢ is a coquasitriangular
structure on B. Forany U,V € uLB ue U, veV,define Cuv(u®v) =

Yo o(ag B g e ) a By g M (0n) Bl (RP)
By Ty Ty (v0) @ Byl (R o BT Rl (o).

Obviously, C is compatible with the BiHom-structure maps. Since we have
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Cuv(h-(u®0))

Y o B s g (ur), ag BTy My (v1)
afiBgiyh (R®) - (afiBf i Mol () - o By T gy yy " (o)

® af; B % el (RD) - (g Bh o8l () - a2 Bl 0 o8 2l (ug))

D (a1 ey (), 0 By oy Sy (01))

a pb—1,c 10 ((2) -1 —epb—f ;c—g 0—b-1

ag By P (R Py (h2)) - "‘v By 4’\/ 2 (v0)

® agBl  oR el RV o (i) - af Bl 9820 (uo)
D) (a5 0y (), ‘eﬂgf‘l 9950 L (00)

(g B s () B 9wy (RP)) - ad By Tt 9900 (v)

® (w5 BLodwy (ha)ag Bl oLl (RW)) - at Bl 08 290" (uo)

(Q1)

Y olag By 5 g (w), ap By’ 5w (v))
afiBEPEH () - (af Byl (RP) - zx% By Ty T " (v0))
@ asr BLof el (h) - (i Blfl RD) - a gl 98~ ) (uo))
= h'Culv((M®U)),
C is H-linear. Similarly, we have
(CU,V ® ldB) [©] pU®V = pV®U [e] CLI,V/
which implies C is B-colinear. Moreover, we also have
((idy ® Cyw) cay,uw o (Cuy ®idw)) (4 ®v) ®w)
= (ldV®CUW Z‘T B lIBB ‘I’Bc 11/)3 (u1), "‘BeﬁBf 1¢Bg¢3h 1(01))‘?1{( ))
By gyt 1%“ H(o0) @ (afiBlofpn RM) g Bl ol 29" (uo)
®“Wﬁw¢wlpb+l( w)))
ZU ‘XB ull a7e+2132b7f 1(P2c g+3¢20 h— 1(“’1))
o(B(ur2), g By Tpg T g (01))
a8 Zeﬁh 2f+l c— 291!’?{ 2h— 1(R(2)).a;eﬁ;fflcp;gfllp‘;bfl(v())
®© (af e“/%?; Toi i " (RP)) - afy Bl pfv i (wo)
(-(1)R(1)) 26 Zalng 26— 14)29 —2c— 3¢2h 2a+2( o)
ZU, D‘BﬁB ul) “B e-‘rlﬁg f¢c g+1lIJD H— 1( )IX%a e+2 2Bb f— 1¢%t g+2wéb H— 1( 1))
20 22135 Zf(Pc 29— 11p° 2h— 1( ) By - 1¢Vg71¢ h— 1(00)
@ (g By r gl T (R 2>> By i (wo)
®R() 22 ZaﬁZf 2b— 14)29 —2c— 3lP2h 20+2< 0))
(CQ1), 2‘7 p=20— 1:BBZb4)BZC 24] 2a(u1) g lﬁBb f— 1¢Bc7971¢§07b71<01)
w5 By s s () Bl Wl (R - ap By ey Ty (o)

® (a ““ﬁb“ (R “) By i (o)
®D(H,B 2h+1(R( ) Za’BZf 2b—-1 2g 2¢— 34)2h 2D+2( O))

(€Q3),
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= aywu Z‘T —2a— 1ﬁ32b¢32c 2¢32°(u1) D‘gefuflﬁ];f—b—lcp—g—c—llpgb—%l(vl)
ap By 20p 0y (w1)) (PR GE YR (RP) - ag et Tl 82 ()
“*eﬁb“ oo °+“<R<2>> afy BOy Lyl (wo) )

®“HﬁH¢H1/’H( ) ¢ Zaﬁf 2b— 14,9 2c— 34,?) 20+1( )
— (aV/W/UOCu,VthOau/V,W)(( 20) @ w),

and similarly we can obtain a;\/%u,v o Cygy,w © a&,lv,w = (Cyw ®idy) o a&,lwrv o (idy ®
Cy,w)-

Now, for any U,V € L5, consider C' : ®°7 = ®, where C';j v (v ®@ u) :=
2‘7 S"‘BﬁB‘Pch2 (”1) “B.BB‘PB‘/’B(W))S“H lﬁbH CHIP ( )
Bl 14)& i " (o) @ aBlLofwl (RP)) a8l gl ) (o).
Next, we will show C’ is the inverse of C. Indeed, we have
(C'uy o Cuy)(u®0)
= Cluy(Co(wg® "B 05 s () a5 By’ 95 " (1)) By W (RP)
LBy Tl S (v0) @ ag Bl S (RM) - af Bl T ol Tl (o))
B 1,33 $g° 11/’3 (u12),ap ﬁBf 1¢Bgl/]B (7’12))
(5“13/334’31/’3(”11)/“BﬁB‘PB'JJB(vl))
(Sad B s T (R )ag Bl 203 2 (RMW)) - B oy (o)
(“HﬁH‘PH‘PH(R(Z))“HIBH‘PHl/’H( ) Bty (vo)
COLE (g B 08 g (una), a§ By 5 3 (012)
o (SagBhoSph(unn), afBEPEYE (1)) 0y (o) © @y (v0)
(CQ1),(46)

= URD,

Q@) g,

and similarly we can obtain C; y o C'; y = id. This means that (g EBafbgc;, ®,k,a,1,1,C)

is a braided category. O
Under the consideration above, we obtain the following result.
Corollary 2. The family of maps Cyy for any U,V € HEBS,’; gchb is a solution of the following
BiHom-type Yang-Baxter Equation:
(idw ® Cy,v) o aw,u,v o (Cyw ®idy) o aﬁ,lw,v o (idy ® Cyw) cayyw

= aw,v,u© (Cw,y ®idy) o ayy, ;o (idy ® Cuw) o ay,uw o (Cuy @ idy).
Proof. Straightforward. [

4.3. Generalized D-Equation

In this section, we will show that the generalized BiHom-Long dimodules will provide
the algebraic solutions of BiHom-type D-equation. From now on, we always assume that
H= (H,u1y,0¢5,a,B,¢,1) is a BIHom-Hopf algebra over k.
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Definition 6. Let § : ® = ® be a natural transformation in Vecy. If the following diagram is
commutative
idy ®
UsVew 2 _uevew
éu,v@idwl J{éu,x/@idw

U®V®W—>U®(V®W)

idy®gy,w

in Vecy, then we say ¢ is a solution of the D-equation.
Theorem 4. For any integer a,b,¢,9,¢,,9,h,1,),%, [ € Z, the following k-linear maps

gl UV -—ueVv
u®o— a'Boty'(vr) - Byt (1) @ ¢y (vo),

where U,V € y LM satisfies the following generalized BiHom-type D-equation in p LH ffb gcha :

1,j,¢,0

u®
(U®V)®WHU®(V®W)—>U®(V®W) vy L (UeV)OW
?JH@ldWi lgl)“@ldw
(U®V)®W—>U®(V®W)*>U®(V®W) U V) W.

1y v w au V,W
Proof. Foranyu € U,v € V, w € W, since the following identities

(&' @idw) o agly o (idy @ &) o auy,w) (1 ®0) @ w)
= ((Cllu@i‘iw)Oaﬁlwv)(“uﬁu”ulpu()
® (a T IIpsT eI () - B (0) @ afy Blydly iy (wo)))
= a'Btpt(o1) By (u) @ (afTTIPIT I (wy) - Bile (v0) @ ¢y (wo))
_ (aalvw (Zdu@é””))( 7u+i187b+j4)76+371¢70+[(01)_txu ﬁub 1¢uc 11/Jub(7/l)
@ (9 (v0) @ afyBlyply vy (w)))
= (aglywo (idu @ &Pw) o auw,y o (&' @idw)) (1 ®v) @ w),

the conclusion holds. O

Remark 8. As a special case of Theorem 4, if « = B = ¢ = 1, then H is a Hom—Hopf algebra, and
we immediately obtain ([8], Proposition 5.11).

5. Conclusions

For a BiHom-Hopf algebra H, we first introduced the parametric Heisenberg doubles
of H, and show that they can provide the solutions of the BiHom-Hopf equation and
BiHom-pentagon equation. Then, we investigated the generalized BiHom-type Long-
dimodules, and the solution of BiHom-D-equation derived from them. Moreover, if H is
both quasitriangular and coquasitriangular, then BiHom-type Long-dimodules also provide
the solutions of BiHom-Yang-Baxter equation.
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