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Abstract: Image translation is a classic problem of image processing and computer vision for trans-
forming an image from one domain to another by learning the mapping between an input image and
an output image. A novel Multi-scale Residual Generative Adversarial Network (MRGAN) based on
unsupervised learning is proposed in this paper for transforming images between different domains
using unpaired data. In the model, a dual generater architecture is used to eliminate the dependence
on paired training samples and introduce a multi-scale layered residual network in generators for
reducing semantic loss of images in the process of encoding. The Wasserstein GAN architecture with
gradient penalty (WGAN-GP) is employed in the discriminator to optimize the training process and
speed up the network convergence. Comparative experiments on several image translation tasks over
style transfers and object migrations show that the proposed MRGAN outperforms strong baseline
models by large margins.

Keywords: image translation; generative adversarial network; unsupervised learning; object migra-
tion; multi-scale residual network
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1. Introduction

Image-to-image translation is a longstanding topic in some image processing and
computer vision tasks, e.g., image enhancing, colorization, semantic segmentation, artistic
stylization, which can be seen as a translation from an input image to an output image.
Due to the use of deep learning models in recent years, the image translation tasks have
been constantly explored in research fields from style transfer to scene changing, and then
to object migration, etc. [1–10]. Meanwhile, there are more and more in-depth applications
in our daily life from the former Prisma [11], Ostagram [12] and Deep Forger [13] to the
latest Versa [14]. The learning methods have been improved from pixel-based iterations to
generative models for enhancing networks. In short, great progress has been made in all
aspects of image-to-image translation.

At present, GANs [15] and conditional GANs (cGANs) [16] are mainly used as image
translation models to generate the target images [4,10,17–21]. Considering the forms of
input images, these models can be divided into supervised learning and unsupervised
learning. In supervised models, a large number of input-to-output image pairs are need for
training networks. Although the networks are learned faster, it could be difficult and costly
to find enough labeled pairs in real life, even the desired outputs cannot be well-defined in
some tasks, such as object migrations and artistic stylization. Therefore, some unsupervised
models are proposed to address this problem, which only need images from two domains
with different styles, instead of paired data. The models can automatically learn the
semantic difference between two domains and transfer an image from the source domain
into the analog image looking like from the target domain. For example, in [21], a horse in
an image can be transformed into a zebra with the same posture and behavior as the horse,
where the original background still remains. In this way, unsupervised translation models
not only do not require paired images for training, but can even produce good results when
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the image sizes of two domains differ by one or more orders of magnitude, as long as the
image style of each domain is consistent.

Although unsupervised models can learn the difference between two image domains
and capture domain-specific characteristics, some important semantic information is often
lost due to the lack of contexts from one-to-one image pairs. For example, if missing
the object information of a given input, a horse grazing on green grass is likely to be
converted into a zebra munching on withered grass since the background of images carries
on adversarial learning together. In addition, if the structure is not stable, it may also cause
color leakage in the target output. How to preserve the same context and structure with
its input image in a target output besides transformed objects and styles is still an issue of
unsupervised learning.

In this paper, we propose an unsupervised image translation model, MRGAN, with
two generators and one discriminator based on GAN. For the issues of color leakage and
structure instability caused by the lack of target image guidance, we design a multi-scale
layered structure in the generators, which adopts a bilinear interpolation algorithm to cap-
ture image layered features and integrate them into every-level residual unit for retaining
enough semantic and structure information. In addition, the WGAN-GP network [22] is
employed in the discriminator, combining with the randomly cropped image patches as
inputs to optimize the training process and enhance the robustness of the model. The key
contributions of our work are summarized in the following: (1) The multi-scale layered
structure with residual units is used in the generators to eliminate image semantic loss in
the process of encoding. (2) In the discriminator, inspired by [23,24], a WGAN-GP architec-
ture is employed for gradient penalty instead of weight pruning to preserve stability in
network training. (3) We use an improved objective function combining the reconstructed
loss and the adversarial loss in MRGAN to further optimize the training process and speed
up network convergence. Extensive experiments show that the approach can successfully
eliminate the dependence of paired images and retain enough semantic details in the
generated images, which can meet the needs of a wide range of applications including
object migration, season transfer, style conversion, and so on.

2. Related Work

This section presents the relevant works including GANs and image-to-image transla-
tion, which will highlight the background and current research state in this area.

2.1. Generative Adversarial Networks (GANs)

GAN was first proposed in 2014 by Ian J. Goodfellow et al. [15]. As one of the most
valuable generative models on deep learning, GANs have received considerable attention in
the field of computer vision for image generating [9,21,25–29]. GANs are one type of models
that can generate more similar samples by learning the probability distributions of training
set, which aim to generate samples through a zero-sum game between a discriminator,
trying to discriminate between real and fake data, and a generator, seeking to generate data
that resemble the real ones. In recent years, many studies have focused on optimizing the
training stability of GANs [22,30] or utilizing additional information to release the potential
of GANs in different domains [31]. cGAN is a typical GAN model that uses conditioned
information to guide the image generation [16,32], which has been successfully utilized for
various applications on image translations [17,18].

2.2. Image-to-Image Translation

The idea of image translations traces back to Image Analogies [33], which proposed a
nonparametric texture model on a single input–output image pair. Recent works in the field
of image-to-image translation have achieved impressive results [5,6,10,18,19,34]. Pix2pix is
the first general framework using a cGAN for image-to-image translations [4], followed by
its enhanced version, pix2pixHD [17]. Based on pix2pix, BicycleGAN is proposed to achieve
multi-domain image-to-image translation using paired images [6]. Similar models have
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been employed on various applications for generating images such as from sketches [18,35]
and from attributes and semantic layouts [36].

The need for pairwise training samples is one of the main disadvantages of super-
vised image-to-image translations. However, this fatal problem has been well solved in
unsupervised image translations, which do not need paired data, as long as the style of
images remains consistent in the same set. CycleGAN [21], DualGAN [19], DiscoGAN [20]
are typical unpaired image-to-image translation models which work by introducing the
cycle consistency constraint cross two domains. In addition to the definitions of loss func-
tions, these three models have many similarities in structures and training methods. For
instance, CycleGAN has achieved good results in the object migration task between horses
and zebras, where only the target objects are migrated while the rest of the images are
retained. Nevertheless, there still exists a training unbalance on CycleGAN that leads to
mode collapse, where the background colors of images change as the migrated objects
change although the original positions and structures are maintained.

Multi-domain image-to-image translations recently have been extensively studied for
image translation tasks. StarGAN [34] is proposed to transform images among multiple
domains simultaneously by sharing one generator–discriminator pair with the aid of an
auxiliary classifier [37]. As a result of sharing a common mapping for different tasks of
transforming and inverting, it is harder to optimize the generator for good generalization
ability on both tasks. For this, G2GAN [10] uses two generators to respectively transform
and reconstruct images between the two domains. For optimizing the training process, two
task-specific generators in G2GAN share different-level parameters and perform strict cycle-
consistency loss on feature channels. Therefore, G2GAN is particularly appropriate for
conversing between different attributes of similar images, such as facial attribute transfer
and expression convertion on face images. Similarly, more extra information can also be
used in diverse multi-generator/multi-discriminator models for various image translation
tasks, such as artistic portrait styles [38], text and object descriptions [31,36,39,40], semantic
or sketch labels [41].

In this paper, a novel unpaired image translation model, MRGAN, is designed with
dual generators and one discriminator, which solves the semantic information retention
problem of unsupervised translations. A Multi-Scale layered structure is employed in the
generator networks, where a bilinear interpolation algorithm is used to adjust the size of
images instead of down-sampling in the network for retaining more image information.
The discriminator carries out a full convolution PatchGANs [4,25,42], where WGAN-GP
method [23] is used to constraint the training process of networks and accelerate the
convergence of the model by combining the reconstructed loss and the adversarial loss.

3. Proposed Model

Our proposed MRGAN performs the image-to-image translation using unpaired
training data. Suppose A and B represent two image fields converted to each other and
no pairings need to exist between these two domains, our model learns a function φ that
maps from A to B using training data. As shown in Figure 1, the model consists of two
generators and one discriminator—a generator G1 transforming images from domain A
into the images with the style of domain B, and an inverse generator G2 transforming
images from domain B into the images with the style of domain A, and a discriminator
D discriminating the generated images from the real images with different domain labels.
Meanwhile, two generators can be used to reconstruct images from the output domain
into the original domain. The operations of two generators can be regarded as being onto
mappings between two image domains, where an image from each domain can be rendered
into the style of the other one.
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Figure 1. MRGAN contains two generators for transferring two styles of images each other. Generator
G1 is used for learning an mapping from domain A to domain B. Similarly, Generator G2 is used for
learning an mapping from domain B to domain A. The discriminator aims to distinguish generated
images from real images of two domains.

3.1. Generator

The role of a generator is to map images from one domain into another one so that the
style of generated images is sufficiently similar to that from the target domain and enough
to confuse the discriminator. What is more, a generator is used to detect the distribution of
the original domain and then match it to the consistent distribution from the target domain.

Figure 2 shows a generator network. A multi-scale layered structure is proposed in
this paper to preserve the details of images as much as possible in the generator, of which a
bilinear interpolation method is used to obtain three scales of images for training the generator
network. In our work, an RGB image with 256 × 256 pixels is inputted into the network, and
after two bilinear interpolations, the images with 128 × 128 and 64 × 64 are obtained.

Figure 2. The generator network uses a multi-scale layered residual structure to preserve the details of
images as much as possible, where three input scales of images are obtained by a bilinear interpolation
method, combined with residual operators and convolutions for training the network.

One of the greatest advantages of multi-scale structure is that the convolution kernel can
obtain different receptive fields, when images with multiple scales pass through convolution
layers with a fixed size convolution kernel. It can be known from the Convolutional Neural
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Network (CNN) principle that the smaller the image scale is, the larger the perception field
obtained by the convolution kernel is, and the higher order of information in the image
can be extracted. On the contrary, the larger the image scale is, the smaller the receptive
field obtained by the convolution kernel is, and it is easier to find the subtle features in the
image. Therefore, we directly expand the receptive fields of convolution kernel by reducing
the image sizes to replace down-sampling operations, and thus can effectively eliminate
information loss and simplify the network structure. After images with different scales are
entered into the generator, the following steps are performed for generating images:

• First, a convolution processing is executed on each channel for adjusting the number
of channel dimensions;

• Second, residual units are carried out to output the feature maps with the correspond-
ing sizes;

• Third, through layer-by-layer up-samplings, the smaller feature maps are spliced with
the larger ones;

• Fourth, after a series of up-sampling operations, the feature map with the same size as
the original image is obtained;

• Last, the obtained feature map is spliced with the original image, and through the last
convolutional layer, the final stylized image is obtained.

It deserves to be mentioned that in our generator networks, the up-sampling opera-
tions are completed by first magnifying feature maps using a bilinear interpolation and
then adjusting channel dimensions through a transposed convolutional layer.

3.2. Discriminator

In the MRGAN model, the discriminator D is designed based on PatchGAN [4] and it
contains two branches, where one classification branch is to classify images into the correct
image domains, and another discrimination branch is to discriminate generated images from
real ones. An improved Full Convolution Network (FCN) is shared by the two branches. The
output of the convolution layer is directly regarded as the return value of the network for
calculating the adversarial loss, while the active layer is used for the binary classification. We
use 70 × 70 PatchGANs in the discriminator network, which accepts image inputs randomly
cut to reduce computational cost of FCN on the premise that the output is credible.

In the discriminator network, the convolution layers are constructed only using 2-step
and 1-step sizes of the convolution kernel. Actual operations on convolution layers can be
regarded as down-sampling, where the dimensions of feature maps can be reduced by steps
as well as the structure features and the color information of images can be extracted. The
discriminator network with this structure actually can convert the classification problem
into the fitting problem of the data distribution. That is, it can fit the image distribution
from one domain into another one, so that the data distribution is as close as possible to the
target one after adversarial training.

3.3. Loss Functions

Loss functions are also called objective functions. The training process of the network
is to optimize objective functions through iterative learning. Our goal is to learning two
mapping functions G : A→ B and R : B→ A between two domains, A and B, as illustrated
in Figure 1. Given training image xi ∈ A (i = 1, . . . , M) and yj ∈ B (j = 1, . . . , N), where M
and N are the example numbers of A and B. There are two generators and one discriminator
in MRGAN. Generator G1 generates image G(xi, b) from image xi and G2 reconstructs
image R(G(xi, b), a) from generated G(xi, b), where a and b, respectively, are labels of
target domain A and B. In the same way, Generator G2 generates R(yi, a) from yi and G1
reconstructs image G(R(yj, a), b) from generated R(yj, a). Discriminator D is to distinguish
G(xi, b) and R(yi, a) from the real images guided by classifier label a and b. Therefore,
two types of losses are used for generating training and adversarial training: adversarial
loss for distinguishing the generated samples from the real ones as much as possible and
reconstructed loss for maintaining the generative consistency of mapping G and R.
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3.3.1. Adversarial Loss

Here, we used the adversarial loss of WGAN-GP with RMSProp optimization [23].
Since two generators have the same structure and only generate images in opposite direc-
tions, we use a unified function M(x, l) to represent two inverse mapping G and R, where
x is an input image, and l ∈ {a, b} is the label of the target domain. The discriminant
function Dd of discriminator D tries to distinguish generated M(x, l) from real image y.
The adversarial loss of D is optimized as

maxDL(M, Dd) = Ey∼P(y)[Dd(l|y)]− Ex∼P(x)[Dd(l|M(x, l))] + λ× gp (1)

where P(·) is the intrinsic distribution of an image, and Dd(l|y) and Dd(l|M(x, l)), respec-
tively, are the predicted softmax probabilities of y and M(x, l) by discriminator D over
label l. The gradient penalty item λ× gp over the discriminator is used to speed up the
convergence and optimize the objective, as λ is a learning rate of the gradient penalty.
Gradient penalty is defined as

gp = Ey′′∼Py′′
[(‖ 5y′′ (y

′′)‖2 − 1)2] (2)

where ‖ · ‖2 denotes the second moment norm of the gradient, y′′ is a linear combination of
the real sample y and the generated sample M(x, l), i.e.,

y′′ = y + β(M(x, l)− y) (3)

where β is a real number sampled from the uniform distribution [0, 1].

3.3.2. Reconstructed Loss

The reconstructed loss aims to ensure the generative consistency between A and
B. Intuitively, each image x from domain A can be mapped into G(x, b) following the
distribution of domain B, and then G(x, b) can be reconstructed back to domain A by
R(G(x, b), a) too. From Figure 1, it can be seen that two generators should satisfy the
generative consistency respectively by mapping G and R. Additionally, an original image
and its reconstructed image should be as similar as possible. Here, we encourage this
consistency using the reconstructed loss:

rl = ‖R(G(x, b), a)− x‖1 + ‖G(R(y, a), b)− y‖1 (4)

where ‖x − y‖1 denotes the L1 distance of x and y. The generator G1 aims to generate
image G(x, b) looking like an image from B. Considering that the reconstructed loss is used
to preserve the generative consistency, we optimize the objective of G1 by

maxGL = −Ex∼PA(x)[Dd(b|G(x, b))] + δ× rl (5)

where δ is a real coefficient for reconstructed loss.
Similarly, we can define the objective of G2 and optimize it, i.e., maxRL. Since we

have defined the reconstructed loss and the adversarial loss for the generators and the
discriminator, respectively, MRGAN can optimize these loss functions along at the same
time until the final convergence.

4. Experiments
4.1. Datasets and Setup

The datasets used in our work include three open image sets, horse2zebra, sum-
mer2winter and maps, from [4]. As shown in Figure 3, each image set contains images
from two domains for transforming each other. horse2zebra is used for object migration
between horses and zebras in two domain images. summer2winter includes landscape
photos of summer and winter sceneries for season conversion. maps consists of two types
of map images, Google maps and aerial photos, for map transformation between plane
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maps and satellite aerial photographs. In addition, we also crawled some images online
to extend the datasets so that each domain contains at least 1000 images for training and
testing. All images in the datasets are RGB images with a 256 × 256 size.

Figure 3. The datasets include horse2zebra, summer2winter and maps, where each dataset contains the
images respective from two domains. (a) shows the examples of horses and zebras from horse2zebra,
(b) shows seasonal landscape photos from summer2winter, and (c) shows Google maps and aerial
photos from maps.

The evaluations for the model refer to the comparison of image translation results and
the analysis of time performance. Since there are no quantitative metrics for unsupervised
image translation tasks owning to missing target images in datasets, we can only evaluate
experimental results through the visual presentations of result images. Considering that
people’s visual comments are subjective to some extent, in order to ensure the objective
and effective experimental analysis, we conducted user studies to validate our work, which
carried out a manual evaluation for the image translated results using different models on
different data sets. We designed the different visual metrics for the three tasks according
on the difference of image styles, respectively. Then, we provided the participants with the
shuffled result images of three tasks generated, respectively, by MRGAN and two baseline
models, and a scoring table including scoring items for different metrics on different
styles. Three score ratings are set from 1 to 3, according to the satisfactory degree on each
metric, respectively. For received available feedback results, we computed the average
scores for each metric on the different tasks, and obtained the overall scores of different
models according to all metrics. Then, we analyzed the results and evaluated the effects
of different models according to their average scores and overall scores. Training speed
(Strain) and generation speed (Sgen) are used as the evaluation metrics for measuring the
time performance in our work. Strain is the average time consumption for one iteration,
Sgen expresses the the average time consumption for generating one image. The definitions
of the performance metrics are expressed below:

Strain =
ttrain
iters

(6)

Sgen =
tgen

counts
(7)

where ttrain denotes the total time to update the network weights, iters is the iterations, tgen
denotes the total time to generate images, and counts is the number of images generated.
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Our experiments were conducted on GPU: Nvidia GeForce GTX 1060 with 3 GB RAM, and
the proposed and reproduced methods were implemented using Python program language.

4.2. Model Settings

Since there are two independent generators in MRGAN, we will train these two
networks at the same time. Different from CycleGAN [4] and WGAN-GP [23] models,
each generator performs one loop, and then the discriminator executes 5 loops using the
same training data for training a single generator network. In training, each input of the
generator is only one image, and inputs of the discriminator network are image blocks with
a size of 70 × 70 pixels randomly cut from an input.

4.3. Training Method and Strategy

As the performance of a model is affected by the quality of training data, scattered
data may lead to too slow convergence of networks and even to severe pattern collapse.
Therefore, data first need to be standardized before being inputted into networks. In our
work, the pixel values of RGB images are first mapped to [−1, 1] to prevent the occurrence
of gradient disappearance on training.

4.3.1. Group Normalization

In the training of multi-layer networks, the input data on each layer need to be
normalized to preserve the uniform data distribution. Although Batch normalization [43]
is shown to be effective, it is not applicable for our work because it is equivalent to instance
normalization [44] in case where only one image is processed in the network at a time as
a batch. The group normalization method [45] is used in our model, where the data first
are grouped by channel dimensions, and then the data of each group are normalized for
avoiding the single batch dimension. The channel data are divided into 64 groups in our
networks, as well as the training being twice as fast as using batch normalization without
gradient disappearance and mode collapse.

4.3.2. Weight Initialization and Activation Functions

Weight initialization plays an important role in training networks. If the initial weights of
networks are too small, the gradient signals may be weakened layer by layer until disappear.
Conversely, if the weights are initialized too large, the signals will be amplified between two
layers, resulting in gradient explosion. For that, we use the Xavier initializer [46] to initialize
the network weights, which tunes the initial weighs according to the distribution of input
data. In order to convey gradient information better, we adopt Leaky ReLU as the activation
function in the down-sampling process, while we use ReLU in up-sampling.

4.3.3. Optimization and Learning Rate

MRGAN adopts WGAN-GP architecture to replacing pruning by gradient punish-
ment on the weights of discriminator, where the Adam optimization algorithm based on
momentum [47] is used in order to make the training more stable. Learning rate decay
strategy is applied in MRGAN for accelerating the model convergence. The decay mode of
learning rate α is

α = α0 − η × epochs (8)

where α0 is initial learning rate and set as 2× 10−4, η is decay factor, and epochs represents
iteration numbers. Here, the decrement item η × epochs is always required to be less than
α0, since it is verified through experiments that the decrement of the learning rate is about
2× 10−6 at a time by updating the weights with all the data, in order to make the decay
frequency (i.e., iterations ) less than 100, we set η as 2× 10−6. Obviously, if the learning
rate α is too large, the convergence of the model is too fast and it may cross the optimal
solution; if it is too small, the convergence of the model will be too slow. Likewise, if η is
greater, the decay of α is greater and the convergence is gradually slowed; reversely, the
convergence becomes faster.
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4.4. Results and Analysis

We have mainly compared our model against the recent unsupervised methods, Cycle-
GAN [4] for image-to-image translation and G2GAN [10] for multiple-domain translation,
and analyzed the experimental results. All models are trained and tested under the same
hardware and software environment. The deep learning framework used for implementing
the models is TensorFlow with Python API [37].

4.4.1. Comparative Results and Analysis

Figures 4–6 show all types of image translation results after five training rounds of
three models. Figure 4 shows the object migration results of local and global images on
horse2zebra dataset. In Figure 4a, we can see that MRGAN can retain enough semantic
information of original images compared to two other methods with better boundary and
texture of objects. On the other hand, there exist irregular white blocks in the transformed
images of CycleGAN and G2GAN, which means information loss with serious impacts on
the quality of generated images. The results of global image translation in Figure 4b show
that the MRGAN proposed in our method can maintain more realistic image background
than CycleGAN and G2GAN in object migration tasks after the same training rounds.

Figure 4. The experimental results on horse2zebra for object migration using MRGAN, G2GAN and
CycleGAN. (a) The result images of object migration from horses to zebras. (b) The result images
from zebras to horses.

The experimental results of season conversion on summer2winter dataset are shown
in Figure 5. It can be seen that the color of winter images generated by MRGAN is the
most realistic in Figure 5a, followed by G2GAN, and CycleGAN has the worst results.
In the generated results of MRGAN, the overall environment with cool color and the
grassland covered with snow tend to be more consistent with the human visual perception.
Nevertheless, the generated results of CycleGAN seem to be more “warm” with more
yellow, and G2GAN’s results feature an excessive “wintering” with more blue. Similar
results are obtained for visual perception in Figure 5b.

Figure 6 shows the results of transformation between satellite photographs and 2D
plane maps on maps. Since the color and texture composition of two style images is not very
sophisticated and the boundary information is relatively significant, it is hard to intuitively
distinguish the outcomes of three models. The generated roads may not be straight enough
in the result maps because of obstructed buildings and trees in aerial images. In contrast,
the transformation from two-dimensional maps to aerials can get more satisfactory results.
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Figure 5. The experimental results on summer2winter for season conversion using MRGAN, G2GAN and
CycleGAN. (a) The result images from summer to winter. (b) The result images from winter to summer.

Figure 6. The results on map transformation task. (a,b) show the result images respectively using
MRGAN, G2GAN and CycleGAN for map transformation between aerial photos and 2D maps.

4.4.2. Time Performance Analysis

All models in the experiments were run on Nvidia GeForce GTX 1060, and we analyzed
the time spent on training iterations on three models. Tables 1 and 2, respectively, report
the average time consumption of different iterations after certain iterations (Strain) and
the average time consumption of image generation after certain amounts (Sgen), where all
trainings are performed for object migration on horse2Zebra. Table 1 shows that the training
of MRGAN with multi-scale layered architecture is fastest on the same iteration numbers,
followed by CycleGAN, and G2GAN require the longest elapsed time. We can observe that
the multi-scale network in MRGAN is more productive than the multi-channel network in
G2GAN when they both just use one discriminator. This may be because the multi-channel
network requires to separately learn the attributes of an image over three channels of the
same size. Additionally, the training time of MRGAN is about two-thirds as long as that of
CycleGAN because it does not need to train two discriminators simultaneously. Table 2
shows the image average generating times of three models, and similarly MRGAN is
fastest, followed by CycleGAN and the slowest is G2GAN. The average time consumption
of different iterations and image average generating times of the three models are basically
stable and hardly change with the increase of iteration numbers and generated amounts.
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Table 1. Average time consumption under different training iterations (s).

Iterations MRGAN G2GAN CycleGAN

10 1.57 2.53 2.13
50 1.60 2.48 2.14

100 1.52 2.58 2.13
200 1.57 1.54 2.12

Table 2. Average time consumption under different number of generated images (s).

Iterations MRGAN G2GAN CycleGAN

10 0.238 0.355 0.290
50 0.242 0.353 0.290

100 0.239 0.354 0.291
200 0.239 0.354 0.293

4.4.3. Analysis on Different Inputs and Training Strategies

Figure 7 shows the generated results when full images (MRGAN w/o MRF) and random
image blocks with 70 × 70 pixels (MRGAN) are inputted into the discriminator. We can
observe that the generated images with two types of inputs are almost the same, with very
small differences in details. Such a patch-input discriminator has fewer parameters than a
full-image discriminator, and can be applied for arbitrarily sized images with faster execution.

Figure 7. The effects on results using different types of inputs for the discriminator. (a) The migration
between zebras and horses. (b) The conversion between winter and summer. From left to right in
(a,b): input images, the results using random image block inputs with 70 × 70 pixels, and the results
using full-image inputs.

In Figure 8, we have compared the effects of different normalization methods on the
results after five rounds. The model normalized by instances is denoted as MRGAN w/IN.
The figure shows that the results of MRGAN with group normalization are more satisfied
than those of MRGAN w/IN, while there is a more reasonable stripe distribution on zebras
and clearer objects’ contours on the former.
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Figure 9 shows the translated results using different initializations after five rounds,
Xavier parameter initialization (MRGAN) and Gaussian initialization (MRGAN w/N).
The scenery color of generated images by MRGAN using the Xavier parameter initializer
is more real, which demonstrates that the Xavier initializer has a positive impact on
model performance.

Figure 8. The effects on results using different normalization methods on the object migration
between horses and zebras after five rounds. From left to right: input images, the results using the
group normalization, and the results using the instance normalization.

Figure 9. The effects on results using different initializations after five rounds. From left to right: input
images, the results using Xavier parameter initialization, and the results using Gaussian initialization.
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4.4.4. User Studies

We conducted user studies to validate our work. Twenty images of each type were
randomly selected separately from three test sets as inputs, and the image translation
results of three tasks were obtained respectively by CycleGAN, MRGAN and DRUGAN.
After shuffling the corresponding results of each input image as one group, 40 groups of
images to be evaluated were finally obtained on each task. Since each task corresponds to a
different set of images, we set different evaluation aspects for three tasks according to the
characteristics of images, as shown in Figure 10. First, we assessed three aspects including
object color, background color and object contour for the object migration between horses
and zebras. We collected 36 responses per aspect on average, and a total score in each aspect
for each group of results is 100. The overall scores of models were calculated according to
the average scores of three aspects. Figure 10a shows that MRGAN achieves the best overall
effect in the object migration between horses and zebras. We found that MRGAN obtained
the best evaluations in all three aspects, especially in the aspects of the background color
and the object contour, which confirms that our approach can better solve the problems of
color leakage and structure instability. With two generators, G2GAN had relatively strong
background processing capability, and also did not differ much from MRGAN in overall
evaluation, while CycleGAN achieved the lowest rating due to significant semantic loss.
Second, we assessed in the same way three aspects including trees color, ground color and
image tone for the season conversion between summer and winter images. On average,
36 responses per aspect were collected and the total score in each aspect was 100. Figure 10b
shows the evaluated results of three aspects and the overall average scores. The results
shows that MRGAN still has a significant advantage in ground color, while outscoring
G2GAN in trees color and tone too. Last, we conducted a third study to estimate the map
transformation results. Since it is hard to intuitively distinguish the outcomes of map
transformation, only boundary clarity was selected to evaluate its results. We only collected
23 available responses per group of results on average. Figure 10c shows the results of three
models separately from the transformation of aerials to 2D maps and 2D maps to aerials.
Although the results of three models are visually similar, the manual evaluation results can
provide a reference for the analysis of the models. MRGAN had the highest overall score
for transforming aerials to 2D maps, but it is only 2.1 percent higher than the lowest score
of CycleGAN. This also shows the advantage of MRGAN for boundary processing. In the
conversion of 2D maps to aerials, although MRGAN scored slightly lower than G2GAN, it
nonetheless produces faithful outputs.

Figure 10. User study results confirm that our approach produces the best image translation results
on three tasks. (a) The evaluation scores for different aspects in object migration between horses and
zebras. (b) The evaluation scores for different aspects in season transfer between summer and winter
images. (c) The evaluation scores for the boundary clarity in map conversion.

5. Conclusions

In this paper, an unsupervised model, MRGAN, is proposed for image-to-image
transformation tasks, which consists of two generators and one discriminator. Compared
with the existing methods, our proposed MRGAN can preserve the contextual structural
and semantic information to avoid color leakage that might result from the lack of target
guidance. Specifically, the generators of MRGAN adopt a multi-scale layered structure to
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integrate the multi-grained context features into the residual units to eliminate the semantic
loss in the image encoding process. Further, the WGAN-GP architecture is employed in
the discriminator for gradient penalty instead of weight pruning to prevent instability in
network training, as well as the randomly cropped image patches being used as inputs
for the discriminator to enhance the robustness of the model. Last, the objective function
of combining the reconstructed loss and the adversarial loss is used to optimize training
and speed up converging. Experimental results show that MRGAN can generate more
realistic images with less training time. However, there are some shortcomings in the detail
of stylized images using MRGAN, such as uneven edges, which need to be resolved in
our future work. At the same time, we will consider adopting our network structure on
multi-domain image-to-image translation models for more generic applications. In future
work, we will consider how to combine the pre-training models and multi-task learning
for general image-to-image translation, with prompts or signal rules to guide the learning
between different style images for improving the effect of general image translation tasks.
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