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Abstract: Recurrent neural network (RNN) models continue the theory of the autoregression inte-
grated moving average (ARIMA) model class. In this paper, we consider the architecture of the
RNN with embedded memory—«Process of Nonlinear Autoregressive Exogenous Model» (NARX).
Though it is known that NN is a universal approximator, certain difficulties and restrictions in
different NN applications are still topical and call for new approaches and methods. In particular, it
is difficult for an NN to model noisy and significantly nonstationary time series. The paper suggests
optimizing the modeling process for a complicated-structure time series by NARX networks involv-
ing wavelet filtering. The developed procedure of wavelet filtering includes the application of the
construction of wavelet packets and stochastic thresholds. A method to estimate the thresholds to
obtain a solution with a defined confidence level is also developed. We introduce the algorithm of
wavelet filtering. It is shown that the proposed wavelet filtering makes it possible to obtain a more
accurate NARX model and improves the efficiency of the forecasting process for a natural time series
of a complicated structure. Compared to ARIMA, the suggested method allows us to obtain a more
adequate model of a nonstationary time series of complex nonlinear structure. The advantage of the
method, compared to RNN, is the higher quality of data approximation for smaller computation
efforts at the stages of network training and functioning that provides the solution to the problem
of long-term dependencies. Moreover, we develop a scheme of approach realization for the task of
data modeling based on NARX and anomaly detection. The necessity of anomaly detection arises
in different application areas. Anomaly detection is of particular relevance in the problems of geo-
physical monitoring and requires method accuracy and efficiency. The effectiveness of the suggested
method is illustrated in the example of processing of ionospheric parameter time series. We also
present the results for the problem of ionospheric anomaly detection. The approach can be applied in
space weather forecasting to predict ionospheric parameters and to detect ionospheric anomalies.

Keywords: time series model; wavelet transform; neural network NARX; ionospheric parameters

MSC: 62C12; 62C20; 62L20; 68T05; 68T07

1. Introduction

Time series modeling and analysis form an important fundamental basis for the
investigation of processes and phenomena of different nature. This theory can be applied in
different spheres of human activities (physics, biology, medicine, economy, etc.). A separate
class of problems of time series analysis is directed on the diagnostics of object states
and anomaly detection. Such problems have special relevance in the area of geophysical
monitoring, they are: anomaly detection in geological medium [1]; in the near-earth
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space [2–4]; the prediction of tsunamis [5,6], earthquakes [7], and other catastrophic natural
phenomena. Anomaly detection and identification are also very topical in medicine [8].
The most important requirements for such methods are accuracy, promptness of answer
reception, as well as the adaptability to have the possibility to record fast nonstationary
changes of the system or object state.

Natural data time series have a complex structure that complicates the process of
construction of analysis models and methods. Classical methods of time series analysis (AR,
ARMA models [9,10], stochastic approximation [11,12], etc.) do not allow us to describe
data complex structures adequately, and do not satisfy the adaptation requirement [3,13].
In applications, hybrid approaches are increasingly frequently used. They are based on
the combination of deterministic and stochastic methods involving elements of machine
learning [3,13–19]. They allow us to improve the procedure of complex data analysis. For
example, in the paper [15], simplified selection ensembles based on trees were used to model
and predict the data on milk yield. Preliminary data processing included their reduction
into rotating main components. The authors [15] developed a simplified selective algorithm
on the index of concordance that allowed them to optimize the method’s performance.
In the paper [15], two linear hybrid models were constructed and investigated. Another
hybrid approach is considered in the paper [13] to analyze hydrological data. The authors
of the paper [13] showed the efficiency of the joint application of wavelet transform [20–22]
with neural networks (NN): wavelet neural network models. A flexible apparatus of the
wavelet transform made it possible to apply it successfully in data analysis application [2].
A set of wavelet decomposition schemes and a wide library of basic wavelets allow us to
adapt this method for the data of different-structure and according to the investigation’s
aim. The authors of the papers [23,24] illustrated the efficiency of application of wavelet
transform with ARIMA models to model ionospheric parameter time variations and to
detect anomalies. This paper continues that work. Here, we use the combination of wavelet
packets with recurrent neural networks (RNN) [25], which continue the theory of the
autoregression integrated moving average (ARIMA) model class [9,10].

Neural network methods are widely applied now in different areas of
experience [3,4,7,13,26,27]. However, we should note that NN efficiency depends on the
properties of training data and their representativity. Though the NN apparatus includes
a wide set of paradigms and allows us to approximate complicated dependencies, some
difficulties and restrictions in different applications are still topical and require the devel-
opment of new approaches and methods [28–31]. In particular, NN efficiency decreases
significantly for very noisy and nonstationary data. For example, it is difficult for an NN
to model the nonstationary not associated with seasonal regularities, especially when it
has long time delays [28]. Thus, the application of an NN requires data pre-processing
(suppression of noise, elimination of trends, seasonality, etc.) in most cases to obtain an
optimal result [28,32–35]. In this case, the combination with different methods makes it
possible to overcome the problems in NN applications. For example, it was suggested in
the paper [17], to apply the LSTM neural network together with discrete wavelet decompo-
sition and ARIMA models. A combination of discrete wavelet decomposition with neural
network and ARIMA was also suggested in the paper [36] to forecast the hydrological
time series.

This paper considers RNN network architecture with embedded memory—«Process
of Nonlinear Autoregressive Exogenous Model» (NARX) [25,27,28,30,33]. The evident
advantages of regression models are their mathematical validity, formalized method of
model identification, and the test for adequacy. Moreover, the advantage of the NARX
network with the training gradient algorithm is their rapid convergence and good capacity
for generalization [29,30].

However, we should note that one of RNN’s problems is the problem of long-term
dependencies [37]. Many researchers tried to solve it. The authors of [38] showed that in
certain cases, RNN are capable of reflecting time delays of not less than 100 time steps. A
complex approach to the solution of the problem of long-term dependencies was proposed
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by [39]. The authors [39] applied the architecture of the segmented-memory recurrent
neural network (SMRNN) together with extended real-time recurrent learning (eRTRL).
However, the eRTRL had a high computational complexity; thus, the authors [39] intro-
duced an auxiliary condition in the form of extended back propagation through time
(eBPTT) for SMRNN together with a layer-local unsupervised pre-training procedure. The
theoretical solution of the question of vanishing gradient is represented in the paper [40].
The authors [40] used a regularization term, which prevents the error signal from vanishing
during its motion back in time. It was also shown in the paper [40] that the proposed
solutions improved RNN performance on the considered synthetic data sets. The au-
thors [41] suggested a Fourier Recurrent Unit (FRU), which stabilizes gradients arising
during network training. The FRU summarizes hidden states in the temporal dimension
by Fourier basic functions. The experimental part of the paper [41] showed for the smaller
number of parameters, the suggested architecture exceeded other RNN for many problems.
One more approach to the solution of the problem of vanishing gradients and the problem
of long-term dependences associated with it, was suggested in [42]. The authors [42]
introduced a new recurrent unit with a residual error on the stage of training (Res-RNN
network). It was shown in the paper [42] that the proposed Res-RNN was effective in
standard RNN modifications.

One of the effective solutions of the problem of long-term dependencies for RNN is
the long short-term memory (LSTM) architecture [43,44]. Multiple investigations caused
the development of the architecture and its application in different fields. For example, in
the paper [45], the authors showed the LSTM application for the graph of pump operation
in drinking water production. The system, obtained by the authors [45], made it possible
to take into account such information as day of a week, and holidays when solving the
problem of long-term dependencies. The development of LSTM architecture was presented
by the authors [46], who used the model of improved seasonal-trend decomposition LSTM
(ISTL-LSTM) to forecast bus passenger traffic during COVID-19. The model [46], based on
STL, several functions, and three neural LSTM networks made it possible to forecast the
daily bus passenger traffic in Beijing during the pandemic. As the authors [47] showed,
the application of LSTM is possible in hybrid format. In the paper [47], the combination of
two types of NN was applied. That was determined by a different dimension of input data.
The convolution neural network (CNN) was used to process two-dimensional precipitation
maps and LSTM to process one-dimensional output CNN data and to calculate the down-
stream flux. The results [47] showed that the CNN-LSTM model was useful to estimate
water supply and to make flood warning. The paper [48] demonstrated the results of the
comparison of the architectures RNN, LSTM, and GRU. It was shown that LSTM and GRU
are often better than RNN in the accuracy of approximation and data forecast, but their
convergence takes more time.

At the same time, despite the illustrated examples of successful application of LSTM
networks, this architecture has significant complexity compared to standard RNN. The
disadvantage of LSTM is the long time for training and, as a consequence, it requires a long
machine time [49]. At the same time, LSTM does not guarantee the complete solution of
the problems of gradient explode or their vanishing. They occur rarely and quite slowly
(during a large number of time steps) [40,49,50]. In spite of the great diversity of the
current modification of LSTM, they do not give a significant benefit compared to the initial
LSTM [49].

In the paper, we suggest optimizing the process of data modeling by NARX network
involving wavelet filtering. The proposed procedure of wavelet filtering allows us to
decrease the noise level and to improve NARX network efficiency. Compared to LSTM,
the suggested method does not require long-term time series recorded into memory for
a retrospective analysis. That makes it possible to use standard RNN without serious
risks to obtain the problem of long-term dependencies [37,40], which are reduced by the
simplification of input vectors by wavelet filtering. Wavelet filtering is based on wavelet
packet construction with the use of stochastic thresholds. In the paper, we introduce
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the algorithm of wavelet filtering and propose the technique for estimating stochastic
thresholds to obtain solutions with defined confidence coefficient. Moreover, we consider
a scheme of implementation of the approach for the problem of anomaly detection in
natural data.

The paper considers the ionospheric parameter time series (ionospheric layer F2 criti-
cal frequency, foF2). The ionospheric time series have regular variation and anomalies of
different forms and time durations. The anomalies are observed during increased solar
and geomagnetic activities [3,51]. In seismically active regions, ionospheric anomalies may
also occur during earthquakes [51]. The detection of ionospheric anomalies is important
in different aspects of life such as space craft operation, radio communication, navigation
system operation, etc. The applied traditional methods of time series analysis (median
method, moving average, ARIMA models) are not efficient enough to detect ionospheric
anomalies [3,52,53]. In the paper, we show that the application of the wavelet filtering pro-
cedure makes it possible to obtain a more accurate NARX model of ionospheric parameter
time variation. We compare the method with a direct application of NARX networks that
also confirms its efficiency. On the example of the analysis of the data during a magnetic
storm, the possibility of application of the method to detect anomalies in the space weather
problem is illustrated.

2. Method Description
2.1. Wavelet Filtering with Stochastic Thresholds

There is a discrete noisy signal y(tn) (n ε N, N are natural numbers including zero)

y(tn) = f (tn) + e(tn), (1)

where y(tn) is the recorded data, f (tn) is a useful signal, and e(tn) is noise.
To detect the signal structure, according to the paper [20], we apply packet wavelet

decompositions [21,22]:
Bp

j =
{

φ
p
j
(
t− 2jk

)}
k∈N

, where Bp
j is the basis of the space Vp

j of the wavelet packet

tree (Figure 1) generated by the scaling function φ
p
j (t) = 2−j/2φp(2−jt

)
;
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, where B
p
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j of the wavelet packet

tree (Figure 1) generated by the wavelet Ψ
p
j (t) = 2−j/2Ψp(2−jt

)
. When moving downwards
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j , Wp

j are divided into orthogonal subspaces

Vp
j = V2p

j+1 ⊕W2p+1
j+1 ; Wp

j = W2p
j+1 ⊕W2p+1

j+1 . (2)
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Signal y(tn) in the wavelet packet space at the decomposition level m has the form

y(tn) = yp
m(tn) + ∑j gp

j (tn), (3)

where yp
m(tn) = ∑k cp

m,kφ
p
m,k(tn) is the smoothed component; the coefficients cp

m,k =〈
y, φ

p
m,k

〉
; φ

p
m,k(tn) = 2−

m
2 φ

p
m(tn − 2mk), gp

j (tn) = ∑k dp
j,kΨ

p
j,k(tn) are detailing components;

the coefficients dp
j,k =

〈
y, Ψ

p
j,k

〉
, Ψ

p
j,k(tn) = 2−j/2Ψ

p
j
(
tn − 2jk

)
are the wavelet.

To determine the decomposition level m, we apply the NAS algorithm suggested in the
paper [54]. The NAS algorithm allows us to construct a wavelet packet tree by suppressing
noises and detecting signal coherent structures (the algorithm is in Appendix A).

To estimate the signal f̃ , according to the paper [54], we apply the following hard
threshold to the absolute values of the coefficients dp

j,k of the components gp
j (tn) in each

tree node

PTp
j

(
dp

j,k

)
=

dp
j,k, i f

∣∣∣dp
j,k

∣∣∣ > Tp
j ,

0, i f
∣∣∣dp

j,k

∣∣∣ ≤ Tp
j .

(4)

The estimate f̃ , based on (4), is

f̃ (tn) = yp
m(tn) + ∑j,k Tp

j

(
dp

j,k

)
Ψp

j,k(tn). (5)

The risk of such an estimate for f̃ ∈ L2(R) (L2(R), Lebesgue space [55]), is [56]

r
(

f̃ , f
)
= E

{
‖ f̃ − f ‖2}

, (6)

where E is the mathematical expectation; ‖·‖ is the norm.
It is obvious that to minimize the risk r, the threshold Tp

j should be likely higher than
the noise coefficient maximum level. As it was shown in the papers [21,22], outside the
neighborhoods containing signal local features, absolute values of the coefficients

∣∣∣dp
j,k

∣∣∣
with respect to the argument k are close to zero. Local features in a signal are observed
during anomalies and are rare events; thus, based on the thee-sigma rule [57], we can state
with high confidence (α ≈ 0.99) that the values dp

j,k with respect to the argument k are
within the interval

(
µj − 3σj; µj + 3σj

)
, where µj ≈ 0 is the mathematical expectance of the

value dp
j,k, and σj is the standard deviation dp

j,k.
Then, in the case of normal distribution of the value dp

j,k, according to the paper [34],
we can estimate the thresholds Tp

j for each level j with the defined confidence coefficient as

Tp
j = t1− α

2 ,N−1σ̂j, (7)

where tα,N are α-quantiles Student’s distribution [57]; σ̂j is the sample standard diviation of
the value dp

j,k which is estimated during the periods without anomalies in the data.
We should note that the risk of estimate (5) is also associated with the error of the

approximation f in the basis B that should also be taken into account. We can determine
the basis for the approximation f as, for example, it was suggested in the paper [20] using
the Schur’s function [58] and the concordant fitting algorithm [59].

Based on the described operations, we obtain the following algorithm of wavelet filtering:

1. Decomposition of signal y into wavelet packets

y(tn) = yp
m(tn) + ∑j gp

j (tn), (8)
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where yp
m(tn) = ∑k cp

m,kφ
p
m,k(tn), cp

m,k =
〈

y, φ
p
m,k

〉
, φ

p
m,k(tn) = 2−

m
2 φ

p
m(tn − 2mk);

gp
j (tn) = ∑k dp

j,kΨ
p
j,k(tn), dp

j,k =
〈

y, Ψ
p
j,k

〉
, Ψ

p
j,k(tn) = 2−j/2Ψ

p
j
(
tn − 2jk

)
.

2. Application of the threshold function to the coefficients dp
j,k of the components gp

j :

PTp
j

(
dp

j,k

)
=

dp
j,k, i f

∣∣∣dp
j,k

∣∣∣ ≥ Tp
j

0, i f
∣∣∣dp

j,k

∣∣∣ < Tp
j

, (9)

where Tp
j = t1− α

2 ,N−1σ̂j, tα,N are the α-quantiles Student’s distribution; σ̂j is the sample
standard deviation of the value dp

j,k.
3. Wavelet reconstruction of the signal

f̃ (tn) = yp
m(tn) + ∑

j,k
PTp

j

(
dp

j,k

)
Ψ

p
j,k(tn). (10)

2.2. Application of NARX Network

After the wavelet filtering, the signal f̃ is approximated by the neural NARX net-
work [4,25,27,28]. The architecture of the recurrent NARX PA network [28] is illustrated in
Figure 2.
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According to the NARX PA network architecture, the network input is f̃ (tn), and the
network output is f̂ (tn + 1), i.e., the network predicts the data by one step ahead.

The vector, sent to the network hidden layer neurons, consists of the following components:

- current f̃ (tn) and preliminary values f̃ (tn−1), . . . , f̃
(

tn−l f̃

)
;

- output values f̂ (tn), f̂ (tn−1), . . . , f̂
(

tn−l f̂

)
.

The analytical representation of the signal model based on NARX PA has the form

f̂ (tn+1) = Fo

wbo +
D

∑
h=1

who·Fh

wbh +

l f̃

∑
i=0

wih f̃ (tn−i) +

l f̂

∑
z=0

wzh f̂ (tn−z)

, (11)
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where f̃ (tn) и f̂ (tn) is the NN input signal and its approximation by the network, respec-
tively; l f̃ , l f̂ is the number of delay lines; wzh are weight coefficients of the values arriving
from NN output to the hidden layer neurons; wih are weight coefficients of input values
arriving to the hidden layer neurons; wbh and wbo are constant terms for the hidden and
output layers, respectively; Fh and Fo are activation functions for the neurons of the hidden
and output layers, respectively; who are weight coefficients for the values arriving on output
layer neurons; D is the number of hidden layer neurons.

It is known that network architecture affects forecast efficiency. NARX model archi-
tecture depends on the size of the embedded memory of input (l f̃ ), of output (l f̂ ) and the
neuron number in the hidden layer. It is not a trivial task to determine these parameters.
The number of the delay lines of input l f̃ and output l f̂ can be determined by minimizing
the network error [28]. The technique to determine these parameters and the obtained
results are represented below in this paper.

The Bayesian regularization algorithm is used for network training. This algorithm up-
dates the weights and the shifts leading to the network neurons according to the Levenberg–
Marquardt optimization [25]. The Bayesian regularization technique allows one to form a
combination of neuron and weight number of the hidden layer in such a way that the net-
work has the highest degree of generalization [28]. The regularization function minimizes
the linear combination of squared errors and weight coefficients of the network at the stage
of training. That makes it possible to optimize the neuron number of the hidden layer and
to avoid the overtraining effect.

2.3. Scheme of Method Realization

The scheme of method realization is illustrated in Figure 3. Disorder in the system
evidently indicates an anomaly in the data. A disorder can be detected based on the analysis
of the vector of neural network summary errors estimated in the time window of the length
L = 2l + 1

εi = ∑i+l
i=i−l

∣∣∣ f̂ (i)− f̃ (i)
∣∣∣. (12)
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In this case, we can consider that there is an anomaly in the data if

εi > 2σ + εmean, (13)
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where σ is the standard deviation of network summary errors, it is estimated during the
periods without anomalies; εmean is the average of network summary errors during the
periods without anomalies.

3. Results of Method Application for Ionospheric Data

In the paper, we used the ionospheric layer F2 critical frequency (foF2) data for the
period 1969–2015. The data were recorded at IKIR FEB RAS (Paratunka site, Kamchatskiy
kray, Russia) from 1968 up to the present time. According to the suggested method, the
input and reference values of NN were obtained after the wavelet filtering procedure.
In the operations of wavelet filtering, we used orthonormal third-order Daubechies [21],
which were determined by minimizing foF2 data approximation errors [60]. To evaluate
the method, NN were also trained using the foF2 initial data without wavelet filtering.

When forming training and control NN samples, we took into account the dependence
of foF2 data time variation on the season and solar activity level. Thus, NN were constructed
for different seasons and different levels of solar activity separately. Two periods of solar
activity were considered, the period of high solar activity and the period of low solar
activity (the level of solar activity was estimated by mean monthly values of radio emission
at the wavelength of f10.7 [61]). To obtain NARX models describing foF2 data regular time
variation, data for the periods of calm ionosphere were used in the training process. For
each NN, training samples contained one vector of the length from 2000 to 4000 counts. We
constructed 24 networks.

When constructing NN, input and output delay lines l f̃ = l f̂ = 2, l f̃ = l f̂ = 3,
l f̃ = l f̂ = 5 were used. The parameters l f̃ and l f̂ were determined according to the
investigation results of [24]. In the paper [24], an autocorrelation function (ACF) and partial
autocorrelation function (PACF) were studied to determine the order of ARIMA models
of the foF2 series. It was shown [24] that after wavelet filtering and obtaining the first
differences, AR models of foF2 series had the orders 2 and 3 depending on the season and
solar activity level. However, we should note that in the general case, the question of the
determination of l f̃ and l f̂ is important and requires additional study. As was shown in the
paper [28], the NARX model quality significantly depends on the size of input and output
embedded memory.

The selection of NN inner architecture was based on NN error estimates. The standard
deviations of errors (STD) for the networks were determined as

STD =

√
1

N − 1 ∑N
i=1

(
ei −

−
e
)2

, (14)

where e = 1
N ∑N

i=1 ei, ei = f̂0(i)− f̃0(i).
As an example, Table 1 shows NN error estimates for wintertime depending on the

neuron number of the hidden layer. An analysis of Table 1 shows that the STD error
decreased when the number of neurons was 20 in the hidden layer. Then, the network
error remained unchanged. Based on these results, we determined the wintertime network
architecture with the number of neurons of the hidden layer equal to 20. Making similar
investigations, we determined the number of neurons of the hidden layer were also equal
to 20 for the summertime.

Table 1. Construction of network architecture for the data during winter season and high solar activity.

Neuron Number 4 8 12 16 20 24 28

STD 0.54 0.48 0.42 0.42 0.40 0.40 0.41

Table 2 shows the STD errors of NN for different delay lines. An analysis of the results
shows that the number of NN approximations increased insignificantly as the number of
delay lines grew for the NN trained without wavelet filtering. The application of wavelet
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filtering made it possible to increase significantly the NN approximation quality especially
during low solar activity. That confirmed the efficiency of the proposed method.

Table 2. Standard deviations of neural network errors.

Season Delay 2
Delay 2
Wavelet
Filtering

Delay 3
Delay 3
Wavelet
Filtering

Delay 5
Delay 5
Wavelet
Filtering

Winter (low solar activity) 0.71 0.49 0.69 0.5 0.69 0.49
Summer (low solar activity) 0.6 0.33 0.54 0.32 0.46 0.27
Winter (high solar activity) 1.3 0.87 1.31 0.85 1.3 0.87

Summer (high solar activity) 0.54 0.5 0.52 0.51 0.49 0.49

The results of NN quality estimates, based on the control set data during the periods
without anomalies, are illustrated in Table 3. The analysis shows significant improvement
of NN approximation quality when using the wavelet filtering procedure. The application
of wavelet filtering made it possible to decrease significantly the average error (εmean)
and STD (σ) for different delay lines. We should also note that the application of wavelet
filtering allowed us to use the low number of input and output delay lines when the
network performance quality was good.

Table 3. Results of NN performance (summer and winter, low solar activity).

Delay Lines
l~
f
=lf̂

Season
ε

y
mean

without Wavelet
Filtering

σy

without Wavelet
Filtering

ε
~
f
mean

with Wavelet
Filtering

σ
~
f

with Wavelet
Filtering

2 Sum 1.3 0.6 0.48 0.33
3 Sum 1.42 0.54 0.47 0.32
5 Sum 1.27 0.46 0.46 0.27
2 Win 1.39 0.71 0.65 0.49
3 Win 1.24 0.69 0.67 0.50
5 Win 1.21 0.69 0.64 0.49

The test for the adequacy of the obtained NARX models was based on the Ljung-Box
test [62]:

Q = M(M + 2)∑L
s=1

ρ2
s

M− s
, (15)

where M is the observations number, ρs is the autocorrelation of the s-th order, and L is the
number of lags under the check. If Q > χ2

1−α, L, where χ2
1−α, L is the quantile of chi-square

distribution with L degrees of freedom, then the presence of autocorrelation of the L-th
order in the time series is admitted.

The results of the Ljung-Box test are presented in Table 4. The analysis of the results
shows that for the networks constructed without wavelet filtering, Ljung-Box test values
exceeded significantly the corresponding critical value χ2

1−α, L. That indicates the corre-
lation of network errors and, as a sequence, the not-quite-good-enough quality of foF2
data approximation. We should note that the error correlation grew significantly for large
lags L that were evidently associated with the presence of long time dependencies (foF2
diurnal variation) in foF2 data. As was mentioned in the paper [28], in the systems with
large time dependencies for the training algorithms based on gradient, information on step
gradient m in the past vanished at large m (the problem of vanishing gradients). Thus, the
application of RNN faces problems when modeling data with long time dependencies,
especially when forecasting nonlinear nonstationary signals [28]. It was also shown in the
paper [25] that the problem of vanishing gradients made the investigation of long-term
dependencies in training algorithms, based on gradient, difficult and in some cases almost
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impossible. When the delay lines grew, the data approximation quality increased (Table 4).
However, the adequacy was confirmed only for NARX models obtained with wavelet
filtering. For the network delay lines l f̃ = l f̂ = 3, l f̃ = l f̂ = 5, according to the Ljung-Box
test, network errors were uncorrelated. That confirms their adequacy to foF2 data and
shows the efficiency of the suggested method.

Table 4. Ljung-Box test values (summer, low solar activity).

Delay Lines
lx=ly

Lag Number
L

Qy without
Wavelet Filtering

Q~
f

with Wavelet Filtering
χ2

1−α, L

2 1 0.04 1.47 3.84
2 4 30.4 16.3 9.48
2 8 69.1 28.1 15.5
2 12 128 41.7 21
3 1 0.02 0.04 3.84
3 4 0.9 1.9 9.48
3 8 12.6 9.6 15.5
3 12 64.9 18.2 21
5 1 0.5 0.05 3.84
5 4 1.4 3.8 9.48
5 8 15.6 15.2 15.5
5 12 44.6 19.9 21

Figure 4 shows the results of NN performance during a moderate magnetic storm on
16–17 July 2017. A red dashed line in Figure 4 indicates the time of the magnetic storm
beginning. To analyze the geomagnetic activity index, DST index values are illustrated in
Figure 4e [63]. During the strongest geomagnetic disturbances on 16 July 2017, the DST
index reached the minimum of −72 nT (Figure 4e). An analysis of foF2 data (Figure 4a)
shows insignificant changes in fluctuation amplitude during the magnetic storm that was
determined by ionospheric disturbance occurrences. Median value data (dashed lines in
Figure 4a) also confirmed the presence of an anomaly in the ionosphere during the magnetic
storm. The processing results (Figure 4b–d,f–h) illustrated a significant increase in NN
errors during the strongest geomagnetic disturbances that indicated anomalous changes in
the data. The comparison of the results of the NN trained on the initial data (Figure 4b–d)
with the results of the NN obtained after wavelet filtering (Figure 4f–h) confirmed the
significant improvement of NN quality when using wavelet filtering. Errors of the NN
trained after the wavelet filtering procedure were close to zero. In the error vector of the
NN trained on the initial data, an oscillation process was observed which was likely to
be associated with foF2 diurnal variation. The result confirms the assumption mentioned
above that the application of RNN faced problems when modeling the data with long time
dependencies (problem of vanishing gradients). The result also confirms the efficiency of
the suggested wavelet filtering procedure to improve the NARX performance quality when
modeling nonstationary and noisy data.

Comparing the results of NN with a different number of delay lines, we have learned
that for the delay lines l f̃ = l f̂ = 5 (Figure 4h), anomalous changes were detected on a
longer interval that agreed well with the obtained median values of foF2 (dashed line in
Figure 4a). A comparison of the NARX results with the median method shows a higher
efficiency of the NN. Due to the significant nonstationarity of foF2 data time variation
during the magnetic storm, there were errors in median values during the period after the
storm on 18 July 2017. There were no errors in the NN model.
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Figure 5 shows the results of data processing during a weak magnetic storm on 5–6
August 2019. The red vertical line indicates the magnetic storm beginning (Figure 5).
Results in Figure 5 are similar to those illustrated above for the event on 16–17 July 2017.
The estimated median values (Figure 5a) show long changes in foF2 data time variation
during the magnetic storm. An analysis of NN errors also shows their increase during the
event that indicates anomaly occurrence in the ionosphere. The comparison of the results
of NN performance without wavelet filtering (Figure 5b–d) and with wavelet filtering
(Figure 5f–h) shows a significant decrease in NN errors based on the suggested approach.
That is similar to the results of the event on 16–17 July 2017. The NN with the delay lines
l f̃ = l f̂ = 5 (Figure 5h) shows the best results. It has the least errors and the anomalous
period in ionospheric data is clearly detectable.

Table 5 shows quantitative estimates of the NN performance during the events de-
scribed above. The estimates were carried out separately during calm and disturbed
periods. An analysis of the results from Table 5 shows that wavelet filtering allows one
to decrease significantly the average values of network errors and their STD during calm
periods. A decrease in the NN error level by more than 3 times is observed after the wavelet
filtering procedure. During the anomalous period, the STD of the network trained after
the wavelet filtering may increase by 17 times. That makes it possible to detect anomalous
changes in the ionosphere accurately. We should also note that as the number of delay lines
increase, the quality of anomaly detection by this network improves. The results confirm
the efficiency of the suggested method.
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Table 5. Results of NN performance.

Delay Lines
l~
f
=lf̂

Year
ε

y
mean

without Wavelet
Filtering

σy

without Wavelet
Filtering

ε
~
f
mean

with Wavelet
Filtering

σ
~
f

with Wavelet
Filtering

calm period
2 2017 1.02 0.63 0.39 0.27
3 2017 1.05 0.57 0.37 0.24
5 2017 0.98 0.53 0.24 0.15
2 2019 1.17 0.61 0.42 0.29
3 2019 1.42 0.64 0.31 0.24
5 2019 1.31 0.58 0.33 0.12

anomaly period
2 2017 1.86 1.19 1.81 1.4
3 2017 1.83 1.11 1.6 1.64
5 2017 1.65 0.94 2.58 1.7
2 2019 1.83 1.41 1.68 1.2
3 2019 2.02 1.06 2.18 1.96
5 2019 2.16 0.97 2.88 2.05

4. Conclusions

The application of the method showed its efficiency in the problem of ionospheric
data modeling and analysis. The suggested procedure of wavelet filtering allows us to
improve the NARX neural network performance quality and gives the possibility to obtain
an adequate model for noisy and nonstationary data.

As was mentioned in the papers [25,28], data modeling based on NARX has some
difficulties associated with the presence of long time dependences caused by the “vanishing
gradient”. It was shown on the example of ionospheric data that the wavelet filtering
procedure makes it possible to solve this problem if there is a long period. The Ljung-Box
test confirmed the adequacy of the obtained neural network models.

On the example of the magnetic storms that occurred on 16–17 July 2017 and on
5–6 August 2019, we confirmed the possibility to apply the method for the detection of
ionospheric anomalies based on foF2 data during magnetospheric disturbances. A compari-
son of the NARX network with the median method, traditionally used for ionospheric data
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analysis, showed the NN efficiency. The ionospheric data time variation change during
the magnetic storms under analysis entailed error occurrences in the estimates of median
values, which were absent in the NN model. The method can be used to monitor the
ionosphere state during space weather forecasting.

We plan to continue the investigation in this direction involving ionospheric data from
other regions. We also plan to apply the developed method for a more detailed study of
ionospheric parameters during increased solar activity and magnetic storms.
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Appendix A

NAS algorithm [54]:
(1) signal X is decomposed into wavelet packets
W0

j : W0
j = ⊕I

i=0Wpi
ji

,
{

Ψpi
ji
(2ji t−m)

}
m∈N

is the basis of the space Wpi
ji

;

(2) based on the estimate of normalized energies, we determine the tree branches
corresponding to signal structural components: basis Bpi

ji
of the space Wpi

ji
is the basis

Bpi
ji
=


{

Ψ
pi
ji
(2ji t−m)

}
m∈N

, i f ∑
m∈Ipi

∣∣∣〈X, Ψ
pi
ji ,m

〉∣∣∣2 ≥ ∑
m∈I2pi

∣∣∣〈X, Ψ
2pi
ji+1,m

〉∣∣∣2 + ∑
m∈I2pi+1

∣∣∣〈X, Ψ
2pi+1
ji+1,m

〉∣∣∣2{
Ψ

2pi
ji+1

}
m∈N
∪
{

Ψ
2pi+1
ji+1

}
m∈N

, i f ∑
m∈Ipi

∣∣∣〈X, Ψ
pi
ji ,m

〉∣∣∣2 < ∑
m∈I2pi

∣∣∣〈X, Ψ
2pi
ji+1,m

〉∣∣∣2 + ∑
m∈I2pi+1

∣∣∣〈X, Ψ
2pi+1
ji+1,m

〉∣∣∣2 (A1)

where the index set Il , l = pi, 2pi, 2pi + 1 is determined as follows: index m ∈ Il ,

if
∣∣∣〈X, Ψl

ji , m

〉∣∣∣ ≥ Tji , threshold Tji = K ∗ σl
ji
, σl

ji
=

√
1
L ∑L

m=1 (〈X, Ψl
ji , m〉 − 〈X, Ψl

ji ,m
〉)

2
,

where the coefficient of the threshold K is determined by estimating a posterior risk,〈
X, Ψl

ji ,m

〉
is the average of the set

{∣∣∣〈X, Ψl
ji ,m
〉
∣∣∣}

0≤m<L
, L is the element number.

http://wdc.kugi.kyoto-u.ac.jp/dstae/index.html
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